Помощь в написании студенческих работ
Антистрессовый сервис

Зависимость флуоресцентных параметров микроводорослей от факторов среды, включая антропогенные загрязнения

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

На начальных этапах действие света высокой (насыщающей фотосинтез) интенсивности приводит к избыточному восстановлению компонентов фотосинтетической ЭТЦ, высокому значению градиента концентрации Н+ на мембране тилакоидов, избытку АТФ и НАДФН. В результате регуляции первичных механизмов фотосинтеза происходит тушение возбужденных состояний пигментов (развитие нефотохимического тушения) на уровне… Читать ещё >

Зависимость флуоресцентных параметров микроводорослей от факторов среды, включая антропогенные загрязнения (реферат, курсовая, диплом, контрольная)

Содержание

  • СПИСОК СОКРАЩЕНИЙ
  • ГЛАВА 1. ОБЗОР ЛИТ ЕРАТУРЫ
    • 1. 1. Организация фотосинтетического аппарата
    • 1. 2. Фотосистема 2 10 1.3 Влияние факторов внешней среды на фотосинтез микроводорослей
      • 1. 3. 1. Влияние светового режима выращивания на состояние фотосинтетического аппарата водорослей
      • 1. 3. 2. Влияние недостатка минерального питания на состав и активность фотосинтетического аппарата
    • 1. 4. Природа быстрой флуоресценции хлорофилла «а» в фотосинтетических мембранах
    • 5. Методы и приборы измерения быстрой флуоресценции хлорофилла «а» для изучения состояния ФСА водорослей
  • ЦЕЛИ И ЗАДАЧИ ИССЛЕДОВАНИЯ ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТ
  • Глава 2. ОБЪЕКТ И МЕТОДЫ ИССЛЕДОВАНИЯ
  • Глава 3. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЕ
    • 3. 1. Исследование закономерностей изменений параметров быстрой флуоресценции хлорофилла под действием света повышенной интенсивности у культур диатомовых водорослей и на природном фитопланктоне
    • 3. 2. Изменение характеристик флуоресценции у водорослей в условиях разного фона минерального питания
    • 3. 3. Влияние загрязнений солями ртути и меди на параметры флуоресценции водорослей
      • 3. 3. 1. Изучение токсического действия хлорида и метилртути на фотосинтетический аппарат диатомовых водорослей флуоресцентным методом
      • 3. 3. 2. Изучение токсического действия сульфата меди (CuS04) на фотосинтетический аппарат диатомовых водорослей
    • 3. 4. Изучение изменений параметров флуоресценции у природного фитопланктона в разных условиях на примере Черного и Балтийского морей с использованием проточного и погружного ^ флуориметров
      • 3. 4. 1. Исследования фитопланктона с использованием проточного флуориметра
      • 3. 4. 2. Исследования фитопланктона с использованием погружаемого флуориметра флуоресцентным методом

Фитопланктон является базовым звеном водных экосистем, определяя их состояние и продуктивность. При действии различных экологических факторов и антропогенных загрязнений в первую очередь изменяются фотосинтетическая активность и численность клеток водорослей (Федоров, 1970, 1991; Маторин, Венедиктов, 1990; Маторин и др., 1996; Ильяш и др., 2003; Falkowski, Raven, 1997). Изменения фотосинтеза фитопланктона приводят к изменениям в остальных звеньях водной экосистемы.

Для быстрой диагностики фитопланктона в природных условиях развиваются современные методы регистрации флуоресценции хлорофилла, которые позволяют получать информацию о количестве и активности фототрофных организмов, а также по характеристикам состояния фотосинтетического аппарата оценивать физиологическое состояния клеток и судить о качестве водной среды (Antal et al., 2001; Beutler et al, 2002). Важным преимуществом этих методов является их экспрессность и высокая чувствительность, что позволяет быстро диагностировать состояние фитопланктона непосредственно в среде его обитания in situ в режиме реального времени (Маторин и др., 1996). Оперативность измерений показателей флуоресценции на экспедиционных судах имеет особое значение при изучении мезо-масштабных процессов в морских экосистемах, которые отличаются большой временной изменчивостью (Fadeev et al, 1999; Ostrowska, 2001; Ильяш и др., 2004).

Основой флуоресцентных методов является то, что хлорофилл, находящийся в фотосинтетических мембранах, служит своего рода природным датчиком состояния клеток водорослей. Достижения в изучении механизмов первичных процессов фотосинтеза выявили связь показателей флуоресценции хлорофилла с характеристиками состояния фотосинтетического аппарата фотосинтезирующих организмов (Krause, Weis, 1991; Matorin et al, 2002). Энергия кванта света, поглощенного светособирающим комплексом, может бы гь превращена в энергию разделенных зарядов, которая используется в дальнейших реакциях фотосинтеза, либо потеряна путем излучения кванта флуоресценции или за счет рассеяния в тепло. Измерение соотношения интенсивности флуоресценции хлорофилла при насыщающем фотосинтез возбуждающем свете (Fm) и условиях, не вызывающих изменений состояния фотосинтетического аппарата (Fo), позволяет определить эффективность первичных процессов фотосинтеза, которая равна (Fm-Fo)/Fm=Fv/Fm Эффективность первичных процессов фотосинтеза (Fv/Fm) представляет собой безразмерную энергетическую характеристику фотосинтеза, аналогичную коэффициенту полезного действия и не зависящую от видовой специфики организма (Krause, Weis, l 991- Ficek et al., 2000). Интенсивность флуоресценции Fo с высоким коэффициентом корреляции соответствует суммарному содержанию светособирающих пигментов фотосинтетического аппарата фитопланктона, и, соответственно, коррелируют с обилием фитопланктона (Федоров, 1979; Ostrowska et al, 2000; Matorin et al, 2004).

Сейчас во многих лабораториях, занимающихся разработкой новых методов экологического мониторинга, направление диагностики фотосинтеза интенсивно развивается. Несомненно, ему принадлежит большое будущее, поскольку оно обеспечивает раннюю экспресс-диагностику сосюяния клеток в природных условиях.

Однако связь между изменениями различных параметров флуоресценции микроводорослей и фотосинтетического аппарата до конца не выяснены в связи со сложностью процессов. Первичные стадии фотосинтеза водорослей при действии факторов внешней среды не остаются неизменными, а активно регулируются клеткой в соответствии с ее физиологическим состоянием, что соответственно приводит к изменениям параметров флуоресценции. Выяснение этих вопросов может дать понимание как процессов фотосинтеза водорослей в природных условиях, так и позволит с большей информативностью проводить мониторинговые исследования водной среды с использованием флуоресцентных методов.

ВЫВОДЫ.

1. Выявлены закономерности изменения состояния фотосинтетического аппарата Тweissflogii по флуоресцентным показателям хлорофилла (Fo, Fm, Fv/Fm и NPQ) при действии света высокой интенсивности (1100 Вт/м2) и последующей инкубации в темноте. При фотоингибировании клеток, находящихся в оптимальных условиях уменьшение активности РЦ по Fv/Fm происходило за счет падения Fm. У культур, инкубируемых в условиях дефицита минерального питания изменение Fv/Fm сопровождалось резким уменьшением фоновой флуоресценции Fo.

2. С использованием ингибиторного анализа исследован вклад разных компонентов нефотохимического тушения возбужденных состояний хлорофилла на параметры флуоресценции при фотоингибировании. Показано, что при действии ингибитора деэпоксидазы каротиноидов диадиноксантинового цикла ДТТ, разобщителя FCCP, происходит снятие нефотохимического тушения, усиление процесса ФИ и появление необратимых фаз повреждения клеток при повышенных освещенностях. Ингибитор синтеза хлоропластных белков хлорамфеникол приводил к торможению репарации фотоингибированных клеток.

3. Азотное лимитирование культур морских водорослей ведет к накоплению неактивных РЦ ФС 2 и уменьшению Fv/Fm. Увеличение квантовой эффективности РЦ ФС 2 (по Fv/Fm) при добавлении минерального азота предшествовало началу увеличения количества клеток, что было описано для природного фитопланктона (период, предшествующий цветению водорослей). Увеличение в первые дни Fv/Fm происходило за счет снижения параметров флуоресценции Fo (Fo на клетку уменьшалось).

4. Показано, что подобные изменения параметров флуоресценции водорослей и восстановление фотосинтетической активности регистрируются и после внесения добавок мочевины и глицина. Это позволяет предположить возможность возникновения «цветения» летнего природного фитопланктона за счет ассимиляции азотсодержащих органических источников питания.

5. Обнаружено резкое усиление чувствительности ФС 2 культур микроводорослей к солям тяжелых металлов (сульфат меди, хлоридртуть, метилртуть) в условиях светового стресса, что связано с необратимым ингибированием ресинтеза Д1-белка. Хлорид ртути и метилртуть увеличивали тепловую диссипацию энергии возбуждения в антенных комплексах ФС 2, что, по предварительным данным, связано с нарушением процесса фосфорилироваиия в тилакоидах.

6. Обнаружено, что фитопланктон поверхностных горизонтов Черного и Балтийского моря после высокой солнечной инсоляции нуждается в репарации белков реакционных центров. Степень фотоингибирования Fv/Fm и снижения Fo может существенно различаться для фитопланктона в различных условиях и местах обитания. Действие ингибитора синтеза хлоропластных белков хлорамфеникола вызывает торможение репарации активности морских водорослей, что указывает на роль биосинтетических процессов.

7. Разработан новый проточный флуориметр для оценки распределения и функционального состояния фотосинтеза фитопланктона в непрерывном режиме по ходу судна. Впервые изучены изменения характеристик быстрой флуоресценции хлорофилла на природном фитопланктоне с использованием проточного флуориметра. С учетом изменения параметров флуоресценции в поверхностных водах в условиях полуденной депрессии при солнечной инсоляции предлагается учитывать эти изменения. Предложено использовать проточный флуориметр в практических океанологических исследованиях состояния фитопланктона в акваториях Мирового океана.

8. Полученные в работе экспериментальные результаты вносят вклад в понимание процессов, приводящих к изменению фотосинтетической продуктивности природного фитопланктона и являются основой для использования метода быстрой флуоресценции в гидробиологических и океанологических исследованиях.

Автор выражает глубокую признательносьт научным руководителям профессору, д.б.н., зав. кафедрой гидробиологии биологического ф-та МГУ им. М. В. Ломоносова В.Д. Федорову и д.б.н. вед. науч corp. каф. биофизики биологического ф-та МГУ им. М. В. Ломоносова Д.Н. Маторину, чьи знания и опыт помогли в проведении данных исследований, обработке материала и написании работы. Я благодарен также коллективу кафедры гидробиологии и кафедры биофизики, где были выполнены эксперименты.

ЗАКЛЮЧЕНИЕ

.

Фотоокислительное повреждение фотосинтетического аппарата (ФСА) водорослей может происходить под влиянием избыточного освещения, что характерно для поверхностных вод. При этом, как показывают и наши опыты, многие неблагоприятные факторы среды, в частности, недостаток минерального питания или загрязнения, могут резко усилить это повреждение. В этих случаях повреждение ФСА может происходить под действием небольших естественных интенсивностей света Таким образом, действие света высокой интенсивности на ФСА водорослей может служить индикатором влияния других неблагоприятных фаеторов, нарушающих электронный транспорт в ФСА.

На начальных этапах действие света высокой (насыщающей фотосинтез) интенсивности приводит к избыточному восстановлению компонентов фотосинтетической ЭТЦ, высокому значению градиента концентрации Н+ на мембране тилакоидов, избытку АТФ и НАДФН. В результате регуляции первичных механизмов фотосинтеза происходит тушение возбужденных состояний пигментов (развитие нефотохимического тушения) на уровне антенных комплексов за счет высокой энергизации фотосинтетических мембран, деэпоксидации ксантофиллов и переноса части светособирающих белок-пигментных комплексов с ФС2 на ФС1. Эти светоиндуцированные обратимые структурные изменения тилакоидных мембран направлены на снижение образования активных форм 02, скорости восстановления переносчиков акцепторной части ФС2, и ускорению потока электронов на уровне ФС1, что способствует снижению восстановленности промежуточных переносчиков и, соответственно, защищает клетку. Наши опыты с ингибиторами фотосинтеза показывают, что снятие этих защитных механизмов приводит к резкому увеличению необратимых повреждений клеток на свету. В случае, когда интенсивность света соответствует возможностям системы регуляции первичных процессов фотосинтеза, время жизни восстановленных переносчиков становится небольшим и системы защиты успевают справиться с повреждениями. Если интенсивность света такова, что система регуляции не способна оптимизировать поток электронов по ЭТЦ и скорость генерации активных форм кислорода высока, инициируются процессы перекисного окисления липидов (ПОЛ). В результате этих процессов нарушаются барьерные функции фотосинтетических мембран и происходит ускорение деструкции фотосинтетического аппарата Для предохранения от этих повреждений клетка использует также разборку ключевого белка D1 реакционного центра ФС2, тем самым предотвращает восстановление ЭТЦ и, соответственно, генерацию активных форм кислорода в данном РЦ. Продолжительное облучение объекта светом высокой интенсивности приводит к полному блокированию фотосинтетической ЭТЦ в результате деструкции белков РЦ Возможно, наибольшее значение в этих процессах имеет взаимодействие белков РЦ с окисленным первичным донором электронов Р680+. Описанные выше стадии окислительного повреждения степени деструкции фототрофных организмов можно определить по изменениям во времени показателей флуоресценции хлорофилла после перенесения водорослей в темновые условия (темновая репарация).

Наиболее перспективным для оценки экологического состояния водоема и определения функциональной активности фитопланктона представляется использование комплекса флуоресцентных методов. Такой комплекс позволяет определить следующие показатели: распределение количества фитопланктона в поверхностных водах по ходу судна при обследовании больших акваторий с помощью проточного флуориметрарегуляторные и адаптационные характеристики ФСА водорослей в пробах воды, извлеченной с определенных горизонтов, при помощи бортового флуориметраобилие и эффективность работы ФСА фитопланктона по глубине «ш situ» при помощи зонд-флуорометра.

Отработанный нами метод проточного флуориметра позволяет определить пространственную структуру фитопланктонного сообщества и оценить его функциональное состояние. Эта информация важна для выбора типичных или градиентных зон обследуемой акватории. Большой массив данных, получаемых по ходу судна, позволяет сопоставить их со спутниковыми картами распределения хлорофилла в море. Такое сопоставление может способствовать уточнению алгоритмов расчетов содержания хлорофилла по показателям спектральной яркости, получаемой со спутников.

Данные по проточной и зондовой флуорометрии достаточны для анализа временной изменчивости фитопланктонного сообщества и оценки его функционального состояния. Это возможно при медленно изменяющихся гидрофизических ситуациях, когда горизонты с максимумами содержания хлорофилла и переменной флуоресценции совпадают. Однако методы хорошо работают и в быстроменяющихся условиях морской среды, где возможно несоответствие между эффективностью фотосинтеза и величиной биомассы водорослей, что позволяет однозначно диагностировать эти несоответствия и выявлять определенные фазы развития фитопланктонного сообщества. Например, в условиях подъема глубинных вод, богатых биогенами (апвелинг) происходит быстрое увеличение обилия фитопланктона. В начальный период такого процесса биомасса планктонных организмов незначительна, тогда как активность РЦ ФС 2 по Fv/Fm быстро возрастает до максимальных значений, характерных для молодых быстро растущих популяций. Подобная ситуация смоделирована нами при добавлении азотсодержащих веществ к культуре водорослей при дефиците азота (рис. 17). Напротив, регистрация большой биомассы фитопланктона, обладающего низкими значениями относительной переменной флуоресценции Fv/Fm, указывает на процессы деградации фитопланктонного сообщества, что также хорошо иллюстрируется опытами с культурами водорослей при исчерпании биогенов. Особенно эти процессы усиливаются при интенсивной инсоляции, которые вызывают ингибирование активности РЦ ФС2 .

Определение степени повреждения и обратимого фотоингибирования ФСА фитопланктона, происходящих в результате действия избыточных для водорослей интенсивностей света, возможно по изменению переменной флуоресценции в процессе адаптации в темноте. Низкие значения Fv/Fm у фотоингибированных водорослей могут существенно увеличиваться в темноте или на слабом свету. Значения относительной переменной флуоресценции, а также скорость ее увеличения при перенесении объекта в темноту являются показателями глубины повреждения ФСА водорослей. Быстрое (за 1−2 часа) увеличение Fv/Fm до значений порядка 0,5 и более характерно для обратимого фотоингибирования, в поверхностных водах. Низкое (ниже 0,3) и неизменное при инкубировании в темноте значение относительной переменной флуоресценции соответствует глубоким необратимым процессам повреждения фитопланктона и является показателем деградации водного фитоценоза Выяснение условий обитания, к которым адаптирован ФСА водорослей, возможно по значениям нефотохимического тушения возбужденных состояний хлорофилла под действием света определенной интенсивности. Таким образом, можно оценить, к каким световым условиям адаптированы водоросли. Эти данные могут представлять несомненный интерес для определения пространственно-временных адаптационных изменений состояния водного фитоценоза.

Таким образом, полученные данные свидетельствуют, о том, что разработанные методики могут быть использованы в океанологической практике и могут быть включены в систему мониторинга экологического состояния различных вод для оценки неблагоприятных воздействий и антропогенных загрязнений. Такая система позволит контролировать текущее состояние фитопланктонного сообщества, выработать рекомендации по рациональному природопользованию и природно-охранным мероприятиям. Это направление интенсивно развивается в настоящее время и несомненно ему принадлежит большое будущее.

Показать весь текст

Список литературы

  1. Т.К., Венедиктов П. С., Конев Ю. Н., Маторин Д. Н., Хаптер Р., Рубин А. Б. Определение вертикального профиля фотосинтеза фитопланктона флуоресцентным методом // Океанол. 1999. Т. 39. С 314−320
  2. Н.Г. Динамическая световая регуляция фотосинтеза // Физиол. раст. 2004. Т. 51. № 6. С. 825−837.
  3. П.С., Изместьева Л. Р., Маторин Д. Н., Васильев И. Р., Вавилин Д. В. Оценка физиологического состояния фитопланктона Байкала люминесцентными методами. В кн. Мониторинг фитопланктона. Новосибирск, Наука. 1992. С. 25−30.
  4. А.Д. // Об адаптации водорослей к токсическому воздействию / Авторская ред. М.: МГУ, 1981. С. 80.
  5. В.М., Гаевский Н А, Григорьев Ю.С. и др. Теоретические основы и методы изучения флуоресценции хлорофилла//Красноярск. 1984 С. 125.
  6. М.Г., Карапетян Н. В. Физико-химические основы действия гербицидов // Итоги науки и техники. ВИНИТИ. Сер. биологическая химия. М. 1989. Т. 30. С. 164.
  7. А.Г., Кожанова О. Н., Дронина H.JI. Физиология растительных организмов и роль металлов. Изд. МГУ, М, 2002, 159 с.
  8. JI.B., Житина JI.C., Федоров В. Д. Фитопланктон Белого моря. М. «Янус-К», 2003. — с. 168, илл.
  9. Ильяш J1.B., Маторин Д. Н., Кольцова Т. И., Шам Х. Х. Пространственное распределение и суточная динамика фитопланктона залива Нячанг ЮжноКитайского моря // Океанология. 2004. Т. 44. № 2. С. 238−248.
  10. Р.К., Кочубей С. М. и др. Связь между флуоресценцией хлорофилла in vivo и продуктивностью водоросли Anabena variabilis И Гидробиол. журнал. 1983. Т. 19. № 1.С. 36−39.
  11. Г. С. Флуоресценция в океане. // Ленинград. Гидрометеоиздат. 1987. С. 200.
  12. Н. В., Бухов Н. Г. Переменная флуоресценция хлорофилла как показатель физиологического состояния растений // Физиол. раст. 1986. Т. 3. № 5. С. 1013−1026.
  13. С.М. Организация пигментов фотосинтетических мембран как основа энергообеспечения фотосинтеза // Киев: Наукова Думка. 1986. С. 200.
  14. А.К., Тихонов А. Н. Лекции по биофизике фотосинтеза растений // М.: изд. МГУ. 1988. С. 320.
  15. Д.Е. Техника экспедиционных исследований. Инструментальные методы и технические средства оценки промыслово-значимых факторов среды // М.: изд. ВНИРО. 2003. С. 320.
  16. В.В., Горбунов М. А., Венедиктов П. С. Импульсный флуорометр для исследования первичных фотохимических процессов зеленых растений // Науч. докл. высшей школы. Биол. науки. 1987. Т. П.С. 31−36.
  17. Д.Н., Венедиктов П. С. Люминесценция хлорофилла в культурах микроводорослей и природных популяциях фитопланктона // М.: Итоги науки и техники, ВИНИТИ. Сер. Биофизика. 1990. Т. 40. С. 49−100.
  18. Д.Н., Венедиктов П С., Конев Ю. Н, Казимирко Ю. В., Рубин А. Б. Использование двухвспышечного импульсного погружного флуориметра для определения фотосинтетической активности природного фитопланктона // Докл. РАН. 1996. 350. № 2. С.256−258
  19. Д.Н. Использование флуоресцентных методов измерения активности фотосистемы II при биомониторинге фитопланктона // Биофизика. 2000. Т. 45/3. С. 491−494.
  20. Маторин Д П., Антал Т. К., Шаршенова А. А., Тыныбеков А. К., Огге MJL, Ван де Верт X., Рубин А. Б Изучение природного фитопланктона озера Иссык-Куль полученная с использованием погружного флуорометра // Вестн. МГУ. Сер. Биология, 2002. № 1 с. 43−45.
  21. С.И., Волкова Э. В., Казимирко Ю. В., Максимов В. Н., Рубин А. Б. Изменения фотосинтетического аппарата индивидуальных клеток микроводоросли Ankistrodesmus falcatus в норме и при УФ облучении // Доклады Академии Наук. 1998. Т. 363 (5). С. 690−693.
  22. А. Б., Кононенко А. А., Пащенко В. 3., Чаморовский С. К., Венедиктов П. С. Принципы регуляции и модельные системы первичных процессов фотосинтеза // Итоги науки и техн. ВИНИТИ. Сер. Биофизика. 1987. Т. 22. С. 212.
  23. А.Б. Биофизика // Т.2. М.: Книжный дом «Университет». 2000.468 с.
  24. А.Б., Кренделева Т. Е. Регуляция первичных процессов фотосинтеза // Успехи биологической химии. Т. 43. Пущино. 2003. С. 225−266.
  25. А.Б., Кренделева Т. Е. Регуляция первичных процессов фотосинтеза // Биофизика. Т. 49. Вып. 2. 2004. С.239−253.
  26. А. Б. Биофизика фотосинтеза и методы экологическою мониторинга // Технология живых систем. 2005. Т. 2. С. 47−68.
  27. А.Н. Регуляция световых и темновых стадий фотосинтеза. //Соросовский образовательный журнал. 1999. № 11. С. 8−15.
  28. В.Д. Функцилнальное разнообразие, фитопланктонное сообщество и его обобщенное выражение //Вес г. МГУ. Сер. биол. 1970. № 6. с. 116−118.
  29. В.Д. Проблема предельно допустимых воздействий антропогенного фактора с позиций эколога // Всесторон. Анализ окруж. природн. Среды. Труды II совет.-америк.симпозиума. 1976. с 192−211.
  30. В.Д. О методах изучения фитопланктона и его активности // М.: Изд.МГУ. 1979. 8 пл.
  31. В.Д., Ильяш JI В. Адаптивные механизмы микроводорослей в осуществлении различных типов жизненных стратегий // Гидробиол. журн. 1991. № 5. с. 3−10.
  32. О.Ф. Методы биотестирования качества водной среды. Изд. МГУ, 1989.
  33. Ю.К., Попова А. В., Арутюнян А. А. и Венедиктов П.С. Влияние недостатка минерального питания на фотосинтетический аппарат хлореллы. Физиология растений, Т. 36, Вып.1, 57−66, 1989.
  34. Ю.К., Шендерова JI.B., Лядский В В. и Венедиктов П. С. Связь инактивации ФС II с накоплением продуктов фотосинтетического метаболизма углерода при азотном голодании клеток хлореллы. Физиология растений, Т. 37, Вып. 2, 241−248, 1990.
  35. В.А. Первичное преобразование световой энергии при фотосинтезе //М. Наука. 1990. 209 с
  36. Abadia A., Lemoine Y., Tremolieres A., Ambard-Bretteville F., Remy R. Iron defficiency in pea: effects on pigment, lipid and pigment-protein complex composition of thylakoids Plant Physiol. Biochem. 1989. V. 27. P. 679−687.
  37. Antal Т.К., Venediktov P. S., Matorin DN., Ostrowska M., Wozniak В., Rubin A.B. Measurement of phytoplankton photosynthesis rate using a pump-and-probe fluorometer //Oceanologia. 2001. V. 43. № 3. P. 291−313.
  38. Anderson J.M. Consequence of spatial separation of photosystem 1 and 2 in thylakoid membranes of higher plant chloroplasts. FEBS Lett. 1981. V. 124. P. 1−10.
  39. Anderson J.M., Thomson W.W. Dynamic molecular organization of the plant thylakoid membrane // In: W.R.Briggs (ed.) Photosynthesis. N.Y. Alan Liss Inc. 1989. P. 161−182.
  40. Andersson В., Styring S. Photosystem II: Molecular organization, function, and acclimation // Curr. Topics Bioenerg. 1991. V. 16. P. 1−81.
  41. Anderson J.M. Cytochrome b6/f complex: dynamic molecular organization, function and acclimation // Photosynth. Res. 1992. V. 34. P. 341−357.
  42. Aro E.-M., Virgin I., Anderson B. Photoinhibition of photosystem II. Inactivation, protein damage and turnover // Biochim. Biophys. Acta. 1993. V. 1143. P. 113−134.
  43. Arnon D.I., Tang G. M.-S. Cytochrome b-559 and proton conductance in oxygenic photosynthesis. Proc. Natl. Acad. Sci. USA. 1988. V. 85. P. 9524−9528.
  44. Baker N.R. A possible role for photosystem II environmental perturbations of photosynthesis. Physiol. Plant. 1991. V. 81. P. 563−570.
  45. Barber J., Andersson В Too much of a good thing: light can be bad for photosynthesis // TIBS. 1992. V.17. P. 153.
  46. Barber R.T. Geological and climatic time scales of nutrient availability // Primapy productivity and biogeochemical cycles in the sea. N.Y.: Plenum, 1992. P. 89 106.
  47. Bennett J. Protein phosphorylation in green plant chloroplasts. Annu. Pev. Plant Physiol. Plant Mol. Biol. 1991. V. 42. P. 281−311.
  48. Berry J., Bjorkman 0. Photosynthetic response and adaptation to temperature in higher plants. Ann. Rev. Plant Physiol. 1980. V. 31. P. 491−543.
  49. Beutler M., Wiltshire K.H., Meyer В., Moldaenke C., Luring C. Meyerhofer M., Hansen U.-P, Dau H. A fluorometric method for the differentiation of algal populations in vivo and in situ//Photosynthesis Research. 2002. V. 72. P. 39−53.
  50. Bilger W., Bjorkman O. Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth. Res. 1990. V. 25. P. 173 185.
  51. Bongi G., Long S.P. Light-dependent damage to photosynthesis in olive leaves during chilling and high temperature stress. Plant Cell Environ. 1987. V. 10. P. 241 249.
  52. Bowyer J. R, Camillen P, Vermaas W.F.G. Photosystem II and its interaction with herbicides. In: N.R.Baker, M.P.Percival (eds.) Herbicides Amsterdam- Elsevier 1991. P 27−85.
  53. Bouges-Bocquet B. Cytochrome f and plastocyanin kinetics in Chlorella pyrenoidosa. I. Oxidation kinetics after a flash. BBA. 1977. V. 462. P. 362−370.
  54. Brecht E. The light-harversting chlorophyll a/b protein complex II of higher plants: results from a twenty year research period. Photobiochem. Photobiophys. 1986. V. 12. P. 37−50.
  55. Brudvig G.W., Thorp H.H., Crabtree R.H. Probing the mechanism of water oxidation in photosystem II. Acc. Chem. Res. 1991. V. 24. P. 311−316.
  56. Bukhov N.G., Mohanty P., Rakhimberdieva M.G., Karapetyan N.V. Analysis of dark-relaxation kinetics of variable fluorescence in intact leaves // Planta 187. 1992. P. 122−127.
  57. Buschmann C. Photochemical and non-photochemical quenching coefficients of the chlorophyll fluorescence: comparison of variation and limits // Photosynthetica. 1999. Vol.37. № 2. P.217−224.
  58. Cao J., Govindjee. Chlorophyll a fluorescence transient as an indicator of active and inactive Photosystem 2 in thylakoid membranes // Biochim. Biophys. Acta. 1990. Vol.1015. P.180−188.
  59. Choudhury N.K., Behera R.K. Photoinhibition of photosynthesis: role of carotenoids of chloroplast constituents in photoprotection. Photosynthetica 39 (4): 481−488, 2001.
  60. Chitnis P.R., Thornber J.P. The major light-harvesting complex of photosystem II: aspects of its molecular and cell biology. Photosynth. Res. 1988. V. 16. P. 41−63.
  61. Cogdell R.J. Photosynthetic reaction centers. Annu. Rev. Plant Physiol. 1983. V. 34. P. 21−45.
  62. Colemann L.W., Rosen B.H., Schwartzbuch S.D. Environmental control of carbohydrate and lipid synthesis in Euglena. Plant Cell Physiol. 1988. V. 29. P. 423 432.
  63. Collier J.L., Herbert S.K., Fork D.C., Grossman A R. Changes in the cyanobacterial photosynthetic apparatus during acclimation to macronutrient deprivation. Photosynth. Res. 1994. V. 42. P. 173−183.
  64. Corlett J.E., Jones H G., Masojidek J.M., Massacci A. Chlorophyll fluorescence in the Field grown sorghum. Instrument discrepancies // Photosynthetica. 1992. V.27. № 1−2. P. 257−260
  65. Cleveland J.S., Perry M.J. Quantum yield, relative specific absorption and fluorescence in nitrogen-limited Chaetoceros gracilis. Mar. Biol. 1987. V. 94. P. 489 497.
  66. Daley P.F., Raschke K., Ball J.T., Berry J.A. Topography of photosynthetic activity of leaves obtained from video images of chlorophyll fluorescence // Plant Physiol. 1989. V. 90. P. 1233−1238.
  67. Danielius R.V., Satoh K., van Kan P.J.M. et al. The primary reaction of photosystem II in the Dl-D2-cyt b559 complex. FEBS Lett. 1987. V. 213. P. 241−244.
  68. Dau H., Hansen U.-P. Studies on the adaptation of intact leaves to changing light intensities by a kinetic analysis of chlorophyll fluorescence and oxygen evolution as measured by the photoacoustic signal. Photosynth. Res. 1989. V. 20. P. 59−83.
  69. Dau H. Short-term adaptation of plants to changing light intensities and its relation to photosystem II photochemistry and fluorescence emmission. J. Photochem.Photobiol. 1994. V. 26. P. 3−27.
  70. De Philippis L.F., Hampp R., Ziegler H., The effects of sublethal concentrations of zinc, cadmium and mercury on Euglena. Respiration, photosynthesis and photochemical activities. Arch. Microbiol. 128, 1981.407−411.
  71. Debus R. J, Barry B.A., Sithole J., Babcock G.T., Mcintosh L. Direct mutagenesis indicates that the donor to P680+ in photosystem II is tyrosine-161 of the dipolypeptide. Biochemistry 1988. V. 27. P. 9071−9074.
  72. Demmig-Adams B. Carotenoids and photoprotection in plants: a role for the xanthophylls zeaxanthin Biochim. Biophys. Acta, 1020. 1990. pp. 1−24.
  73. Demmig-Adams В., Adams W W. Photoprotection and other responses of plants to high light stress // Annu. Rev. Plant Physiol. Plant Mol. Biol. 1992. V. 43. P. 599−626.
  74. Demmig-Adams B. & Adams W.W. Ill, The xanthophylls cycle. In A.J. Young and G. Britton (eds.), Carotenoids in photosynthesis, Chapman And Hall, London, 1993, pp. 206−251.
  75. Demmig-Adams В., Adams III W.W., Logan B.A., Verhoeven A.S. Xanthophyll cycle-dependent energy dissipation and flexible photosystem II efficiency in plants acclimated to light stress // Austr. J. Plant Physiol. 1995. Vol.22. P.249−260.
  76. Diner В., Petrouleas V., Wendoloski J.J. The iron-quinone electron-acceptor complex of photosystem II. Physiol. Plant. 1991. V. 81. P. 423−436.
  77. Draber W., Tietjen K., Kluth J.F., Trebst A. Herbicides in photosynthesis research. Angew. Chemie Int. Ed. Engl. 1991. V. 30. P. 1621−1633.
  78. Droppa M., Terry N., Horvath G. Effects of Cu deficiency on photosynthetic electron transport. Phasatransition of membrane lipid/Photosystem II. Proc. Nat. Acad. Sci. USA. 1984. V. 81. P. 2369−2373.
  79. Dieter E.W. Comments of fluorometric chlorophyll determination in the field // Arch. Hydrobiol. 1986. V. 107. № 4. P. 521−527.
  80. Fadeev V.V., Filippova E.M., Maslov D V., Matorin D. N, Venediktov P. S. Diagnostics of photosynthesising organisms by linear and non-linear fluorimetry // Proc. of SPIE. 1999. V. 3821. P. 102−111.
  81. Falkowski P.G., Fujita Y., Ley A.C. and Mauzerall D. Evidence for cyclic electron flow around photosystem II in Chlorella purenoidosa // Plant Physiol. 1986a. V. 81. P. 310−312.
  82. Falkowski P.G., Wyman K., Ley A.C. and Mauzerall D Relationship of steady state photpsynthesis to fluorescence in eucaryotic cells // Biophys. Biochim. Acta. 1986b. V. 849. P. 183−192.
  83. Falkowski P.G., Sukenik A. and Herzik R. Nitrogen limitation in Isochrysis galbana (Haptophyceae) // J. of Phycol. 1989. V. 25. P. 471−478.
  84. Falkowski P.G., Green R., Kolber Z. Light utilization and photoinhibition of photosynthesis in marine phytoplankton // In «Photoinhibition of Photosynthesis: from Molecular Mechanisms to the Field». Eds. N. R. Baker and J. Bowes. 1994. P. 407 432.
  85. Falkowski P.G., Kolber Z Variations in chlorophyll fluorescence yields in phytoplankton in the world oceans // Plant Physiol. 1995. V. 22. P. 341−355.
  86. Falkowski P.G., Raven J.A. Aquatic photosynthesis // Blackwell Science. 1997. 375 p.
  87. Frank H.A., Cua A., Chynwat V., Young A., Gosztola D., Wasielewski M.R. Photophysics of the carotenoids associated with the xanthophylls cycle in photosynthesis // Photosynth.Res., 1994.
  88. Ficek D., Ostrowska M., Kazio M., Pogosyan S I. Variability of the portion of functional PS2 reaction centres in the light of a fluorometric study // Oceanologia. 2000.V. 42. № 2. P. 243−250.
  89. Flynn K.J., Butler I. Nitrogen sources for the growth of marine microalgae: role of dissolved free amino acids // Mar. Ecol. Progr. Ser. 1986. V. 34. P. 281−304.
  90. Force L., Critchley C., van Rensen J.J.S, New fluorescence parameters for monitoring photosynthesis in plants. 1. The effect of illuminationon the fluorescence parameters of the JIP-test// Photosynth. Res. 78. 2003. P. 17- 33.
  91. Fork D.C., Herbert S.K. Electron transport and photophosphorylation by photosystem I in vivo in plants and cyanobacteria. Photosynth. Res. 1993. V. 36. P. 149−168.
  92. Geider R., Roche J., Greene R., Olaizola M. Response of the photosynthetic apparatus of Phaeodactylum tricornutum to nitrate, phosphate, or iron starvation. J. Phycol. 1993. V. 29. P. 755−766.
  93. Govindjee, Sixty-three years since Kautsky: chlorophyll a fluorescence // Aust. J. Plant Physiol. 22. 1995. P. 131−160.
  94. Green R.M., Geider R.J. and Falkowsky P.G. Effect of iron limitation on photosynthesis in a marine diatom. Lymnol. Oceanogr. 1989. V. 36 P. 1772−1782.
  95. Glibert P. M. Primary productivity and pelagic nitrogen cycling // Nitrogen cycling in coastal marine environments. N.Y.: Wiley, 1988. P. 3 31
  96. Gilmore A.M. Mechanistic aspects of xanthophylls cycle dependent photoprotection in higher plant chloroplasts and leaves.// Physiol. Plant., 1997.
  97. Geider R.J., Green R.M., Kolber Z. et al. Fluorescence assessment of the maximum quantum efficiency of photosynthesis in the western North Atlantic // Deep-Sea Res. 1993. V. 40. P. 1205−1224.
  98. Green R.M., Geider R.J. and Falkowsky P.G. Effect of iron limitation on photosynthesis in a marine diatom. Lymnol. Oceanogr. 1989. V. 36. P. 1772−1782.
  99. Goh C.H., Schreiber U., Hedrich R. New approach of monitoring changes in chlorophyll a fluorescence of single guard cells and protoplasts in responce to physiological stimuli // Plant Cell Environ. 1999. V.210. P. 268.
  100. Govindjee. Sixty-three years since Kautsky: chlorophyll a fluorescence // Aust. J. Plant Physiol. 1995. Vol.22. P. 131−160.
  101. Guikema J.A. and Sherman L.A. Organization and Function of Chlorophyll in Membranes of Cyanobacteria during Iron Starvation. Plant Physiol. 1983. V. 73. P. 250−256.
  102. Guillard R. R. L., Ryther J. H. Studies on marine diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. // Can. J. Microbiol. 1962. № 8. P. 229−239
  103. Guillard R.R.L. Organic sources of nitrogen for marine centric diatoms // Symposium on Marine Microbiology. Ed. C.H. Oppenheimer. Springfield, Illinois: Thomas C.C., 1963. P. 93−104.
  104. Haehnel W. Photosynthetic electron transport in high plants. Ann. Rev. Plant Physiol. 1984 V. 35. P. 659−693.
  105. Hansson 0., Wydzynski T. Current perception of photosystem II // Photosynth Res. 1990. V. 23. P. 131−162.
  106. Hastings G., Durrant J.R., Barber J. et al. Observation of pheophytin reduction in photosystem II reaction centers using femtosecond transient absorption spectroscopy // Biochemistry. 1992. V. 31. P. 7638−7647.
  107. Hermsmeier D., Mala E., Schulz R. et al. Antagonistic blue- and red-light regulations of cab-gene expression during photosynthetic adaptation in Scenedesmus obliquus. J. Photochem. Photobiol. B: Biol. 1991. V. 11. P. 189−202.
  108. Herzig R., Falkowski P.G. Nitrogen limitation of Isochrysis galbana. I. Photosynthetic energy conversion and growth efficiencies. J. Phycol 1989. V. 25. P. 462−471.
  109. Hideg E., Murata N. The Irreversible Photoinhibition of the Photosystem II Complex in Leaves of Vicia faba under Strong Light.// Plant Sci. 1997. V. 130. P. 151 158.
  110. Horton P., Ruban A.V. Regulation of photosystem II. Photosynth. Res. 1992. V. 34. P. 375−385.
  111. Hong S.-S, Xu D.-Q. Light-induced increase in initial chlorophyll fluorescence F0 level and the reversible inactivation of PS II reaction centers in soybean leaves // Photosynth. Res. 1999. Vol.61. № 3. P 269−280
  112. Janeau P, Dewez D., Matsui S., Kim S-G, Popovich R. Evaluation of different algal species sensitivity to mercury and metolachlor by PAM-fluorometry. Chemosphere, 45, 2001. P. 589−598.
  113. Joliot P., Barbieri G. and Chabaud R Un nouveau modele des centres photochimiques du systeme II. Photochem. Photobiol. 1969. V. 10. P. 309−329.
  114. P., Кок B. Oxygen evolution in photosynthesis. In: Govindjee (ed.) Bioenergetics of Photosynthesis. N.Y.: Academic. 1975. P. 387−412.
  115. Junge W., Lavergne J. Proton release during the redox cycle of water oxidase. Photosynth. Res. 1993. V.38. P. 279−296.
  116. Капа T.M., Feimel N.L., Flynn L.C. Nitrogen starvation in marine Synechococcus strains: clonal differences in phycobiliprotein breakdown and energy coupling. Mar. Ecol. Prog. Ser. 1993. V. 88. P. 75−82.
  117. Keller A.A. Mesocosm studies of DSMU-enhanced fluorescence as measure of phytoplankton photosynthesis // Mar. Biol. 1987. V. 96. № 1. P. 107−114.
  118. Kojima Y., Hiyama Т., Sakurai H., Effect of mercurials on iron sulfur centers of PS I of Anacystis nidulans. In: Biggins J (Ed.), Progress in photosynthesis research. Nijhoff/Junk, The Hague, 1987. pp. 57−60.
  119. Кок В., Forbush В., McGloin M. Cooperation of charges in photosynthetic O2 evolution I. A linear four step mechanism. Photochem. Photobiol. 1970. V. 11. P. 457 475.
  120. Kolber Z., Wiman K. D., Falkowski P. G. Natural variability in photosynthetic energy conversion efficiency: a field study in the Gulf of Maine // Limnol. Oceanogr. 1990. V 35. P. 72−79.
  121. Krause G.H., Weis E. Chlorophyll fluorescence and photosynthesis: The basics // Annu Rev. Plant. Physiol. Plant. Mol. Biol. 1991. V. 42. P. 313−349.
  122. Krieger A., Weis E Energy-dependent quenching of chlorophyll-a-fluorescence. The involvement of proton-calcium exchange at photosystem II. Photosynthetica. 1992. V. 27. P. 89−98.
  123. Krieger A., Weis E. The role of calcium in the pH-dependent control of photosystem II. Photosynth. Res. 1993. V. 37. P. 117−130.
  124. Kyle D.J., Ohad I., Arntzen C.J. Membrane protein damage and repair: selective loss of quinone protein function in chloroplast membranes. Proc. Nat. Acad. Sci. USA. 1984. V. 81. P. 4070−4074.
  125. Marder J.B., Barber J. The molecular anatomy and function of thylakoid proteins. Plant Cell and Environment. 1989. V. 12. P. 595−616.
  126. Matorin D.N., Vuksanovich N., Rubin A. B, Venediktov P. S. Application of chlorophyll fluorescence in studied of phytoplankton in the Mediterranean Sea // Studia Marina. 2002. V. 23. P. 79−86.
  127. Matorin D.N., Antal Т.К., Ostrowska M., Rubin A.B., Ficek D., Majchhrowski R. Chlorophyll fluorometry as a method for studying light absorption by photosynthetic pigments in marine algae // Oceanologia. 2004. V. 46. № 4. P. 519−531.
  128. Miles C.D., Daniels D.J. A rapid screening technigue for photosynthetic mutants of the higher plants // Plant Sci Lett. 1973. Vol.1. P.227−240.
  129. Miller G.W., Denney A., Pushnik J., Ming-Ho Y. The formation of delta-aminolevulinate a precursor of chlorophyll, in barley and the role of iron. J. Plant Nutr. 1982. V.5.P. 289−300.
  130. Merzlyak M.N., Chivkunova O.B., Maximova N.I. On the Involvement of Arachidonic and Eicosapentaenoic Acids in the Elicitation of a Defense Process in Potato Plants. Journal of Russian Phytopathological Society, Vol.1, Part 1. 2000. P. 51−59.
  131. Mohammed G.H., Binder W.D., Gillies S.L. Chlorophyll fluorescence: a review of its practical forestry applications and instrumentation // Scandinavian Journal of Forest Research. 1995. V. 10. P. 383−410.
  132. Mulkey S.S., Pearcy R.W. Interactions between acclimation and photoinhibition of photosynthesis of a tropical forest understory herb, Alocasia macrorrhiza, during simulated canopy gap formation. Func. Ecol. 1992. V. 6. P. 719−729.
  133. Myazaki A., Shina Т., Toyoshima Y. et al. Stoichiometry of cytochrome b-559 in photosystem II. BBA. 1989. V. 975. P. 142−147.
  134. Ning L., Petersen B.E., Edwards G.E., Strobel A., Daley L.S., Callis J.B. Recovery of digital information stored in leaving plant leaf photosynthetic apparatus as fluorescence signals // Applied Spectroscopy. 1997. Vol.51. P. l-9.
  135. Nomek P., Lazar D, Ilik P., Naus J. On the intermediate steps between the О and P steps in chlorophyll a fluorescence rise measured at different intensities of exciting light // Austr. J. Plant Physiol. 2001. Vol.28. № 11. P. 1151 -1160.
  136. Ohad I., Kyle D.J., Arntzen C.J. Membrane protein damage and repair. Removal and replacement of inactivated 32-kilodalton polypeptides in chloroplast membrane. J. Cell. Biol. 1984. V. 99. P. 481−485.
  137. Ostrowska M., Majchrowski R., Matorin D. N., Wozniak B. Variability of the specific fluorescence of chlorophyll in the ocean. Part 1. Theory of classical 'in situ' chlorophyll fluorometry // Oceanologia. 2000a V. 42 (2). P. 203−219.
  138. Ostrowska M., Matorin D. N., Ficek D. Variability of the specific fluorescence of chlorophyll in the ocean. Part 2. Fluorometric method of chlorophylla determination // Oceanologia. 2000b. V. 42 (2). P. 221−229.
  139. Ostrowska M. The application of fluorescence methods to the study of marine photosynthesis // Zaklad Poligrafii FRUG. 2001. Sopot. 194.
  140. Ounis A, Evain S., Flexas J., Tosti S, Moya I. Adaptation of a PAM-fluorometers for remote sensing of chlorophyll fluorescence // Photosynth. Res. 2001. V. 68. № 2. P.113−120.
  141. Parson W.W., Ke B. Primary photochemical reaction. In: Govindjee (ed.) Photosynthesis. N.Y. Academic Press. 1982. V. 1. 799 p
  142. Petter C.F., Tornber J.P. Biochemical composition and arganisation of high plant photosystem II lightharvesting pigment-proteing. J. Biol. Chem. 1991. V. 266. P. 16 745−16 754.
  143. Pollingher U., Berman Т., Kaplan B. et al. Lake kinneret phytoplankton: response to N and P enrichments in experiments and in nature. Hydrobiologia. 1988. V. 166. P. 65−75.
  144. Powles S.B., Berry J.A., Bjorkmam O. Interaction between light and chilling temperature on the inhibition of photosynthesis in chilling-sensitive plants. Plant Cell Environ. 1983. V. 6. P. 117−123.
  145. Powles S.B. Photoinhibition of photosynthesis induced by visible light. Annu. Rev. Plant Physiol. 1984. V. 35. P. 15−44
  146. Plumley F.G., Douglas S. E, Switzer A.B., Schmidt G.W. Nitrogen-dependent biogenesis of chlorophyll-protein complexes. In: W.R.Briggs (ed.) Photosynthesis. AR Liss.N.Y. 1992 P. 311−329.
  147. Putt M., Harris G. P., Cuhel R. L. Photoinhibition of DCMU-enhanced fluorescence in lake Ontario phytoplankton // Can. J. Fish. Aquat. Sci. 1987. V. 44. P. 2144−2154.
  148. Raven J.A., Geider R.J. Temperature and algal growth. New Phytol. 1988. V. 110. P. 441−446.
  149. Renger G. Energy transfer and trapping in photosystem II // In: J. Barber (ed.) The photosystems: structure, function and molecular biology. Elsevier. Amsterdam. 1992. P. 45−99.
  150. Rees T.A.V., Syrett P.J. The uptake of urea by the diatom Phaeodactylum I/ New Phytol. 1979 a. V. 82. P. 169−178.
  151. Rees T.A.V., Syrett P.J. Mechanisms for urea uptake by the diatom Phaeodactylum tricornutum: the uptake of thiourea // New Phytol. 1979 b. V. 83. P. 37−48.
  152. Rhiel E., Krupinska K., Wehrmeyer W. Effects of nitrogen starvation on the function and organisation of the photosynthetic membranes in Cryptomonas masculata. Planta. 1986. V. 169. P. 361−369.
  153. Rosen B.H., Lowe R.L. Physiological and ultrastructural responses of Cyclotella meneghiniana to light intensity and nutrient limitation. J. Phycol. 1984. V. 20. P. 173 183.
  154. Roy S., Legendre L. Field studies of DSMU-enhanced fluorescence as an index of in situ phytoplankton photosynthetic activity // Can. J. Fish, and Aquat Sci. 1980. V.37. № 6. P. 1028−1031
  155. Sandman G., Malkin R. Iron-sulfur centers and activities of the photosynthetic electron transport chain in iron-deficient cultures of the blue-green alga Aphanocapsa. Plant Physiol. 1983. V. 73. P. 724−728.
  156. Senger H., Bauer B. The influence of light quality on adaptation and function of the photosynthetic apparatus. Photochem. Photobiol. 1987. V. 45. P. 939−946.
  157. Schreiber U, Bilger W. Rapid assessment of stress effects on plant leaves by chlorophyll fluorescence measurements // In: Plant Responses to Stress, J.D. Tenhunen, F.M. Catarino, O.L. Lange, W.C. Oechel (eds). Springer-Verlag, Berlin. 1987. P.27−53.
  158. Schreiber U., Hormann H., Neubauer C. and Klughammer C. Assessment of photosystem II photochemiocal quantum yield by chlorophyll fluorescence quenching analysis//Plant Physiol. 1995. V. 22. P. 209−220.
  159. Schreiber U, Kuhl M., Klimant I., Reising H. Measurements of chlorophyll fluorescence within leaves using modified РАМ fluorometer with a fiber-optic microprobe // Photosynth. Res 1996. Vol.47. № 1. P. 103−109.
  160. Schreiber U. Chlorophyll fluorescence and photosynthetic energy conversion: Simple introductory experiments with the TEACH1NG-PAM chlorophyll fluorometer // Heinz Walz GmbH, Effeltrich, Germany. 1997. P. 73.
  161. Schreiber U. Chlorophyll fluorescence: new instruments for special applications. -In: G. Garab (ed) Photosynthesis: Mechanisms and Effects // Kluwer Academic Publishers, Dordrecht, The Netherlands. 1998. V. 5. P. 4253−4258.
  162. Y., Tamai H., Sasa Т., 1978. Inhibition of photosystem II in the green alga Ankistrodesmus falcatus by cooper. Physiol. Plant. 19, 203−209.
  163. Spencer D., Possingham J. V The effect of nutrient deficiencies on the Hill reaction of isolated chloroplasts of tomato. Aust. J. Biol. Sci. 1973. V. 23. P. 39−43.
  164. Spiller S., Castelfranco A.M., Castelfranco P.A. Effects of iron and oxygen on chlorophyll biosynthesis. I. In vivo observation on iron and oxygen deficient plant. Plant Physiol. 1982. V. 69. P. 107−111.
  165. Styring S., Virgin I., Ehrenberg A., Andersson B. Strong light photoinhibition of electron transport in photosysten II. Impairment of the function of the first quinone acceptor Qa // Biochim. et Biophys. Acta. 1990. V. 1015 (2). P. 269−278.
  166. Sloof J.E., Viragh A., Ver Bart. // Water, Air and Soil Pollution. 1995. V. 83. P. 105- 122.
  167. Thompson L.K., Brudvig C.W. Cytochrome b-559 may function to protect photosystem II from photoinhibition // Biochemistry. 1988. V. 27. P. 6653−6658.
  168. Trtilek M., Kramer D.M., Koblizek M., Nedbal L. Dual-modulation LED kinetic fluorometer//Journal of Luminescence. 1997. VoI.72/74. P.597−598.
  169. Van Gorkom H G., Meiburg R.F., Van Dorssen R.J. The effects of an electrical field on the primary reactions of photosystem 2. Abstr. 6th Int. Congr. Photosynth. Brussels 1. 1983. P. 204.
  170. Van Gorkom H.G. Electron transfer in photosystem II // Photosynth. Res. 1985. V. 6. P. 97−112.
  171. Van Kooten O., Snel J.F.H. The use of chlorophyll fluorescence Nomenclature in plant stress physiology // Photosynth. Res. 1990. V. 25. P. 147−150.
  172. Vavilin, D.V., Matorin D.N. Rubin. A B. The high-temperature thermoluminescence of chlorophyll as a method to study lipid peroxidation in planktonic algae // Archiv for Hydrobiologie. 2002. V. 153 (4) P. 685−701.
  173. Velthuys B.R. Mechanism of electron flow in photosystem II and toward Photosystem I. Annu. Rev. Plant Physiol. 1980. V. 31. P. 545−567.
  174. Wallen D.G., Allan R Utilization of amino acids by blue-green alga Synechococcus AN (Anacystis nidulons) II Canadian J. Botany. 1987. V. 65 P. 1133−1136.
  175. Walters R.G., Horton P. Theoretical assessment of alternative mechanisms for non-photochemical quenching of PSII fluorescence in barley leaves // Photosynth. Res. 1993. V. 36. P. 119−139.
  176. Wasielwski M.R., Johnson D.G., Seibert M., Govindjee. Determination of the primary charge separation rate in isolated phorosystem II reaction centers with 500-fs time resolution // Proc. Natl. Acad. Sci. USA. 1989. V. 86. P. 524−528.
  177. Wilhelm C. The biochemistry and physiology of light-harvesting processes in chlorophyll b and chlorophyll с containing algae // Plant. Physiol. Biochem. 1990. V. 28. P. 293−306.
  178. Williams S.K., Hodson R.C. Transport of urea at low concentrations in Chlamydomonas reinhardtii II J. Bacteriol. 1977. V. 130. P. 266−273.
  179. Williams P.J. and Jenkinson N.W. A transportable microprocessor controlled Winder titration suitable for field and shipboard use // Limnol and Oceanogr. 1982. V. 27. P. 576−584.
  180. Wood N.B., Haselkorn R. Control phycobiliprotein proteolysis and heterocyst differentiation in Anabaena. J. Bacteriol. 1980. V. 141 P. 1375−1379.
  181. Wozniak В., Dera J., Majchrowski R., Ficek D., Koblenz-Mishke 0. J., Darecki M. 'IOPAS Initial Model of Marine Primary Production for Remote Sensing Application // Oceanologia. 1997a. V 39 (4). P. 377−395.
  182. Young A.J., Frank H. A Energy Transfer Reactions Involving Carotenoids: Quenching of Chlorophyll Fluorescence // J. Photochem. Photobiol. (B): Biology. 1996. V. 36. P. 3−15.
Заполнить форму текущей работой