Помощь в написании студенческих работ
Антистрессовый сервис

Введение. 
Особенности проведения нервного импульса. 
Ясное видение в условиях изменения освещенности

РефератПомощь в написанииУзнать стоимостьмоей работы

В механизме сокращения гладкой мышцы имеется особенность, отличающая его от механизма сокращения скелетной мышцы. Эта особенность заключается в том, что прежде чем миозин гладкой мышцы сможет проявлять свою АТФазную активность, он должен быть фосфорилирован. Фосфорилирование и дефосфорилирование миозина наблюдается и в скелетной мышце, но в ней процесс фосфорилирования не является обязательным… Читать ещё >

Введение. Особенности проведения нервного импульса. Ясное видение в условиях изменения освещенности (реферат, курсовая, диплом, контрольная)

Медико-биологические основы безопасности жизнедеятельности — комплексная дисциплина, изучающая взаимодействие окружающей среды и человека. Она находится на стыке медицины и экологии, объединяя физику, химию, биологию, физиологию, гигиену, токсикологию, медицину труда.

Объект изучения медико-биологических основ безопасности жизнедеятельности — среда обитания, предмет свойства среды, проявляющиеся во влиянии на здоровье человека, а цель — разработка профилактических мероприятий, обеспечивающих сохранение оптимального здоровья человека, долгой творческой активности.

Основные направления при изучении данной дисциплины:

  • 1. Причинно-следственные связи и факторы, порождающие экологически и производственно обусловленные профессиональные заболевания.
  • 2. Предупреждение заболеваний на основе анализа, моделирования и прогнозирования неблагоприятных ситуаций в среде обитания человека.
  • 3. Защита людей от экологически и производственно обусловленных заболеваний за счёт использования защитных инженерных, технических решений, лечебно-профилактических мероприятий.

Основные взаимодействия нейронов: химический синапс

Для взаимодействия между нейронами существуют специализированные участки мембраны, расположенные как на теле клетки, так и на ее отростках — синапсы, имеющие характерное строение. Через синапсы происходит основной обмен информацией внутри нервной системы и осуществляется взаимодействие нейронов с другими органами. Нейрон может иметь от 1000 до 10 000 синапсов и получать информацию от 1000 других нейронов.

Существуют простые — электрические синапсы, которые передают однозначный сигнал, и сложные — электрохимические синапсы, обладающие большей информационной ценностью, поскольку используют различные медиаторы. Каждый электрохимический синапс состоит из нескольких элементов: пресинаптической мембраны, где происходит выделение медиатора передачи нервного возбуждения, синаптической щели и постсинаптической мембраны с избирательной чувствительностью к медиаторам нервного возбуждения.

В типичном случае синапсы образуются между аксоном одной клетки и дендритом другой (аксодендритные синапсы). Существуют и другие типы синаптических контактов: между аксоном и аксоном (аксо-аксональные), аксоном и телом клетки (аксосоматические), дендритом и дендритом (дендродендритные), дендритом и телом клетки (дендросоматические).

Основная функция межнейронных синапсов и нервно-мышечных соединений состоит в передаче импульсов от рецепторов к эффекторам. Проведение нервного импульса имеет следующие особенности:

  • 1. Однонаправленность передачи — нервные импульсы передаются только от пресинаптической мембраны к постсинаптической мембране, что обусловлено строением химического синапса. Таким образом, синапс работает по принципу клапана, что обеспечивает надежность работы нервной системы.
  • 2. Усиление — так как мембраны пре — и постсинаптической области отделены друг от друга синаптической щелью, электрическая передача возбуждения практически невозможна из-за значительной потери тока во внеклеточной среде, поэтому химическая передача представляет собой необходимый усиливающий механизм, что повышает чувствительность системы.
  • 3. Адаптация, или аккомодация — при непрерывной стимуляции количество освобождающегося в синапсе медиатора постепенно уменьшается до тех пор, пока запасы медиатора не будут истощены, тогда дальнейшая передача им сигналов тормозится. Это предотвращает повреждение эффекторов вследствие перевозбуждения.
  • 4. Интеграция — постсинаптический нейрон может получать сигналы от большого числа возбуждающих и тормозных пресинаптических нейронов. Это явление называется синаптической конвергенцией. При этом постсинаптический нейрон способен суммировать сигналы от всех пресинаптических нейронов.
  • 5. Дискриминация — временная суммация в синапсе позволяет отфильтровывать слабые импульсы прежде, чем они достигнут мозга.
  • 6. Торможение — передача сигналов через синапсы и нервно-мышечные соединения может затормаживаться определенными блокирующими агентами. Наблюдается пресинаптическое торможение и постсиниптическое торможение. Такое устройство позволяет изменять воздействие данного пресинаптического нейрона с помощью сигналов.

Наше тело — один большой часовой механизм. Он состоит из огромнейшего количества мельчайших частиц, которые расположены в строгом порядке и каждая из них выполняет определённые функции, и имеет свои неповторимые свойства. Этот механизм — тело, состоит из клеток, соединяющих их тканей и систем: все это в целом представляет собой единую цепочку, сверхсистему организма. Величайшее множество клеточных элементов не могли бы работать как единое целое, если бы в организме не существовал утонченный механизм регуляции. Особую роль в регуляции играет нервная система. Вся сложная работа нервной системы — регулирование работы внутренних органов, управление движениями, будь то простые и неосознаваемые движения (например, дыхание) или сложные, движения рук человека — все это, в сущности, основано на взаимодействии клеток между собой. Все это, в сущности, основано на передаче сигнала от одной клетке к другой. Причем, каждая клетка выполняет свою работу, а иногда имеет несколько функций. Разнообразие функций обеспечивается двумя факторами: тем, как клетки соединены между собой, и тем, как устроены эти соединения.

Функциональная организация гладких мышц. Основные отличия электрических свойств гладкомышечных клеток от нервных и миоцитов скелетных мышц Гладкие мышцы обеспечивают функцию полых органов, стенки которых они образуют. В частности, благодаря гладким мышцам осуществляется изгнание содержимого из мочевого пузыря, кишки, желудка, желчного пузыря, матки. Гладкие мышцы обеспечивают сфинктерную функцию — создают условия для хранения содержимого полого органа в этом органе, например, мочу в мочевом пузыре, плод в матке. Важнейшую роль выполняют гладкие мышцы в системе кровообращения и лимфообращения — изменяя просвет сосудов, гладкие мышцы тем самым адаптируют регионарный кровоток к местным потребностям в кислороде, питательных веществах. Гладкие мышцы могут существенно влиять на функцию связочного аппарата, т. к содержатся во многих связках и при своем сокращении меняют состояние данной связочной структуры.

Электрическая активность. Висцеральные гладкие мышцы характеризуются нестабильным мембранным потенциалом. Колебания мембранного потенциала независимо от нервных влияний вызывают нерегулярные сокращения, которые поддерживают мышцу в состоянии постоянного частичного сокращения — тонуса. Тонус гладких мышц отчетливо выражен в сфинктерах полых органов: желчном, мочевом пузырях, в месте перехода желудка в двенадцатиперстную кишку и тонкой кишки в толстую, а также в гладких мышцах мелких артерий и артериол. Мембранный потенциал гладкомышечных клеток не является отражением истинной величины потенциала покоя. При уменьшении мембранного потенциала мышца сокращается, при увеличении — расслабляется. В периоды состояния относительного покоя величина мембранного потенциала в среднем равна — 50 мВ. В клетках висцеральных гладких мышц наблюдаются медленные волнообразные флюктуации мембранного потенциала величиной в несколько милливольт, а также ПД. Величина ПД может варьировать в широких пределах. В гладких мышцах продолжительность ПД 50−250 мс; встречаются ПД различной формы. В некоторых гладких мышцах, например мочеточника, желудка, лимфатических сосудов, ПД имеют продолжительное плато во время реполяризации, напоминающее плато потенциала в клетках миокарда. Платообразные ПД обеспечивают поступление в цитоплазму миоцитов значительного количества внеклеточного кальция, участвующего в последующем в активации сократительных белков гладкомышечных клеток. Ионная природа ПД гладкой мышцы определяется особенностями каналов мембраны гладкой мышечной клетки. Основную роль в механизме возникновения ПД играют ионы Са2+. Кальциевые каналы мембраны гладких мышечных клеток пропускают не только ионы Са2+, но и другие двухзарядные ионы (Bа 2+, Mg2+), а также Na+. Вход Са2+ в клетку во время ПД необходим для поддержания тонуса и развития сокращения, поэтому блокирование кальциевых каналов мембраны гладких мышц, приводящее к ограничению поступления иона Са2+ в цитоплазму миоцитов внутренних органов и сосудов, широко используется в практической медицине для коррекции моторики пищеварительного тракта и тонуса сосудов при лечении больных гипертонической болезнью.

Автоматия. ПД гладких мышечных клеток имеют авторитмический (пейсмекерный) характер, подобно потенциалам проводящей системы сердца. Пейсмекерные потенциалы регистрируются в различных участках гладкой мышцы. Это свидетельствует о том, что любые клетки висцеральных гладких мышц способны к самопроизвольной автоматической активности. Автоматия гладких мышц, т. е. способность к автоматической (спонтанной) деятельности, присуща многим внутренним органам и сосудам.

Реакция на растяжение. Уникальной особенностью висцеральной гладкой мышцы является ее реакция на растяжение. В ответ на растяжение гладкая мышца сокращается. Это вызвано тем, что растяжение уменьшает мембранный потенциал клеток, увеличивает частоту ПД и в конечном итоге — тонус гладкой мускулатуры. В организме человека это свойство гладкой мускулатуры служит одним из способов регуляции двигательной деятельности внутренних органов. Например, при наполнении желудка происходит растяжение его стенки. Увеличение тонуса стенки желудка в ответ на его растяжение способствует сохранению объема органа и лучшему контакту его стенок с поступившей пищей. В кровеносных сосудах растяжение, создаваемое колебаниями кровяного давления, является основным фактором миогенной саморегуляции тонуса сосудов. Наконец, растяжение мускулатуры матки растущим плодом служит одной из причин начала родовой деятельности.

Пластичность. Еще одной важной специфической характеристикой гладкой мышцы является изменчивость напряжения без закономерной связи с ее длиной. Так, если растянуть висцеральную гладкую мышцу, то ее напряжение будет увеличиваться, однако если мышцу удерживать в состоянии удлинения, вызванным растяжением, то напряжение будет постепенно уменьшаться, иногда не только до уровня, существовавшего до растяжения, но и ниже этого уровня. Это свойство называется пластичностью гладкой мышцы. Таким образом, гладкая мышцы более похожа на тягучую пластичную массу, чем на малоподатливую структурированную ткань. Пластичность гладкой мускулатуры способствует нормальному функционированию внутренних полых органов.

Связь возбуждения с сокращением. Изучать соотношения между электрическими и механическими проявлениями в висцеральной гладкой мышце труднее, чем в скелетной или сердечной, так как висцеральная гладкая мышца находится в состоянии непрерывной активности. В условиях относительного покоя можно зарегистрировать одиночный ПД. В основе сокращения как скелетной, так и гладкой мышцы лежит скольжение актина по отношению к миозину, где ион Са2+ выполняет триггерную функцию.

В механизме сокращения гладкой мышцы имеется особенность, отличающая его от механизма сокращения скелетной мышцы. Эта особенность заключается в том, что прежде чем миозин гладкой мышцы сможет проявлять свою АТФазную активность, он должен быть фосфорилирован. Фосфорилирование и дефосфорилирование миозина наблюдается и в скелетной мышце, но в ней процесс фосфорилирования не является обязательным для активации АТФазной активности миозина. Механизм фосфорилирования миозина гладкой мышцы осуществляется следующим образом: ион Са2+ соединяется с кальмодулином (кальмодулин — рецептивный белок для иона Са2+). Возникающий комплекс активирует ферменткиназу легкой цепи миозина, который в свою очередь катализирует процесс фосфорилирования миозина. Затем происходит скольжение актина по отношению к миозину, составляющее основу сокращения. Отметим, что пусковым моментом для сокращения гладкой мышцы является присоединение иона Са2+ к кальмодулину, в то время как в скелетной и сердечной мышце пусковым моментом является присоединение Са2+ к тропонину.

Показать весь текст
Заполнить форму текущей работой