Помощь в написании студенческих работ
Антистрессовый сервис

Модифицированные ДНК-дуплексы с включениями тимидингликоля. 
Физико-химические свойства и взаимодействие с ДНК-узнающими белками

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Анализ взаимодействия ДНК-узнающих белков разных классов: фосфодиэстераз, эндонуклеаз рестрикции, ДНК-метилтрансфераз, фактора транскрипции NF-кВ, репликативных ДНК-полимераз Р и X, с олигонуклеотидными дуплексами, содержащими в заданном положении участка узнавания/связывания остатки тимидингликоляизучение влияния потери ароматичности гетероциклическим основанием на функционирование указанных… Читать ещё >

Модифицированные ДНК-дуплексы с включениями тимидингликоля. Физико-химические свойства и взаимодействие с ДНК-узнающими белками (реферат, курсовая, диплом, контрольная)

Содержание

  • СПИСОК ОСНОВНЫХ СОКРАЩЕНИЙ
  • ГЛАВА I. СИНТЕЗ И СВОЙСТВА МОДИФИЦИРОВАННЫХ ДНК-ФРАГМЕНТОВ С ВКЛЮЧЕНИЯМИ ТИМИДИНГЛИКОЛЯ (Обзор литературы)
    • 1. 1. Характеристика тимидингликоля
    • 1. 2. Синтез фрагментов ДНК, содержащих остатки тимидингликоля
    • 1. 3. Влияние тимидингликоля на структуру ДНК-дуплекса
    • 1. 4. Взаимодействие ДНК-дуплексов, содержащих тимидингликоль, с дистамицином А
    • 1. 5. Репарация остатков ТБ' в составе ДНК
    • 1. 6. Влияние тимидингликоля в составе ДНК на функционирование полимераз
    • 1. 7. Трифосфаты тимидингликоля и дезоксиуридингликоля как субстраты ДНК-полимераз
  • ГЛАВА II. МОДИФИЦИРОВАННЫЕ ДНК-ДУПЛЕКСЫ С ВКЛЮЧЕНИЯМИ ТИМИДИНГЛИКОЛЯ. ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА И ВЗАИМОДЕЙСТВИЕ С ДНК-УЗНАЮЩИМИ БЕЛКАМИ (Обсуждение результатов)
    • 11. 1. Синтез олигодезоксирибонуклеотидов с включениями тимидингликоля
    • 11. 2. Влияние остатка тимидингликоля на устойчивость олигонуклеотидов к действию фосфодиэстеразы змеиного яда
    • 11. 3. Физико-химические свойства ДНК-дуплексов, содержащих тимидингликоль
      • 11. 3. 1. Зависимость устойчивости ДНК-дуплексов от температуры
      • 11. 3. 2. Исследование свойств двуспиральных нуклеиновых кислот с помощью акустического метода
      • 11. 3. 3. Характеристика структуры ДНК-дуплексов методом спектроскопии кругового дихроизма
      • 11. 3. 4. Расчет равновесной структуры ДНК-дуплексов, содержащих остаток тимидингликоля, методом молекулярной динамики
    • 11. 4. Взаимодействие тимидингликольсодержащих дуплексов с клеточными белками
      • 11. 4. 1. Эндонуклеазы рестрикции II-го типа
      • 11. 4. 2. С5-цитозиновая ДНК-метилтрансфераза SsoII
        • 11. 4. 2. 1. Взаимодействие с дуплексами, содержапщми остаток тимидингликоля в участке метилирования
        • 11. 4. 2. 2. Взаимодействие с дуплексами, содержапщми остаток тимидингликоля в регуляторном участке
      • 11. 4. 3. Ядерный фактор транскрипции NF-kB
      • 11. 4. 4. ДНК-полимеразы X и р
  • ГЛАВА III. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТ
    • III. 1. Реактивы и материалы
    • III. 2. Приборы и методы
      • III. 3. Общие методики
  • ВЫВОДЫ

ДНК в живых клетках непрерывно подвергается воздействию внешних факторов, таких, как ультрафиолетовый свет, ионизирующее облучение, агрессивные химические соединения. Во многих случаях в результате этих процессов возникают активные формы кислорода, которые атакуют ДНК, вызывая повреждения в углеводофосфатном остове или гетероциклических основаниях. Эти повреждения могут приводить к преждевременному старению организма, а также способствовать возникновению различных заболеваний, в том числе онкологических. Несмотря на наличие в клетке ферментов, направленных на удаление поврежденных нуклеозидов, полностью исключить влияние окислительных повреждений на функционирование клеточных белков невозможно. Если повреждение не репарируется до вхождения в репликативную вилку, оно способно блокировать ДНК-полимеразу и, таким образом, быть потенциально летальным. В случае, если повреждение не может существенно влиять на скорость репликации, оно, в зависимости от его способности к образованию неканонических пар, является потенциально мутагенным.

Одним из наиболее частых повреждений ДНК является окисление двойной связи тимидина с образованием 5,6-дигидро-5,6-дигидрокситимидина (тимидингликоля, Tgl).-Потеря ароматичности гетероциклическим основанием приводит к локальному нарушению двойной спирали ДНК и может влиять на важнейшие биологические процессы. Это обстоятельство обусловливает необходимость изучения влияния такого рода повреждений на вторичную структуру ДНК и взаимодействие с ДНК-узнающими белками. В недавних исследованиях методами спектроскопии ядерного магнитного разонанса (ЯМР) и рентгеноструктурного анализа (РСА) охарактеризованы свойства ДНК-дуплексов, содержащих Те', динамика и стабильность двойной спирали [1−3]. Показано, что эти параметры существенными образом зависят от первичной структуры ДНК. В связи с этим, актуальным является исследование структурных и биологических последствий окисления тимидина на ДНК-моделях, в которых варьируется нуклеотидный контекст, окружающий модифицированный остаток. Важными задачами остаются разработка методов обнаружения остатка ТБ' в составе фрагментов ДНК, изучение влияния модифицированного нуклеозида на скорость формирования дуплексов, а также его роли в узнавании при формировании белково-нуклеиновых комплексов.

На сегодняшний день накоплено много свидетельств того, что окисление тимидина имеет значительные последствия для функционирования клетки. В большинстве случаев удается наблюдать лишь конец цепи событий, первопричиной которых является появление единичного повреждения в ДНК. В последнее время предпринимаются попытки проследить реакцию отдельных клеточных ферментов на то или иное повреждение нуклеиновой кислоты. Так, широко изучается эффективность и специфичность действия ферментов репарации и различных полимераз в ответ на появление Те' в матричной цепи ДНК или в пуле нуклеозидтрифосфатов [3−6]. Вместе с тем, остается неизученным влияние тимидингликоля на функционирование ряда важнейших белков, оперирующих на ДНК, например, таких как ферменты рестрикции-модификации. Отсутствуют данные о взаимодействии Т8'-содержащих ДНК с факторами транскрипции.

Прогресс в химическом синтезе олигонуклеотидов дает возможность встроить специфические повреждения в заранее определенную позицию нуклеотидной последовательности, получить высоко чистые препараты ДНК в больших количествах, что особенно важно для их физико-химических и структурно-функциональных исследований.

Цель работы заключалась в оценке влияния тимидингликоля — окислительного повреждения ДНК, на физико-химические свойства ДНК-дуплексов и их взаимодействие с рядом ДНК-узнающих белков в зависимости от числа модифицированных звеньев в двойной спирали и природы нуклеотидных пар, фланкирующих поврежденное звено. В ходе работы необходимо было решить следующие задачи.

1. Синтез олигодезоксирибонуклеотидов с сайт-направленными включениями тимиди нгли коля.

2. Изучение влияния остатков тимидингликоля на структуру двойной спирали и термическую устойчивость модифицированных ДНК-дуплексов.

3. Анализ взаимодействия ДНК-узнающих белков разных классов: фосфодиэстераз, эндонуклеаз рестрикции, ДНК-метилтрансфераз, фактора транскрипции NF-кВ, репликативных ДНК-полимераз Р и X, с олигонуклеотидными дуплексами, содержащими в заданном положении участка узнавания/связывания остатки тимидингликоляизучение влияния потери ароматичности гетероциклическим основанием на функционирование указанных белков.

В представленной работе с помощью синтетических ДНК-дуплексов, содержащих остатки тимидингликоля, охарактеризовано влияние окислительного повреждения на термодинамические свойства двойной спирали, ее структуру и взаимодействие с ДНК-узнающими белками. Осуществлен дизайн и синтез модифицированных олигонуклеотидов, содержащих один или несколько остатков тимидингликоля в различных положениях олигонуклеотидной цепи. Использование УФ-спектроскопии и метода кругового дихроизма позволило продемонстрировать локальные нарушения двойной спирали в Т8'-содержащих дуплексах и зависимость глубины этих нарушений от нуклеотидного окружения модифицированного нуклеотида. В целом проведенное в настоящей работе исследование расширяет накопленные знания о роли окислительных повреждений генома в биологических процессах.

выводы.

1. С помощью ДНК-дуплексов, содержащих остатки тимидингликоля, показано влияние окислительного повреждения на термодинамические свойства двойной спирали, ее структуру и взаимодействие с ДНК-узнающими белками.

2. Осуществлен дизайн и синтез модифицированных фрагментов ДНК с одним или двумя остатками тимидингликоля в различных положениях олигонуклеотидной цепи.

3. Методами УФи спектроскопии кругового дихроизма показано, что окисление тимидина приводит к существенной дестабилизации двойной спирали и локальным нарушениям ее структуры. Степень влияния тимидингликоля на структуру и стабильность ДНК-дуплекса зависит от природы нуклеотидных пар, фланкирующих модифицированный участок.

4. Впервые показано, что эндонуклеазы рестрикции Н-го типа при взаимодействии с тимидингликольсодержащими ДНК-дуплексами могут служить инструментами для обнаружения окислительного повреждения в ДНК.

5. Впервые обнаружено, что наличие тимидингликоля в участке метилирования или регуляторном участке метилтрансферазы SsoII приводит к нарушению связывания фермента с ДНК-лигандом и негативно влияет на осуществление его основной функции — метилирования ДНК.

6. Установлено, что эффективность связывания субъединиц р50 и р65 фактора транскрипции NF-кВ с модифицированными дуплексами зависит от положения тимидингликоля и его нуклеотидного окружения в кВ-участке.

Показать весь текст

Список литературы

  1. Kung Н.С., Bolton Р.Н. Structure of a duplex DNA containing a thymine glycol residue in solution. //J. Biol. Chem. 1997. V. 272. P. 9227−9236.
  2. Brown K.L., Adams Т., Jasti VP., Basu A.K., Stone M.P. Interconversion of the c"*-5R, 6S- and rram--5R, 6R-thymine glycol lesions in duplex DNA. // J. Am. Chem. Soc. 2008. V. 130. P. 11 701−11 710.
  3. Aller P., Rould M.A., Hogg M., Wallace S.S., Doublie S. A structural rationale for stalling of a replicative DNA polymerase at the most common oxidative thymine lesion, thymine glycol. // Proc. Natl. Acad. Sci. USA. 2007. V. 104. N 3. P. 814−818.
  4. Wang Y. HPLC isolation and mass spectrometric characterization of two isomers of thymine glycols in oligodeoxynucleotides. // Chem. Res. Toxicol. 2002. V. 15. P. 671−676.
  5. Purmal A.A., Bond J.P., Lyons B.A., Kow Y.W., Wallace S.S. Uracil glycol deoxynucleoside triphosphate is a better substrate for DNA polymerase I Klenow Fragment than thymine glycol deoxynucleoside triphosphate. // Biochemistry. 1998. V. 37. P. 330−338.
  6. Adelman R., Saul R.L., Ames B.N. Oxidative damage to DNA: relation to species metabolic rate and life span. // Proc. Natl. Acad. Sci. USA. 1998. V. 85. P. 2706−2708.
  7. Frenkel K., Goldstein M.S., Teebor G.W. Identification of the с «-thymine glycol moiety in chemically oxidized and gamma-irradiated deoxyribonucleic acid by high-pressure liquid chromatography analysis. //Biochemistry. 1981. V. 20. P. 7566−7571.
  8. Teebor G., Cummings A., Frenkel K» Shaw A., Voituriez L., Cadet J. Quantitative measurement of the diastereoisomers of cis thymidine glycol in gamma-irradiated DNA. // Free Radic. Res. Commun. 1987. V. 2. P. 303−309.
  9. Zuo S., Boorstein R.J., Teebor G.W. Oxidative damage to 5-methylcytosine in DNA. // Nucl. Acids Res. 1995. V.23. P. 3239−3243.
  10. Pfeifer G.P. p53 mutational spectra and the role of methylated CpG sequences. // Mutat. Res. 2000. V. 450. P. 155−166.
  11. Frenkel K" Goldstein M.S., Duker N.J., Teebor G.W. Identification of the с «-thymine glycol moiety in oxidized deoxyribonucleic acid. // Biochemistry. 1981. V. 20. P. 750−754.
  12. Ide #., Kow Y.W., Wallace S.S. Thymine glycols and urea residues in M13 DNA constitute replicative blocks in vitro. II Nucl. Acids Res. 1985. V. 13. P. 8035−8052.
  13. Ide H., Melamede R.J., Wallace S.S. Synthesis of dihydrothymidine and thymidine glycol 5'-triphosphates and their ability to serve as substrates for Escherichia coli DNA polymerase I. // Biochemistry. 1987. V. 26. P. 964−969.
  14. Clark J.M., Beardsley G.P. Functional effects of с/л-thy mine glycol lesions on DNA synthesis in vitro. // Biochemistry. 1987. V. 26. P. 5398−5403.
  15. Hayes R.C., LeClerc J.E. Sequence dependence for bypass of thymine glycols in DNA by DNA polymerase I. //Nucl. Acids Res. 1986. V.14. P. 1045−1061.
  16. Hatahet Z., Purmal A.A., Wallace S.S. A novel method for site specific introduction of single model oxidative DNA lesion into oligodeoxyribonucleotides. // Nucl. Acids Res. 1993. V. 21. P. 1563−1568.
  17. Kao J.Y., Goljer /., Phan T.A., Bolton P.H. Characterization of the effects of a thymine glycol residue on the structure, dynamics and stability of duplex DNA by NMR. // J. Biol. Chem. 1993. V. 268. P. 17 787−17 793.
  18. В as и A.K., Loechler E.L., Leadon S.A., Essigmann J.M. Genetic effects of thymine glycol: site-specific mutagenesis and molecular modeling studies. // Proc. Natl. Acad. Sci. 1989. V. 86. P. 7677−7681.
  19. Tornaletti S., Maeda L.S., Lloyd D.R., Reines D., Hanawalt P.C. Effect of thymine glycol on transcription longation by T7 RNA polymerase and mammalian RNA polymerase II. // J. Biol. Chem. 2001. V. 276. P. 45 367−45 371.
  20. Miller H., Fermandes A.S., Zaika E., McTigue M.M., Torres M.C., Wente M., Iden C.R., Grollman A.P. Stereoselective excision of thymine glycol from oxidatively damaged DNA. // Nucl. Acids Res. 2004. V. 32. P. 338−345.
  21. Iwai S. Synthesis of a thymine glycol building block and its incorporation into oligonucleotides. //Nucl. Acids Symp. Ser. 2000. V. 44. P. 121−122.
  22. Iwai S. Synthesis of thymine glycol containing oligonucleotides from a building block with the oxidized base. //Angewandte Chem. 2000. V. 39. P. 3874−3876.
  23. Iwai S. Synthesis and thermodynamic studies of oligonucleotides containing the two isomers of thymine glycol. // Eur. J. Org. Chem. 2001. V. 7. P. 4343−4351.
  24. Doi Y., Hitomi K., Tainer J.A., Iwai S. Synthesis of oligonucleotides containing 2'-fluorinated thymidine glycol as mechanism-based inhibitors of endonuclease III. // Nucl. Acids Symp. Ser. 2005. V. 49. P. 195−196.
  25. Branco L.C., Afonso C.A.M. Ionic liquids as a convenient new medium for the catalytic asymmetric dihydroxylation of olefins using a recoverable and reusable osmium/ligand. // J. Org. Chem. 2004. V. 69. P. 4381−4389.
  26. Wang Yu., Wang Yi. Synthesis and thermodynamic studies of oligodeoxynucleotides containing tandem lesions of thymidine glycol and 8-oxo-2'-deoxyguanosine. // Chem. Res. Toxicol. 2006. V. 19. P. 837−843.
  27. Gasparutto D., Gognet S., Roussel S., Cadet J. Synthesis of a convenient thymidine glycol phosphoramidite monomer and its site-specific incorporation into DNA fragments. // Nucleosides, Nucleotides & Nucleic Acids. 2005. V. 24. P. 1831−1842.
  28. Brown K.L., Basu A.K., Stone M.P. The cis-(5R, 6S)-thymine glycol lesion occupies the wobble position when mismatched with deoxyguanosine in DNA. // Biochemistry. 2009. V. 48. P. 9722−9733.
  29. Haranczyk M» Lupica G., Dabkowska I., Gutowski M. Cylindrical projection of electrostatic potential and image analysis tools for damaged DNA: the substitution of thymine with thymine glycol. // J. Phys. Chem. B. 2008. V. 112. P. 2198−2206.
  30. Clark J.M., Pattabiraman N., Jarvis W., Beardsley G.P. Modeling and molecular mechanical studies of the c/s-thymine glycol radiation damage lesion in DNA. // Biochemistry. 1987. V. 26. P. 5404−5409.
  31. Miaskiewicz JC, Miller J., Ornstein R., Osman R. Molecular dynamics simulations of the effects of ring-saturated thymine lesions on DNA structure. // Biopolymers. 1995. V. 35. P. 113−124.
  32. Evans J., Maccabee M., Hatahet Z., Courcelle J., Bockrath R., Ide II., Wallace S. Thymine ring saturation and fragmentation products: lesion bypass, misinsertion and implications for mutagenesis. // Mutat. Res. 1993. V. 299. P. 147−156.
  33. Katafuchi A., Nakano Т., Masaoka A., Terato H., Iwai S., Hanaoka E, Ide H. Differential specificity of human and Escherichia coli endonuclease ///and VIII homologues for oxidative base lesions. // J. Biol. Chem. 2004. V. 279. P. 14 464−14 471.
  34. McTigue M.M., Rieger R.A., Rosenquist T.A., Iden C.R., De Los Santos C.R. Stereoselective excision of thymine glycol lesions by mammalian cell extracts. // DNA Repair. 2004. V. 3. P. 313−322.
  35. Haranczyk M., Gutowski M. Differences in electrostatic potential around DNA fragments containing guanine and 8-oxo-guanine. // Theor. Chem. Acc. 2007. V. 117. P. 291−296.
  36. Haranczyk M" Miller J.H., Gutowski M. Differences in electrostatic potential around DNA fragments containing adenine and 8-oxo-adenine: An analysis based on regular cylindrical projection. // J. Mol. Graph. Model. 2007. V. 26. P. 282−289.
  37. Ikeda S., Biswas Т., Roy R., Izumi Т., Boldogh I., Kurosky A., Sarker A., Seki S., Mitra S. Purification and characterization of human NTH1, a homo log of Escherichia coli endonuclease III. // Biol. Chem. 1998. V. 273. P. 21 585−21 593.
  38. Dodson M" Michaels M., Lloyd R. Unified catalytic mechanism for DNA glycosylases. // J. Biol. Chem. 1994. V. 269. P. 32 709−32 712.
  39. Saito V., Uraki F., Nakajima S" Asaeda A., Ono K., Kubo K" Yamamoto K. Characterization of endonuclease III (nth) and endonuclease VIII (nei) mutants of Escherichia coli K-12. // J. Bacteriology. 1997. V. 179. P. 3783−3785.
  40. Le X., Xing J., Lee J., Leadon S., Weinfeld M. Inducible repair of thymine glycol detected by an ultrasensitive assay for DNA damage. // Science. 1998. V. 280. P. 1066−1069.
  41. Purmal A.A., Lampman G. W., Bond J.P., Hatahet Z., Wallace S.S. Enzymatic processing of uracil glycol, a major oxidative product of DNA cytosine. // J. Biol. Chem. 1998. V. 273. P. 10 026−10 035.
  42. Serre L., Pereira de Jesus K, Boiteux S., Zelwer C., Castaing B. Crystal structure of the Lactococcus lactis formamidopyrimidine-DNA glycosylase bound to an abasic site analogue-containing DNA. // EMBO J. 2002. V. 21. P. 2854−286.
  43. Takata K, Shimizu Т., Iwai S., Wood R.D. Human DNA polymerase N (POLN) is a low fidelity enzyme capable of error-free bypass of 5S-thymine glycol. // J. Biol. Chem. 2006. V. 281. P. 23 445−23 455.
  44. Clark J.M., Beardsley G.P. Thymine glycol lesions terminate chain elongation by DNA polymerase I in vitro. II Nucl. Acids Res. 1986. V. 14. P. 737−749.
  45. McNully J.M., Jerkovic В., Bolton P.H., Basu A.K. Replication inhibition and miscoding properties of DNA templates containing a site-specific cis-thymine glycol or urea residue. // Chem. Res. Toxicol. 1998. V. 11. P. 666−673.
  46. Goodman M.F. Error-prone repair DNA polymerases in prokaryotes and eukaryotes. // Ann. Rev. Biochem. 2002. V. 71. P. 17−50.
  47. A.A., Белоусова E.A., Речкунова Н. И. Лебедева Н.А., Лаврик О. И. ДНК-полимеразы Р и I как потенциальные участники системы синтеза через повреждение в процессе репликации отстающей цепи геномной ДНК. // Биохимия. 2008. Т. 73. С. 1504−1512.
  48. Ohmori Н&bdquo- Friedberg Е.С., Fuchs PR., Goodman M. F, Hanaoka F, Hinkel T.A., Lawrence C.W., Livneh Z, Nohmin Т., Prakash S., Todo Т., Walker GC., Wang Z, Woodqate R. The Y-family of DNA polymerases. // Mol. Cell. 2001. V. 8. P. 7−8.
  49. Ю.С., Белоусова E.A., Лебедева H.A., Пестряков П. Е., Лаврик О. И. Взаимодействие ДНК-полимеразы X и репликативного белка, А в процессе синтеза ДНК через повреждение. //Биохимия. 2008. Т. 73. С. 1294−1299.
  50. Garcia-Diaz M., Bebenek К., Kunkel Т.A., Blanco L. Identification of an intristic dRP lyase activity in human DNA polymerase X: a possible role in base excision repair. // J. Biol. Chem. 2001. V. 276. P. 34 659−34 663.
  51. Ma Y., Lu H., Tippin В., Goodman M.F., Shimazaki N., Koiwai O., Hsieh C.L., Schwarz K., Lieber M.R. A biochemically defined system for mammalian nonhomologous DNA end joining. // Mol. Cell. 2004. V. 16. P. 701−713.
  52. Kusumoto R., Masutani C., Iwai S., Hanaoka F. Translesion synthesis by human DNA polymerase ti across thymine glycol lesions. // Biochemistry. 2002. V. 41. P. 6090−6099.
  53. Tornaletti S., Hanawalt P.C. Effect of DNA lesions on transcription elongation. // Biochimie. 1999. V. 81. P. 139−146.
  54. Mellon I., Bohr V.A., Smith C.A., Hanawalt P.C. Preferential DNA repair of an active gene in human cells. // Proc. Natl. Acad. Sci. USA. 1986. V. 83. P. 8878−8882.
  55. Ferrin L.J., Mildvan A.S. Nuclear Overhauser effect studies of the conformations and binding site environments of deoxynucleoside triphosphate substrates bound to DNA polymerase I and its large fragment. // Biochemistry. 1985. V. 24. P. 6904−6913.
  56. Ferrin L.J., Mildvan A.S. NMR studies of conformations and interactions of substrates and ribonucleotide templates bound to the large fragment of DNA polymerase I. // Biochemistry. 1986. V. 25. P. 5131−5145.
  57. Rouet P., Essigmann J.M. Possible role for thymine glycol in the selective inhibition of DNA synthesis on oxidized DNA templates. // Cancer Res. 1985. V. 45. P. 6113−6118.
  58. Achey P.M., Wright C.F. Inducible repair of thymine ring saturation damage in OX174 DNA. // Radiat. Res. 1983. V. 93. P. 609−612.
  59. Moran E" Wallace S.S. The role of specific DNA base damages in the X-ray-induced inactivation of bacteriophage PM2 // Mutat. Res. 1985. V. 146. P. 229−241.
  60. Laspia M.F., Wallace S.S. Excision repair of thymine glycols, urea residues, and apurinic sites in Escherichia coli. II J. Bacteriol. 1988. V. 170. N 8. P. 3359−3366.
  61. Ames B.N., Shigenaga M.K., Hagen T.M. Oxidants, antioxidants, and the degenerative diseases of aging. // Proc. Natl. Acad. Sci. USA. 1993. V. 90. P. 7915−7922.
  62. Miaskiewicz K., Miller J., Osman R. Ab initio theoretical study of the structures of thymine glycol and dihydrothymine. // Int. J. Radiat. Biol. 1993. V. 63. P. 677−686.
  63. Miller J., Miaskiewicz K, Osman R. Structure-function studies of DNA damage using ab initio quantum mechanics and molecular dynamics simulation. // Ann. NY Acad. Sci. 1994. V. 726. P. 71−91.
  64. Bandaru V, Sunkara S., Wallace S.S., Bond J. R A novel human DNA glycosylase that removes oxidative DNA damage and is homologous to Escherichia coli endonuclease VIII. I I DNA Repair. 2002. V. 1. P. 517−529.
  65. Hayes R.C., Petrullo L.A., Huang H.M., Wallace S.S., LeClerc J.E. Oxidative damage in DNA. Lack of mutagenicity by thymine glycol lesions. // J. Mol. Biol. 1988. V. 201. P. 239 246.
  66. .Л., Д’Сауза К.Дэ/с. M. Общее представление о нуклеазах из яда змей: ДНКаза, РНКазаи фосфодиэстераза. // Биохимия. 2010. Т. 75. с. 5−11
  67. Tinoco I.J., Borer P.N., Dangler В., Levin M. D, Uhlenbeck O. C, Crothers D. M, Bralla J. Improved estimation of secondary structure in ribonucleic acids. // Nature New Biology. 1973. V. 14. P. 40−41.
  68. Gray D.M., Tinoco I.J. A new approach to the study of sequence-dependent properties of polynucleotides. // Biopolymers. 1970. V. 9. P. 223−244.
  69. DeVoe H, Tinoco I.Jr. The stability of helical polynucleotides: base contributions. // J. Mol. Biol. 1962. V. 4. P. 500−517.
  70. Hillen W., Goodman T. C, Wells R.D. Circular dichroism spectra of twelve short DNA restriction fragments of known sequence: a comparison of measured and calculated spectra. // Nucl. Acids Res. 1981. V. 9. P. 3029−3045.
  71. Bujnicki J.M. Understanding the evolution of restriction-modification systems: clues from sequence and structure comparisons. // Acta Biochim. Pol. 2001. V. 48. P. 935−967.
  72. Gromova E.S., Shabarova Z.A. DNA-protein interactions: the use of synthetic oligo- and polynucleotides for studying single-stranded-DNA-binding proteins and restriction endonucleases. // Prog. Nucl. Acids Res. Mol. Biol. 1990. V. 39. P. 1−47.
  73. Gromova E.S., Kubareva E.A., Vinogradova M.N., Oretskaya T.S., Shabarova Z.A. Peculiarities of recognition of CCA/TGG sequences in DNA by restriction endonucleases Mval and EcoRII. // J. Mol. Recognit. 1991. V. 4. P. 133−141.
  74. Suri В., Nagaraja V., Bickle T.A. Bacterial DNA modification. // Curr. Top. Microbiol. Immunol. 1984. V. 108. P. 1−9.
  75. Hattman S. Variation of 6-methylaminopurine content in bacteriophage P22 deoxyribonucleic acid as a function of host specificity. // J. Virol. 1971. V. 7. P. 690−691.
  76. Brockes J.P., Brown P.R., Murray К The deoxyribonucleic acid modification enzyme of bacteriophage PI: purification and properties. // Biochem. J. 1972. V. 127. P. 1−10.
  77. H. W. Chow L. Т., Dugaiczyk A., Hedgpeth J., Goodman H.M. DNA substrate site for the EcoRII restriction endonuclease and modification methylase. // Nat. New Biol. 1973. V. 244. P. 40−43.
  78. Janulaitis A., Klimasauskas S., Petrusyte M., Butkus V. Cytosine modification in DNA by Bcnl methylase yields N4-methylcytosine. // FEBS Lett. 1983. V. 161. P. 131−134.
  79. Jeltsch A. Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases. // Chembiochem. 2002. V. 3. P. 274−293.
  80. B.C. ДНК-полимеразы эукариот. // Молекулярн. биология. 1999. Т. 33. V. 4. С. 567−580.
  81. Hayden M.S., Ghosh S. Shared principles in NF-kappaB signaling. // Cell. 2008. V. 132, P. 344−362.
  82. Roberts, R. J., Vincze, Т., Posfai, J. and Macelis, D. REBASE-enzymes and genes for DNA restriction and modification. // Nucl. Acids Res. 2007. V. 35. D169-D270.
  83. E.C., Кубарева E.A., Елов A.A., Акатова Е. А., Никольская И. И., Шабарова З. А. Расщепление субстратов конкатемерного типа эндонуклеазами рестрикции Mval и SsoII. // Биохимия. 1991. Т. 56. С. 552−559.
  84. М.Н., Громова Е. С., Упорова Т. М., Никольская ИИ, Шабарова З.А., Дебое С. С. Эндонуклеаза рестрикции SsoII: взаимодействие с модифицированные^^ субстратами. //Доклады АН СССР. 1987. Т. 295. С. 732−736.
  85. Marathias КМ, Jerkovic В., Bolton Ph.H. Damage increases the flexibility of duplex DNA. // Nucl. Acids Res. 1999. V. 27. P. 1854−1858.
  86. Hoehn S.T., Turner C.J., Stubbe J. Solution structure of an oligonucleotide containing ^ abasic site: evidence for an unusual deoxyribose conformation. // Nucl. Acids Res. 2001.29. P. 3413−3423.
  87. Greger В., Kemper B. An apyrimidinic site kinks DNA and triggers incision by endonuclease VII of phage T4. //Nucl. Acids Res. 1998. V. 26. P. 4432−4438
  88. Bochtler M., Szczepanowski R.H., Tamulaitis G., Grazulis S., Czapinska H" Manakova J? Siksnys V. Nucleotide flips determine the specificity of the Ecll8kl restriction endonuclease // EMBO J. 2006. V. 25. P. 2219−2229.
  89. Szczepanowski R. H" Carpenter M. A., Czapinska H., Zaremba M., Tamulaitis G, Siksnys Js Bhagwat A. S., Bochtler M. Central base pair flipping and discrimination by PspGI. // Nucl Acids Res. 2008. V. 36. P. 6109−6117.
  90. Tamulaitis G., Zaremba M., Szczepanowski R. H., Bochtler M., Siksnys V. How PspQj catalytic domain of EcoRII and Ecll8kl acquire specificities for different DNA targets I I Nucl. Acids Res. 2008. V. 36. P. 6101−6108.
  91. Zhou X.E., Wang Y., Reuter M" Mucke M" Kruger D.H., Meehan E.J., Chen L. Crystal structure of type II restriction endonuclease EcoRII reveals an autoinhibition mechanism by a novel effector-binding fold. // J. Mol. Biol. 2004. V. 335. P. 307−319.
  92. Golovenko D., Manakova E., Tamulaitiene G., Grazulis S. Siksnys V. Structural mechanisms for the 5-CCWGG sequence recognition by the N- and C-terminal domains of EcoRII // Nucl Acids Res. 2009. V. 37. P. 6613−6624.
  93. О.В., Кубарева Е. А., Громова Е. С. Спектрофотометрический метод изучения расщепления ДНК-дуплексов эндонуклеазами рестрикции. // Молекулярн биология. 1991. Т. 25. С. 1424−1426.
  94. И.И., Карташова ИМ., Лопатина Н. Г. Ферменты новой системы хозяйской специфичности Sso47II. // Молекулярн. генетика. 1983. Т. 12. С. 5−10.
  95. Е.А., Вальтер И, Воробьева О.В., Разумихин М. В., Карягина А. С., Лау П.К.ЬС., Траутпер Т. Определение неметилируемого остатка дезоксицитидина в участке узнавания метилтрансфераз. // Биохимия. 2001. Т. 66. С. 1676−1681.
  96. Katyagina A.S., Lunin KG., Levtchenko I.Ya., Labbe D., Brousseau R., Lau P.C.K., Nikolskaya /./. The SsoII and NlaX DNA methyltransferases: overproduction and functional analysis. // Gene. 1995. V. 157. P. 93−96.
  97. А.С. Структурно-функциональная характеристика систем рестрикции-модификации ДНК штамма Shigella sonnei 47. // Дисс. док. биол. наук. Москва. 1997. 331 С.
  98. О. В. С5-цитозиновая ДНК-метилтрансфераза SsoII как бифункциональный белок: изучение взаимодействия с участком метилирования и с промоторной областью генов системы рестрикции-модификации SsoII. // Дисс. канд. хим. наук. Москва. 2004. 120 С.
  99. С.Д., Гуревич КГ. Биокинетика. // М.: ФАИР-ПРЕСС. 1999. С. 335−496.
  100. Т.М., Карташова ИМ., Скрипкин Е. А., Лопарева Е, Никольская И. И. Эндонуклеазы рестрикции из Shigella sonnei 47. // Вопросы медицинской химии. 1985. Т. 31. С. 131−136.
  101. Shilov I., Tashlitsky V., Khodoun М., Vdsil’ev S., Alekseev Ya., Kuzubov A., Kubareva E" Karyagina A. DNA-methyltransferase SsoII interaction with own promoter region binding site. // Nucl. Acids Res. 1998. V. 26. P. 2659−2664.
  102. E.A. Особенности регуляции генной экспрессии в системе рестрикции-модификации SsoII. // Дисс. канд. хим. наук. Москва. 2009. 138 С.
  103. Protsenko A., Zakharova М., Nagornykh М., SoloninA., Severinov К. Transcription regulation of restriction-modification system Ecll8kl. //Nucl. Acids Res. 2009. V. 37. P. 5322−5330.
  104. Sen R., Baltimore D. Inducibility of kappa immunoglobulin enhancer-binding protein NF-кВ by a posttranslational mechanism. // Cell. 1986. V. 47. P. 921−928.
  105. Schmitz M.L., Mattioli I., Buss //., Kracht M. NF-кВ: a multifaceted transcription factor regulated at several levels. // Chembiochem. 2004. V. 5. P. 1348−1358.
  106. Perkins N.D. The i? e//NF-KB family: friend and foe. // Trends Biochem. Sci. 2002. V. 25. P. 434−440.
  107. Barnes P.J., Karin M. Nuclear factor-kappa B: a pivotal transcription factor in chronic inflammatory diseases. //N. Engl. J. Med. 1997. V. 336. P. 1066−1071.
  108. Barkelt M., Gilmore T.D. Control of apoptosis by Rel/NF-кВ transcription factors. // Oncogene. 1999. V. 18. P. 6910−6924.
  109. Sylla B.S., Temin H.M. Activation of oncogenicity of the c-rel proto-oncogene. // Mol. Cell. Biol. 1986. V. 6. P. 4709−4716.
  110. Gilmore T.D., Koedood M., Piffat K.A., White D.W. Rel/NF-кВЛкВ proteins and cancer. // Oncogene. 1996. V. 13. P. 1367−1378.
  111. N angler W.E., Karin M. NF-kappaB and cancer-identifying targets and mechanisms. // Curr. Opin. Genet. Dev. 2008. V. 18. P. 19−26.
  112. Wang C.Y., Cusack J.C. Jr., Liu R., Baldwin A.S. Jr. Control of inducible chemoresistance: enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-кВ. // Nat. Med. 1999. V. 5. P. 412−417.
  113. Bentires-Ali M., Barbu V., Fillet M., Chariot A., Relic В., Jacobs N., GielenJ., Merville M.P., Bours V. NF-кВ transcription factor induces drug resistance through MDR1 expression in cancer cells. // Oncogene. 2003. V. 22. P. 90−97.
  114. Kretzschmar M., Meisterernsl M, Scheidereit S., Li G., Roeder R.G. Transcriptional regulation of the HIV-1 promoter by NF-кВ in vitro. II Genes Dev. 1992. V. 6. P. 761−774.
  115. Saccani S., Pantano S., Natoli G. Modulation of NF-кВ activity by exchange of dimers. // Mol. Cell. 2003. V. 11. P. 1563−1574.
  116. Smith D" Johnson K.S. Single-step purification of polypeptides expressed in Escherichia coli as fusion with glutathione S-transferase. // Gene. 1988. V. 67. P. 31−40.
  117. Л.Ю., Гуляева Л. Ф., Нархова О. В., Каледин В. И. Активность глютатион-S-трансферазы в печени мышей, различающихся по чувствительности к гепатогенному действию о-аминоазотолуола. // Бюл. эксп. биологии и медицины. 2000. Т. 129. С. 174 175.
  118. Chen F.E., Huang D.B., Chen Y.O., Ghosh G. Crystal structure of p50/p65 heterodimer of transcription factor NF-кВ bound to DNA //Nature. 1998. V. 391 P. 410−413
  119. Chen Y.O., Ghosh S, Ghosh G. A novel DNA recognition mode by the NF-kappa В p65 homodimer. //Nat. Struct. Biol. 1998. V. 5. P. 67−73.
  120. Л. А. Хроматография белков и нуклеиновых кислот. // М.: Наука. 1985. С. 153−177.
  121. Berhowitz В., Huang D.B., Chen-Park F.E., Sigler Р.В., Ghosh G. The X-ray crystal structure of the NF-kappa В p50. p65 heterodimer bound to the interferon beta-kappa В site. // J. Biol. Chem. 2002. V. 277. P. 24 694−24 700.
  122. M.A. Исследование структурно-функциональных аспектов взаимодействия р50 субъединицы NF-кВ с ДНК-дуплексами в растворе. // Дисс. канд. биол. наук. Пущино. 2005. 129 С.
  123. Phelps С.В., Sengchanthalangsy L.L., Malek S" Ghosh G. Mechanism of kappa В DNA binding by Rel/NF-kappa В dimers. // J. Biol. Chem. 2000. V. 275. P. 24 392−24 399.
  124. Miiller C.W., Rey F.A., Harrison S.C. Comparison of two different DNA-binding modes of the NF-кВ p50 homodimer. // Nat. Struct. Biol. 1996. V. 3. P. 224−227.
  125. Kow Y.W., Faundez G., Melamede R.J., Wallace S.S. Processing of model single-strand breaks in phi X-174 RF transfecting DNA by Escherichia coli. II Radiat. Res. 1991. V. 126. P. 357 366.
  126. Lindahl E., Hess В., Van der Spoel D. GROMACS 3.0: a package for molecular simulation and trajectory analysis. // J. Mol. Graph. Model. 2001. V. 7. P. 306−317.
  127. Dupradeau F.-Y., Cezard C., belong R., Stanislawiak E., Pecher J., Delepine J. C., Cieplak P. R.E.DD.B.: A database for RESP and ESP atomic charges, and force field libraries. // Nucl. Acids Res. 2008. V. 36. D360-D367.
  128. Perez A., Marchan I., Svozil D., Sponer J., Cheatham Т.Е., Laughlon C.A. Orozco M. Refinement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers. II Biophys. J. 2007. V. 92. P. 3817−3829.
  129. Автор выражает благодарность своим научным руководителям Т. С. Орецкой и Е. А. Кубаревой за руководство и помощь в освоении методов органической химии и работе с ферментами.
  130. Автор также благодарит членов своей семьи, родственников и друзей за помощь и поддержку.
Заполнить форму текущей работой