Привод ленточного транспортера, состоящего из электродвигателя, цилиндрического двухступенчатого редуктора и соединительных муфт
На диаметр вершин зубьев назначаем поле допуска h11, на диаметр посадочного отверстия назначаем поле допуска Н7, на шпоночный паз поле допуска Js9. Предельные отклонения остальных размеров принимаем: для отверстий HI4, валов h14, остальных ± IT 14/2. Расчетная схема тихоходного вала представлена на Рис. 6.3.1 На тихоходный вал действуют силы в зацеплении. В подшипниковых опорах — А и Б возникают… Читать ещё >
Привод ленточного транспортера, состоящего из электродвигателя, цилиндрического двухступенчатого редуктора и соединительных муфт (реферат, курсовая, диплом, контрольная)
КУРСОВАЯ РАБОТА Привод ленточного транспортера, состоящего из электродвигателя, цилиндрического двухступенчатого редуктора и соединительных муфт
- 1. Введение
- 2. Кинематический расчет
- 3. Расчёт цилиндрической передачи
- 3.1 Выбор материала и термообработки
- 3.2 Определение допускаемых напряжений
- 3.2.1 Допускаемые напряжения при расчёте на усталостную контактную прочность
- 3.2.2 Допускаемые напряжения при расчёте на изгибную усталостную прочность
- 3.3 Определение основных параметров передачи
- 3.4 Определение сил в зацеплении
- 3.5 Проверочный расчёт передачи на контактную усталостную прочность
- 3.6. Проверочный расчёт передачи на изгибную усталостную прочность
- 4. Предварительный расчёт валов
- 4.1 Выбор материала и допускаемых напряжений
- 4.2 Предварительный расчёт быстроходного вала
- 4.3 Предварительный расчёт промежуточного вала
- 4.4 Предварительный расчёт тихоходного вала
- 5. Выбор муфт
- 6. Выбор подшипников
- 6.1. Выбор типа и типоразмера подшипника
- 6.2. Выбор схемы установки подшипников
- 6.3. Проверка долговечности подшипников тихоходного вала
- 6.3.1 Составление расчётной схемы и определение реакций в опорах
- 6.3.2 Проверка долговечности подшипников
- 7. Конструирование элементов цилиндрической передачи
- 8. Расчёт шпонок
- 9. Уточнённый расчёт валов
- 9.1 Построение эпюр изгибающих и крутящих моментов
- 9.2. Проверка статической прочности вала
- 9.3. Проверка усталостной прочности тихоходного вала
- 10. Конструктивные элементы валов, допуски, посадки и шероховатости
- 11. Смазка редуктора
- 12. Конструирование крышек подшипников
- 13. Конструирование корпуса редуктора
- 14. Конструирование рамы
- 15. Сборка редуктора и монтаж привода
- 15.1 Сборка редуктора
- 15.2 Монтаж привода
- Заключение
- Список литературы
1. Введение
1.1 В данном проекте разрабатывается привод ленточного транспортёра. Транспортёр предназначен для перемещения отходов производства (древесная щепа).
1.2 Привод состоит из электродвигателя, цилиндрического двухступенчатого редуктора и соединительных муфт.
Электродвигатель в приводе создаёт вращающий момент и приводит редуктор в движение.
1.3 Редуктор представляет собой закрытую цилиндрическую передачу. В редукторе использованы прямозубые колёса, что упрощает изготовление деталей передачи.
Редуктор служит для уменьшения числа оборотов и увеличения вращающих моментов.
Для соединения выходных концов вала редуктора и барабана используются муфты.
Отметим, что при работе привода возможны сильные рывки.
Выпуск предусматривается крупносерийный.
1.4 Срок службы привода 6 лет, работа в три смены, коэффициент загрузки за смену 0,4. С учётом того, что в году 250 рабочих дней, а в одной рабочей смене 8 часов получим ресурс привода в часах:
Lh = 6 · 250 · 3 · 8 · 0,4 = 14 400 часа.
2. Кинематический расчет
2.1 Определение требуемой мощности привода. Электродвигатель выбирается по требуемой мощности и частоте вращения. Мощность двигателя зависит от требуемой мощности рабочей машины, а его частота вращения от частоты вращения приводного вала рабочей машины.
Определим требуемую мощность транспортёра:
Рвых = F · v = 18 · 103 · 0,65 = 11 700 Вт = 11,7 кВт
2.2 Для определения требуемой мощности привода определим КПД привода. Для этого задаёмся, в соответствии с таблицей 1.1 [3], КПД отдельных элементов привода:
КПД подшипникового узлазnn =0.99
КПД цилиндрической передачизц = 0.96
КПД муфты Общий КПДзм = 0.98
Общий КПД привода:
зnр = зц2· зм2· зп3 = 0,982· 0,962·0,993 = 0,859
Требуемая мощность двигателя:
= 13,6 кВт
2.3 По таблице подбираем электродвигатели с мощностью большей или равной требуемой. Двигатели выбираем асинхронные, трёхфазные общепромышленного применения серии 4А. Двигатели этой серии предназначены для продолжительного режима работы, т. е. соответствуют режиму работы привода. Подходят четыре варианта электродвигателей серии 4А с номинальной мощностью кВт и различной частотой вращения. Данные по ним представлены в таблице 2.3.1.
Таблица 2.3.1
Вариант | Тип двигателя | Номинальная мощность, кВт | Частота вращения, об/мин | ||
синхронная | номинальная | ||||
4АМ160S2 | |||||
4АМ160S4 | |||||
4АМ160M6 | |||||
4АМ180M8 | |||||
Для окончательного выбора типоразмера двигателя определим рекомендуемый интервал частот вращения вала электродвигателя, для чего определим необходимую частоту вращения вала барабана и передаточное число привода. Частота вращения вала барабана:
Минимально-допустимая частота вращения вала электродвигателя:
nдвmin=nвых· uпрmin=41,4·4=165,6 об/мин
Максимально допустимая частота вращения вала электродвигателя:
nдвmax=nвых· uпрmax=41,4·31,3=1295,82 об/мин
Передаточное число передачи при 1 модели: и1 =2940/41,4 =71,01
Передаточное число передачи при 2 модели: и2 =1465/41,4 =35,38
Передаточное число передачи при 3 модели: и3 =975/41,4 =23,55
Передаточное число передачи при 4 модели: и4 =730/41,4 =17,6
2.4 Требуемое передаточное число привода при принятом электродвигателе:
Таблица 2.4
Модель двигателя | Передаточное число | |
4АМ160S2 | 71,01 | |
4АМ160S4 | 35,38 | |
4АМ160M6 | 23,25 | |
4АМ180M8 | 17,6 | |
2.5 Проанализировав результаты вычислений и данные таблицы 1.1 выбираем окончательный вариант электродвигателя.
Электродвигатель с синхронной частотой вращения 3000 об/мин не подходит по результатам расчёта.
Электродвигатель с синхронной частотой вращения 1500 об/мин не подходит по результатам расчёта.
Электродвигатель с синхронной частотой вращения 1000 об/мин подходит по результатам расчёта.
Электродвигатель с синхронной частотой вращения 750 об/мин подходит по результатам расчёта.
Принимаем двигатель 4АМ180M8 с синхронной частотой вращения 750 об/мин.
2.6 Предварительное передаточное число тихоходного вала редуктора:
Предварительное передаточное число быстроходного вала редуктора:
2.7 Частота вращения вала барабана:
Угловая скорость вала электродвигателя:
Угловая скорость быстроходного вала редуктора:
Угловая скорость промежуточного вала редуктора:
Угловая скорость тихоходного вала редуктора:
Угловая скорость вала барабана:
Мощность на валу электродвигателя:
Pдв= 13,6 кВт
Мощность на быстроходном валу редуктора:
Pб. =Рдв· зм · зп = 13,6· 0,98 · 0,99 =13,2 кВт Мощность на промежуточном валу редуктора:
Рпр. в. =Pб · зц= 13,2· 0,96=12,54 кВт Мощность на тихоходном валу редуктора:
Рm=Pпр. в. · зц · зп= 12,54· 0,96·0,99=11,92 кВт
Мощность на валу барабана:
Ро=Pт · зм=11,92·0,98=11,7 кВт
Вращающий момент на валу электродвигателя:
Вращающий момент на быстроходном валу редуктора:
Вращающий момент на промежуточном валу редуктора:
Вращающий момент на тихоходном валу редуктора:
Вращающий момент на валу барабана:
2.8 езультаты кинематического и энергетического расчёта представлены в таблице 2.9 1.
Таблица 2.9.1
Вал | Частота вращения, об/мин | Угловая скорость, с-1 | Мощность, кВт | Вращающий момент, Нм | |
Вал двигателя | 76.4 | 13,6 | 178,01 | ||
Быстроходный вал редуктора | 76,4 | 13,2 | 172,77 | ||
Промежуточный вал редуктора | 153,4 | 16,05 | 12,54 | 781,3 | |
Тихоходный вал редуктора | 41,5 | 4,34 | 11,92 | 2746,54 | |
Вал рабочего органа машины | 41,4 | 4,33 | 11,7 | 2702,07 | |
3. Расчёт цилиндрической передачи
3.1 Выбор материала и термообработки
Материал для зубчатых колёс подбираем по таблице 2.1. Для шестерни принимаем сталь 40Х с термообработкой улучшение и закалкой ТВЧ, твёрдость сердцевины и поверхности 48 — 53 HRC, примем 50 HRC.
Для колеса принимаем сталь 40Х с термообработкой улучшение и закалкой ТВЧ, твёрдость сердцевины и поверхности 45 — 50 HRC, примем 47,5 HRC.
3.2 Определение допускаемых напряжений
3.2.1 Допускаемые напряжения при расчёте на усталостную контактную прочность
Быстроходная ступень, шестерня:
Допускаемые контактные напряжения
[у] Н= у Нlim *ZN*ZR*ZV/SH=1050 * 1 * 1 * 1/1,2=875 МПа
Предел контактной выносливости
[у] Н1lim=17HRCcp+200=17*50+200=1050 МПа
Коэффициент долговечности
ZN==1 при условии 1 ? ZN ? Z N max
NHG=30HBcp2.4 ?12 * 107 =30 * 4802.4 = 8,1* 107
NK=60 * n * n3 * Lh=60 * 730 * 1 * 14 400=63 * 107
Коэффициент учитывающий влияние шероховатости
ZR=1
Коэффициент учитывающий влияние окружной скорости
ZV=1
V=1,5 м/с
==114 мм
Коэффициент учитывающий запас прочности
SH=1,2
Быстроходная ступень, колесо:
Допускаемые контактные напряжения
[у] Н= у Нlim *ZN*ZR*ZV/SH=1007,5 * 1 * 1 * 1/1,2=840 МПа
Предел контактной выносливости
[у] Н1lim=17HRCcp+200=17*47,5+200=1007,5 МПа
Коэффициент долговечности
ZN==1 при условии 1 ? ZN ? ZN max
NHG=30HBcp2.4 ?12 * 107 =30 * 4402.4 = 6,6* 107
NK=60 * n * n3 * Lh=60 * 730 * 1 * 14 400=63 * 107
Коэффициент учитывающий влияние шероховатости
ZR=1
Коэффициент учитывающий влияние окружной скорости
ZV=1
V=0,3 м/с
==114 мм
Коэффициент учитывающий запас прочности
SH=1,2
Тихоходная ступень, шестерня:
Допускаемые контактные напряжения
[у] Н= у Нlim *ZN*ZR*ZV/SH=1050 * 1 * 1 * 1/1,2=875 МПа
Предел контактной выносливости
[у] Н1lim=17HRCcp+200=17*50+200=1050 МПа
Коэффициент долговечности
ZN==1 при условии 1 ? ZN ? Z N max
NHG=30HBcp2.4 ?12 * 107 =30 * 4802.4 = 8,1* 107
NK=60 * n * n3 * Lh=60 * 153,4 * 1 * 14 400=13 * 107
Коэффициент учитывающий влияние шероховатости
ZR=1
Коэффициент учитывающий влияние окружной скорости
ZV=1
V=0,57 м/с
==167 мм
Коэффициент учитывающий запас прочности
SH=1,2
Тихоходная ступень, колесо:
Допускаемые контактные напряжения
[у] Н= у Нlim *ZN*ZR*ZV/SH=1007,5 * 1 * 1 * 1/1,2=840 МПа
Предел контактной выносливости
[у] Н1lim=17HRCcp+200=17*50+200=1007,5 МПа
Коэффициент долговечности
ZN==1 при условии 1 ? ZN ? Z N max
NHG=30HBcp2.4 ?12 * 107 =30 * 4802.4 = 8,1* 107
NK=60 * n * n3 * Lh=60 * 41,5 * 1 * 14 400=3,5 * 107
Коэффициент учитывающий влияние шероховатости
ZR=1
Коэффициент учитывающий влияние окружной скорости
ZV=1
V=0,15 м/с
==167 мм
Коэффициент учитывающий запас прочности
SH=1,2
3.2.2 Допускаемые напряжения при расчёте на изгибную усталостную прочность
Быстроходная ступень, шестерня:
Допускаемые напряжения изгиба
[у] F1= у Flim * YN * YR * YA / SF=650 * 1 * 1 * 1/1,7=382 МПа
Предел выносливости
у Flim=650 МПа - принимаем
Коэффициент долговечности
YN==1 при условии 1 ? YN ? Y N max
q=9 коэффициент для закаленных и поверхностно улучшенных зубьев
NFG=4 * 106 число циклов
NК=6,3* 108
При NК >NFG принимают NК =NFG
Коэффициент учитывающий влияние шероховатости
YR=1
Коэффициент учитывающий влияние двустороннего приложения нагрузки
YА=1,
при одностороннем приложении
Коэффициент запаса прочности
SF=1,7
Быстроходная ступень, колесо:
Допускаемые напряжения изгиба
[у] F2= у Flim * YN * YR * YA / SF=650 * 1 * 1 * 1/1,7=382 МПа
Предел выносливости
у Flim=650 МПа - принимаем
Коэффициент долговечности
YN==1 при условии 1 ? YN ? Y N max
q=9 коэффициент для закаленных и поверхностно улучшенных зубьев
NFG=4 * 106 число циклов
NК=1,3* 108
При NК >NFG принимают NК =NFG
Коэффициент учитывающий влияние шероховатости
YR=1
Коэффициент учитывающий влияние двустороннего приложения нагрузки
YА=1,
при одностороннем приложении
Коэффициент запаса прочности
SF=1,7
Тихоходная ступень, шестерня:
Допускаемые напряжения изгиба
[у] F1= у Flim * YN * YR * YA / SF=650 * 1 * 1 * 1/1,7=382 МПа
Предел выносливости
у Flim=650 МПа - принимаем
Коэффициент долговечности
YN==1 при условии 1 ? YN ? Y N max
q=9 коэффициент для закаленных и поверхностно улучшенных зубьев
При NК >NFG принимают NК =NFG
Коэффициент учитывающий влияние шероховатости
YR=1
Коэффициент учитывающий влияние двустороннего приложения нагрузки
YА=1,
при одностороннем приложении
Коэффициент запаса прочности
SF=1,7
Тихоходная ступень, колесо:
Допускаемые напряжения изгиба
[у] F2= у Flim * YN * YR * YA / SF=650 * 1 * 1 * 1/1,7=382 МПа
Предел выносливости
у Flim=650 МПа - принимаем
Коэффициент долговечности
YN==1 при условии 1 ? YN ? Y N max
q=9 коэффициент для закаленных и поверхностно улучшенных зубьев
При NК >NFG принимают NК =NFG
Коэффициент учитывающий влияние шероховатости
YR=1
Коэффициент учитывающий влияние двустороннего приложения нагрузки
YА=1,
при одностороннем приложении
Коэффициент запаса прочности
SF=1,7
3.3 Определение основных параметров передачи
Межосевое расстояние передачи:
Быстроходная ступень
принимаем aw = 180 мм
где Ka = 450 — коэффициент межосевого расстояния для косозубых колёс;
КН= КНV? КНв? КНб=1,09 · 1,25 · 1,162=1,583
КНV=1,09 - принимается по таблице
КHв = 1+ (КHв0-1) · КHW = 1+ (1,28 - 1) · 0,9 =1,25 ;
коэффициент концентрации нагрузки при термической обработке;
КHW=0,9
шBd=0,5 шBа (UБ + 1) =0,5 · 0,25 (4,76 + 1) =0,72
КНв0=1,28
КНб=1 + (К0Нб - 1) · КHW=1 + (1,18 - 1) 0,9 = 1,162
К0Нб=1 + 0,06 (nст - 5) =1 + 0,06 (8 - 5) =1,18
Т2=172,77 Н· м
UБ = 4,76
швa= 0,25 — коэффициент ширины колеса при не симметричном расположении
Тихоходная ступень
принимаем aw = 250 мм
где Ka = 450 — коэффициент межосевого расстояния для косозубых колёс;
КН= КНV? КНв? КНб=1,03 · 1,18 · 1,11=1,34
КНV=1,03 - принимается по таблице
КHв = 1+ (КHв0-1) · КHW = 1+ (1,28 - 1) · 0,63 =1,18 ;
коэффициент концентрации нагрузки при термической обработке;
КHW=0,63
шBd=0,5 шBа (UБ + 1) =0,5 · 0,315 (3,69 + 1) =0,74
КНв0=1,28
КНб=1 + (К0Нб - 1) · КHW=1 + (1,18 - 1) 0,63 = 1,18
К0Нб=1 + 0,06 (nст - 5) =1 + 0,06 (8 - 5) =1,18
Т2=781,3 Н· м
UБ = 3,69
швa= 0,315 — коэффициент ширины колеса при не симметричном расположении
Предварительные размеры колес:
Делительный диаметр быстроходного колеса
d2=2· awu/ (u+1) =2· 180·4,76/ (4,76+1) = 297,5 мм
Ширина быстроходного колеса:
b2 = шa· aw=0,25·180=45 мм
Делительный диаметр тихоходного колеса
d2=2· awu/ (u+1) =2· 250·3,69/ (3,69+1) = 363,39 мм
Ширина тихоходного колеса:
b2 = шa· aw=0,315·250=78,75 мм, принимаем 80 мм
Модули передач:
Быстроходная ступень:
Km = 3,4.103— коэффициент модуля;
KF = KFV. KFв. KFб=1,09.0, 188.1, 18 =0,24— коэффициент нагрузки;
KFV=1,09 принимается по таблице
KFв=0,18+0,82 KHв°=0,18.0, 82.1, 28=0,188
KFб= KHб°=1,18
принимаем m = 3 мм в соответствии со стандартным значением.
Тихоходная ступень:
Km = 3,4.103— коэффициент модуля;
KF = KFV. KFв. KFб=1,03.0, 188.1, 18 = 0,23— коэффициент нагрузки;
KFV=1,03 принимается по таблице
KFв=0,18+0,82 KHв°=0,18.0, 82.1, 28=0,188
KFб= KHб°=1,18
принимаем m = 5 мм в соответствии со стандартным значением.
Суммарное число зубьев:
Быстроходная ступень:
zУ=2· aw/m=2·180/3=120
Принимаем zУ=120.
Тихоходная ступень:
zУ=2· aw/m=2·250/5=100
Принимаем zУ=100.
Число зубьев шестерни и колеса:
Быстроходная ступень:
Шестерня:
z1= zУ / (u+1) =120/ (4,76+1) =20
Колесо:
z2= zУ - z1=120−20=100
Тихоходная ступень:
Шестерня:
z1= zУ / (u+1) =100/ (3,69+1) =21
Колесо:
z2= zУ - z1=100−21=79
Фактическое передаточное число:
Быстроходная ступень:
uф= z2/ z1=100/20=5
Тихоходная ступень:
uф= z2/ z1=79/21=3,76
Отклонение от заданного передаточного числа:
Быстроходная ступень:
3,76% - такое расхождение допускается.
Тихоходная ступень:
2,69% - такое расхождение допускается.
Диаметры колес:
Быстроходная ступень:
Делительный диаметр шестерни:
d1= z1· m=20 · 3 = 60 мм
Делительный диаметр колеса:
d2=2аw - d1=2 · 180 - 60=300 мм
Диаметр окружностей вершин зубьев шестерни и колеса:
dа1= d1+2m=60 + 2 · 3=66 мм
dа2= d2+2m=300 + 2 · 3=306 мм
Диаметр окружностей впадин зубьев шестерни и колеса:
df1= d1 - 2 · 1,25 · m=60 - 2 · 1,25 · 3 =52,5 мм
df2= d2 - 2 · 1,25 · m =300 - 2 · 1,25 · 3 =292,5 мм
Ширина шестерни:
b1= b2 · 1,07 = 45 · 1,07 = 48 мм
Окружная скорость колеса:
Результаты расчёта основных параметров передачи представлены в таблице 3.3.1
Таблица 3.3.1
Модуль (мм) | Межосевое расстояние (мм) | Число зубьев | Делительный диаметр (мм) | Ширина (мм) | ||
Шестерня | ||||||
Колесо | ||||||
Тихоходная ступень:
Делительный диаметр шестерни:
d1= z1· m=21 · 5 = 105 мм
Делительный диаметр колеса:
d2=2аw - d1=2 · 250 - 105=395 мм
Диаметр окружностей вершин зубьев шестерни и колеса:
dа1= d1+2m=105 + 2 · 5=115 мм
dа2= d2+2m=395 + 2 · 5=405 мм
Диаметр окружностей впадин зубьев шестерни и колеса:
df1= d1 - 2 · 1,25 · m=105 - 2 · 1,25 · 5 =92,5 мм
df2= d2 - 2 · 1,25 · m =395 - 2 · 1,25 · 5 =382,5 мм
Ширина шестерни:
b1= b2 · 1,07 = 80 · 1,07 = 86 мм
Окружная скорость колеса:
Результаты расчёта основных параметров передачи представлены в таблице 3.3.2
Таблица 3.3.2
Модуль (мм) | Межосевое расстояние (мм) | Число зубьев | Делительный диаметр (мм) | Ширина (мм) | ||
Шестерня | ||||||
Колесо | ||||||
3.4 Определение сил в зацеплении
Быстроходная ступень:
Окружная сила в зацеплении:
Радиальная сила в зацеплении:
Fr=Ft· tg20є=5759· tg20є=2096 H
где б = 20є - стандартный угол.
Результаты расчёта представлены в таблице 3.4 1
Таблица 3.4.1
Окружная сила (Н) | Радиальная сила (Н) | Осевая сила (Н) | |
Тихоходная ступень:
Окружная сила в зацеплении:
Радиальная сила в зацеплении:
Fr=Ft· tg20є=14 881· tg20є=5416 H
где б = 20є - стандартный угол.
Результаты расчёта представлены в таблице 3.4 2
Таблица 3.4.2
Окружная сила (Н) | Радиальная сила (Н) | Осевая сила (Н) | |
3.5 Проверочный расчёт передачи на контактную усталостную прочность
Быстроходная ступень:
ZБ=9600 МПа½
Расчётные контактные напряжения в рамках допускаемых, следовательно, контактная прочность передачи обеспечена.
Тихоходная ступень:
ZБ=9600 МПа½
Расчётные контактные напряжения в рамках допускаемых, следовательно, контактная прочность передачи обеспечена.
3.6. Проверочный расчёт передачи на изгибную усталостную прочность
Быстроходная ступень:
Расчётные напряжения изгиба в зубьях колеса:
уF2=KF · Ft · YFS2 · Yв · Yе/b2m=0,24 · 5759 · 3,59 · 1 · 1/45 · 3=36,7 ? [у] F2
где YFS2=3,59 — коэффициент учитывающий форму зуба и концентрацию напряжений, принимается по таблице зависит от количества зубьев
KF = KFV. KFв. KFб=1,09.0, 188.1, 18 =0,24— коэффициент нагрузки
Yв =1 — коэффициент учитывающий угол наклона зуба;
Yе= 1 — коэффициент учитывающий перекрытие зубьев;
Оба коэффициента (Y) зависят от степени точности (8)
Расчётные напряжения изгиба в зубьях шестерни:
уF1= уF2 · YFS1/ YFS2 = 36,7 · 4,08/ 3,59 = 41,7 ? [у] F1
Расчётные напряжения изгиба меньше допускаемых, следовательно, изгибная прочность шестерни обеспечена.
Тихоходная ступень:
Расчётные напряжения изгиба в зубьях колеса:
уF2=KF · Ft · YFS2 · Yв · Yе/b2m=0,23 · 14 881 · 3,6 · 1 · 1/80 · 5=30,8 ? [у] F2
где YFS2=0,23 — коэффициент учитывающий форму зуба и концентрацию напряжений, принимается по таблице зависит от количества зубьев
KF = KFV. KFв. KFб=1,03.0, 188.1, 18 = 0,23— коэффициент нагрузки
Yв =1 — коэффициент учитывающий угол наклона зуба;
Yе= 1 — коэффициент учитывающий перекрытие зубьев;
Оба коэффициента (Y) зависят от степени точности (8)
Расчётные напряжения изгиба в зубьях шестерни:
уF1= уF2 · YFS1/ YFS2 = 30,8 · 4,08/ 3,6 = 34,9 ? [у] F1
Расчётные напряжения изгиба меньше допускаемых, следовательно, изгибная прочность шестерни обеспечена.
Результаты расчёта передачи на прочность представлены в табл.3.6.1
Таблица 3.6.1
Расчётные напряжения | Допускаемые напряжения | ||||
Быстроходная ступень | Расчёт на контактную усталостную прочность | ||||
Расчёт на усталостную изгибную прочность | Шестерня | 41,7 | |||
Колесо | 36,7 | ||||
Тихоходная ступень | Расчёт на контактную усталостную прочность | ||||
Расчёт на усталостную изгибную прочность | Шестерня | 34,9 | |||
Колесо | 30,8 | ||||
4. Предварительный расчёт валов
4.1 Выбор материала и допускаемых напряжений
Для шестерни ранее принят материал — сталь 40Х.
Для тихоходного вала также принимаем сталь 40Х.
Механические характеристики улучшенной стали 40Х
Предел прочности ув = 800 МПа.
Предел текучести уТ = 640 МПа.
Допускаемые напряжения при расчёте на статическую прочность при коэффициенте запаса
n=1.5 [ф] = 640/1.5 =426 МПа.
4.2 Предварительный расчёт быстроходного вала
Диаметр выходного конца вала:
принимаем стандартное значение d = 40 мм.
Для удобства монтажа деталей вал выполняем ступенчатой конструкции. Диаметр вала под подшипник:
dn=d+2tкон = 40 + 2 · 2,3=44,6 мм
где tкон = 2,3 мм,
принимаем стандартное значение dn = 45 мм.
Диаметр буртика подшипника принимаем с учётом фасок на кольцах подшипника:
dбп = dп+3r = 45 + 3 · 2,5 = 52,5 мм
где r = 2,5 мм
Принимаем dбп = 53 мм.
Длина выходного участка вала:
lm=1, 5 · d= 1,5 · 40 = 60 мм
принимаем lm= 60 мм.
Длина участка вала под подшипник:
lk=1,4 · dn= 1,4 · 45 = 63 мм
принимаем lk=65 мм.
Остальные размеры вала определяются из предварительной прорисовки редуктора.
4.3 Предварительный расчёт промежуточного вала
Диаметр вала под колесо:
принимаем стандартное значение dК = 60 мм.
Диаметр буртика колеса:
dбк=dк+3f= 60 + 3 · 2=66 мм
Диаметр вала под подшипник:
dn = dк+3r = 60 - 3 · 3,5=49,5 мм
принимаем стандартное значение dп= 50 мм.
Диаметр буртика подшипника принимаем с учётом фасок на кольцах подшипника:
dбп = dп+3r = 50 + 3 · 3,5 = 60 мм
4.4 Предварительный расчёт тихоходного вала
Диаметр выходного конца вала:
Для удобства монтажа деталей вал выполняем ступенчатой конструкции. Диаметр вала под подшипник:
dn = d + 2 · tкон = 70 + 2 · 2,5 = 75 мм
где tкон = 2,5 мм.
принимаем стандартное значение dn = 75 мм.
Диаметр буртика подшипника принимаем с учётом фасок на кольцах подшипника:
dбп = dп+3r = 75 + 3 · 3,5 = 85,5 мм
где r = 3,5 мм.
принимаем dбп = 86 мм.
Диаметр участка вала под колесо:
dk=dбп = 86 мм
Диаметр буртика колеса:
dбк=dк+3f= 86 + 3 · 2,5=93,5 мм
где f =2,5 мм.
принимаем dбк= 95 мм.
Длина выходного участка вала:
lм=1,5 · d= 1,5 · 70 = 105 мм
принимаем lм = 105 мм.
Длина участка вала под подшипник:
lk=1,.4 · dn= 1,4 · 85 = 119 мм
принимаем lk = 120 мм.
Остальные размеры вала определяются из предварительной прорисовки редуктора.
Расстояние между деталями передач
Зазоры между колесами и внутренними поверхностями стенок корпуса:
Принимаем а = 12 мм;
Расстояние между дном корпуса и поверхностью колес:
Расстояние между торцовыми поверхностями колес:
Принимаем 6 мм;
где L ? 670 мм — расстояние между внешними поверхностями деталей передач, принято из эскизной компоновки редуктора.
5. Выбор муфт
Муфты типа МУВП позволяют смягчать ударные нагрузки и рывки за счёт упругих элементов в составе муфты, кроме того, они допускают некоторые неточности сборки.
Для соединения быстроходного вала редуктора с валом электродвигателя выбираем муфту упругую втулочно-пальцевую (МУВП) ГОСТ 21 424–75.
Принимаем муфту МУВП 250−40-1 У3 ГОСТ 21 424–93.
Номинальный крутящий момент Мкр., Нм = 250
Частота вращения, об/мин, не более = 4600
Смещение валов, не более:
радиальное = 0,3
угловое = 100
Для соединения тихоходного вала редуктора с валом барабана выбираем муфту упругую втулочно-пальцевую (МУВП) ГОСТ 21 424–75.
Принимаем муфту МУВП 4000−70-1 У3 ГОСТ 21 424–93.
Номинальный крутящий момент Мкр., Нм = 4000
Частота вращения, об/мин, не более = 1800
Смещение валов, не более:
радиальное = 0,5
угловое = 030
6. Выбор подшипников
6.1. Выбор типа и типоразмера подшипника
Для всех валов принимаем радиальные шариковые однорядные подшипники по ГОСТ 8338–75, такой выбор обосновывается тем, что в прямозубой цилиндрической передаче возникают только радиальные осевые нагрузки, такой тип подшипников обеспечивает нормальную работу вала при действии на него радиальных нагрузок.
Предварительно в качестве опор быстроходного вала принимаем подшипник № 309; для промежуточного вала № 310; для тихоходного вала № 315.
6.2. Выбор схемы установки подшипников
Установка валов не требует достаточно надёжной осевой фиксации из-за отсутствия действия осевой нагрузки. Такую фиксацию обеспечивает схема установки подшипника «враспор». При этом торцы внутренних колец подшипника упираются в буртики выполненные на валу, торцы внешних колец упираются и торцы крышек.
Такая схема установки обеспечивает простоту конструкции, небольшое количество деталей узла, простоту регулировки, которая производится набором прокладок.
Для того чтобы избежать защемления вала в опорах в результате температурных деформаций необходимо предусмотреть зазор между торцом внешнего кольца одного из подшипников и крышкой. После установления нормального температурного режима работы вала зазор исчезает. И в соответствии с рекомендациями примем для обоих валов зазор 0,5 мм.
6.3. Проверка долговечности подшипников тихоходного вала
6.3.1 Составление расчётной схемы и определение реакций в опорах
Для составления расчетной схемы используем эскизы валов и предварительную прорисовку редуктора.
Расчетная схема тихоходного вала представлена на Рис. 6.3.1 На тихоходный вал действуют силы в зацеплении. В подшипниковых опорах — А и Б возникают реакции опор. Реакции представлены в виде составляющих на оси координат.
Определяем реакции в опорах, А и Б. Расчёт ведём отдельно для плоскости ZOX и плоскости YOX.
Где l1 =126,5 мм; l2 = 70,5 мм l3 = 154 мм — приняты из предварительной прорисовки редуктора.
В связи с возможной неточностью установки валов (перекос, несоосность) на муфте будет действовать дополнительная сила:
Fм =
Составляем уравнения суммы моментов всех сил, относительно точек, А и Б
т. А
в плоскости YOZ
в плоскости XOZ
т. Б
в плоскости YOZ
в плоскости XOZ
Из суммы моментов всех сил, действующих в плоскости YOZ относительно опоры, А получим:
Из суммы моментов всех сил действующих в плоскости YOZ относительно опоры Б получим:
Из суммы моментов всех сил действующих в плоскости XOZ относительно опоры, А получим:
Из суммы моментов всех сил действующих в плоскости XOZ относительно опоры Б получим:
Суммарные реакции опор:
Как видно наибольшая реакция возникает в опоре Б. По величине этой реакции будем производить проверку долговечности подшипников для тихоходного вала.
6.3.2 Проверка долговечности подшипников
На тихоходный вал принят подшипник № 315. Для данного подшипника динамическая грузоподъёмность Сr = 89 000 Н, статическая грузоподъёмность Соr = 72 000 Н.
Проверка на статическую грузоподъемность:
Расчет подшипника на заданный ресурс:
Эквивалентная нагрузка на подшипник:
Рr= (XVR +YFa) KбKm
Так как нагрузка Fa = 0, то коэффициенты X = 1, а Y = 0
V = l — коэффициент учитывающий вращение колец;
Кб = 1,5 — коэффициент безопасности, принят по таблице;
Кт = 1 — температурный коэффициент.
Рr= (1· 1·5416) · 1,5·1=8124 H
Расчётная долговечность подшипника в часах:
где а23 = 0,7 — коэффициент, характеризующий совместное влияние на ресурс подшипника качества металла колец, тел качения и условий эксплуатации;
а1 = 1 - коэффициент, долговечности в функции необходимой надежности;
k = 3 — показатель степени для шариковых подшипников. Так как расчетный ресурс, то предварительно назначенный подшипник 315 пригоден.
При требуемом ресурсе надежность выше 90%.
7. Конструирование элементов цилиндрической передачи
Шестерни выполняем как единое целое с валом, размеры этой детали определены ранее.
Рис. 7.1
При крупносерийном производстве заготовку зубчатого колеса получают свободной ковкой с последующей токарной обработкой. Представленная на рис. 7.1 конструкция колеса имеет несложную технологию изготовления, небольшой вес, обеспечивает экономию материала и достаточную несущую способность.
Размеры колес вычисляем в зависимости от диаметров валов под колеса и ширин колес вычисленных ранее.
Колесо быстроходной ступени:
Диаметр ступицы:
dcm= 1,5 · dk= 1,55 · 65 = 100,75 мм
принимаем dcm= 105 мм.
Толщина зубчатого венца:
S = 2,2 · m + 0,05 · 45 = 2,2 · 3 + 0,05 · 45 = 8,85 мм
принимаем S = 10 мм.
Фаска:
f=0, 5 · m = 0, 5 · 3 = 1,5 мм
принимаем в соответствии f = 1,5 мм, угол фаски 45°.
Чтобы уменьшить объем точной механической обработки на диске колеса применим выточки, при этом толщина диска в этом месте:
С = 0,5 · b = 23 мм, для свободной выемки заготовки колеса из штампа применяем штамповочные уклоны (7°) и радиусы скругления R = 6? мм
На диаметр вершин зубьев назначаем поле допуска h11, на диаметр посадочного отверстия назначаем поле допуска Н7, на шпоночный паз поле допуска Js9. Предельные отклонения остальных размеров принимаем: для отверстий HI4, валов h14, остальных ± IT 14/2.