Помощь в написании студенческих работ
Антистрессовый сервис

Опасные атмосферные явления. 
Виды

РефератПомощь в написанииУзнать стоимостьмоей работы

В большинстве случаев это туманы охлаждения, причем их делят на радиационные и адвективные. Радиационные туманы образуются над сушей при понижении температуры вследствие радиационного охлаждения земной поверхности, а от нее и воздуха. Наиболее часто они образуются в антициклонах. Адвективные туманы образуются вследствие охлаждения теплого влажного воздуха при его движении над более холодной… Читать ещё >

Опасные атмосферные явления. Виды (реферат, курсовая, диплом, контрольная)

Конец века и начало века были сопряжены с увеличением числа гидрометеорологических проявлений природных катастроф на жизнедеятельность людей, что во многом связано с зарегистрированным потеплением на нашей планете. Число экстремальных явления выпадения интенсивных осадков, наводнений, засух и пожаров возросло за последние 50 лет на 2−4%.В частоте и интенсивности тропических штормов доминируют междесятилетние-многодесятилетние колебания, особенно, в тропической зоне Северной Атлантики и западной части Северо-Тихоокеанского региона. Почти повсеместно уменьшаются площади горных ледников и массы льда, уменьшение площади и толщины морского льда в Арктике в весенний и летний периоды согласуется с повсеместным повышением приземной температуры. Увеличение концентрации парниковых газов, природных и антропогенных аэрозолей, количества облаков и осадков, усиление роли проявлений Эль-Ниньо обуславливают изменение глобального распределения энергии системы «Земля-атмосфера». Теплосодержание мирового океана увеличилось и повышается средний уровень моря со скоростью порядка 1−3 мм/год. Жертвами гидрометеорологических катастроф ежегодно становятся десятки тысяч людей, а материальный ущерб достигает десятков тысяч долларов Вода играет огромное значение для жизни на Земле. Ее нельзя ничем заменить. Она нужна всем и всегда. Но вода может быть и причиной больших бед. Из них особое место занимают наводнения. По данным ООН за последние 10 лет во всем мире от наводнений пострадало 150 млн. человек. Статистика свидетельствует: по площади распространения, суммарному среднему годовому ущербу и повторяемости в масштабах нашей страны наводнения занимают первое место в ряду других стихийных бедствий. Что же касается человеческих жертв и удельного материального ущерба, то — есть ущерба, приходящегося на единицу пораженной площади, то в этом отношении наводнения занимают второе место после землетрясений.

Наводнение — это значительное затопление местности, вызванное подъемом уровня воды в реке, озере, прибрежном районе моря. По причинам, вызывающим подъем уровня воды, различают следующие виды наводнений: половодье, паводок, подпорное, наводнение прорыва, нагонное, при действии подводного источника большой энергии.

Половодье и паводок связаны с прохождением большого для конкретной реки расхода воды.

Половодьем называют ежегодно повторяющееся в один и тот же сезон относительно длительное существенное увеличение водоносности реки. Причина половодья — возрастающий приток воды в речное русло, вызванный весенним таяньем снега на равнинах, таяньем снега и ледников в горах летом, продолжительными муссоновыми дождями. Уровень воды на малых и средних равнинных реках во время весеннего половодья поднимается на 2−5 метров, на крупных, например, на сибирскихна 10−20 метров. При этом реки могут разливаться в ширину до 10−30 км. и более. Наибольший из известных подъемов уровня воды до 60 метров наблюдался в 1876 г. в Китае на реке Янцзы в районе Игана. На малых равнинных реках весеннее половодье длится 15−20 дней, на крупных — до 2−3 месяцев.

Паводок — это сравнительно кратковременный (1−2 суток) подъем воды в реке, вызванный обильными ливневыми дождями или бурным таянием снежного покрова. Паводки могут повторяться по несколько раз в году. Иногда они проходят один за другим, волнами, в зависимости от количества сильных ливневых дождей.

Подпорное наводнение возникает в результате увеличения сопротивления стоку воды при заторах и зажорах льда в начале или конце зимы, при заторах на лесосплавных реках, при частичном или полном перекрытии русла вследствие обвалов при землетрясениях, оползнях.

Нагонные наводнения создаются ветровыми нагонами воды в заливах и бухтах на морском побережье и берегах крупных озер. Могут возникать в устьях крупных рек вследствие подпора стока нагонной ветровой волной. В нашей стране нагонные наводнения наблюдаются на Каспийском и Азовском морях, а также в устьях рек Невы, Западной Двины и Северной Двины. Так в городе Санкт — Петербурге такие наводнения происходят почти ежегодно, особо крупные были в 1824 г. и в 1924 г.

Наводнение прорыва относится к числу наиболее опасных. Оно возникает при разрушении или повреждении гидротехнических сооружений (плотин, дамб) и образовании волны прорыва. Разрушение или повреждение сооружения возможны из-за некачественного строительства, в результате неправильной эксплуатации, при применении взрывных видов оружия, а также при землетрясении.

Наводнения, вызываемые действием мощных импульсных источников в водных бассейнах, также представляют серьезную опасность. Природными источниками являются подводные землетрясения и извержения вулканов, в результате этих явлений в море образуются волны цунами; техническими источниками — подводные ядерные взрывы, при которых формируются поверхностные гравитационные волны. При выходе на берег эти волны не только затапливают местность, но и трансформируются в мощный гидропоток, выбрасывающий на берег суда, разрушающий здания, мосты, дороги. Например, при нашествии и 1896 г. цунами на северо-восточное побережье о. Хонсю (Япония) было смыто свыше 10 тыс. строений, погибло около 26 тыс. человек. Наводнения, вызываемые действием мощных импульсных источников в водных бассейнах, также представляют серьезную опасность. Природными источниками являются подводные землетрясения и извержения вулканов, в результате этих явлений в море образуются волны цунами; техническими источниками — подводные ядерные взрывы, при которых формируются поверхностные гравитационные волны. При выходе на берег эти волны не только затапливают местность, но и трансформируются в мощный гидропоток, выбрасывающий на берег суда, разрушающий здания, мосты, дороги. Например, при нашествии и 1896 г. цунами на северо-восточное побережье о. Хонсю (Япония) было смыто свыше 10 тыс. строений, погибло около 26 тыс. человек.

Опасность паводкового наводнения состоит в том, что оно может быть неожиданным, например, при прохождении ливневых дождей в ночное время. При паводке имеет место сравнительно кратковременный подъем воды, вызываемый ливневыми дождями или бурным таянием снега.

При авариях, сопровождающихся разрушением плотины, запасенная потенциальная энергия водохранилища высвобождается в виде волны прорыва (типа мощного паводка), образующейся при изливе воды через проран (брешь) в теле плотины. Волна прорыва распространяется по речной долине на сотни километров и более. Распространение волны прорыва приводит к затоплению речной долины ниже плотины по течению реки как это было на реках Северного Кавказ в 2002 г. Кроме того, волна прорыва обладает мощным поражающим действием.

Нагонные наводнения, как правило, наблюдаются при прохождении мощных циклонов.

Циклон — это гигантский атмосферный вихрь, Разновидность циклона — тайфун, в переводе с китайского тайфун — очень сильный ветер, в Америке его называют ураганом. Он представляет собой атмосферный вихрь диаметром несколько сотен километров. Давление в центре тайфуна может достигать 900 мбар. Сильное снижение давления в центре и относительно небольшие размеры приводят к образованию значительного градиента давления в радиальном направлении. Ветер в тайфуне достигает 3050 м/с, иногда и более 50 м/с. Тангенциально дующие ветры обычно окружают спокойный участок, называемый глазом тайфуна. Он имеет диаметр 1525 км, иногда до 5060 км. По его границе образуется облачная стена, напоминающая стену вертикального кругового колодца. С тайфунами связаны особенно высокие нагонные наводнения. При прохождении циклона по морю уровень воды в его центральной части повышается Сели — грязевые или грязекаменные потоки, внезапно возникающие в руслах горных рек при больших уклонах дна в результате интенсивных и продолжительных ливней, бурного таяния ледников и снежного покрова, а также при обрушении в русло больших количеств рыхлообломочных материалов. По составу селевой массы различают сели: грязевые, грязекаменные, водокаменные, а по физическим свойствам — несвязные и связные. В несвязных селях транспортирующая среда для твердых включений — это вода, а в связных — водогрунтовая смесь, в которой основная масса воды связана тонкодисперсными частицами. Содержание твердого материала (продуктов разрушения горных пород) в селевом потоке может составлять от 10% до 75%.

В отличие от обычных водных потоков сели движутся, как правило, не непрерывно, а отдельными валами (волнами), что обусловлено их механизмом формирования и заторным характером движения — образованием в сужениях и на поворотах русла скоплений твердого материала с последующим их прорывом. Сели движутся со скоростью до 10 м/c и более. Мощность (высота) селевого потока может достигать до 30 м. Объем выносов составляет сотни тысяч, иногда миллионы м3, а крупность переносимых обломков до 3−4 м в поперечнике при массе до 100−200 тонн.

Обладая большой массой и скоростью движения, сели разрушают промышленные и жилые здания, инженерные сооружения, дороги, линии электропередач и связи.

Молния — это гигантский электрический искровой разряд в атмосфере, проявляющийся обычно яркой вспышкой света и сопровождающим ее громом. Гром — звук в атмосфере, сопровождающий разряд молнии. Вызывается колебаниями воздуха под влиянием мгновенного повышения давления на пути молнии. Наиболее часто молнии возникают в кучево-дождевых облаках.

Молнии делятся на внутриоблачные, т. е. проходящие в самих грозовых облаках, и наземные, т. е. ударяющие в землю. Процесс развития наземной молнии состоит из нескольких стадий.

На первой стадии в зоне, где электрическое поле достигает критического значения, начинается ударная ионизация, создаваемая вначале свободными электронами, всегда имеющимися в небольшом количестве в воздухе, которые под действием электрического поля приобретают значительные скорости по направлению к земле и, сталкиваясь с атомами воздуха, ионизируют их. Таким образом возникают электронные лавины, переходящие в нити электрических разрядов — стримеры, представляющие собой хорошо проводящие каналы, которые, соединяясь, дают начало яркому термоионизированному каналу с высокой проводимостью — ступенчатому лидеру. Движение лидера к земной поверхности происходит ступенями в несколько десятков метров со скоростью 5×107 м/с, после чего его движение приостанавливается на несколько десятков мксек, а свечение сильно ослабевает. В последующей стадии лидер снова продвигается на несколько десятков метров, яркое свечение при этом охватывает все пройденные ступени. Затем снова следует остановка и ослабление свечения. Эти процессы повторяются при движении лидера до поверхности земли со средней скоростью 2×105 м/сек. По мере продвижения лидера к земле напряженность поля на его конце усиливается и под его действием из выступающих на поверхности земли предметов выбрасывается ответный стример, соединяющийся с лидером. На этом явлении основано создание молниеотвода. В заключительной стадии по ионизированному лидером каналу следует обратный, или главный разряд молнии, характеризующийся токами от десятков до сотен тысяч ампер, сильной яркостью и большой скоростью продвижения 1О7.1О8 м/с. Температура канала при главном разряде может превышать 25 000 °C, длина канала молнии 1−10 км, диаметр — несколько сантиметров. Такие молнии называются затяжными. Они наиболее часто бывают причиной пожаров. Обычно молния состоит из нескольких повторных разрядов, общая длительность которых может превышать 1с. Внутриоблачные молнии включают в себя только лидерные стадии, их длина от 1 до 150 км. Вероятность поражения молнией наземного объекта растет по мере увеличения его высоты и с увеличением электропроводности почвы. Эти обстоятельства учитываются при устройстве молниеотвода. В отличие от опасных молний, называемых линейными, существуют шаровые молнии, которые нередко образуются вслед за ударом линейной молнии. Молнии, как линейная, так и шаровая, могут быть причиной тяжелых травм и гибели людей. Удары молний могут сопровождаться разрушениями, вызванными её термическими и электродинамическими воздействиями. Наибольшие разрушения вызывают удары молний в наземные объекты при отсутствии хороших токопроводящих путей между местом удара и землей. От электрического пробоя в материале образуются узкие каналы, в которых создается очень высокая температура, и часть материала испаряется со взрывом и последующим воспламенением. Наряду с этим возможно возникновение больших разностей потенциалов между отдельными предметами внутри строения, что может быть причиной поражения людей электрическим током. Весьма опасны прямые удары молний в воздушные линии связи с деревянными опорами, так как при этом могут возникать разряды с проводов и аппаратуры (телефон, выключатели) на землю и другие предметы, что может привести к пожарам и поражению людей электрическим током. Прямые удары молнии в высоковольтные линии электропроводов могут быть причиной коротких замыканий. Опасно попадание молнии в самолёты. При ударе молнии в дерево могут быть поражены находящиеся вблизи него люди.

Также к атмосферным опасностям относятся туманы, гололёд, молнии, ураганы, бури, смерчи, град, метели, торнадо, ливни и др.

Гололёд — слой плотного льда, образующийся на поверхности земли и на предметах (проводах, конструкциях) при замерзании на них переохлажденных капель тумана или дождя.

Обычно гололёд наблюдается при температурах воздуха от 0 до -3°С, но иногда и более низких. Корка намерзшего льда может достигать толщины нескольких сантиметров. Под действием веса льда могут разрушаться конструкции, обламываться сучья. Гололёд повышает опасность для движения транспорта и людей.

Туман — скопление мелких водяных капель или ледяных кристаллов, или тех и других в приземном слое атмосферы (иногда до высоты в несколько сотен метров), понижающее горизонтальную видимость до 1 км и менее.

В очень плотных туманах видимость может понижаться до нескольких метров. Туманы образуются в результате конденсации или сублимации водяного пара на аэрозольных (жидких или твердых) частицах, содержащихся в воздухе (т. н. ядрах конденсации). Большинство капель тумана имеет радиус 5−15 мкм при положительной температуре воздуха и 2−5 мкм при отрицательной температуре. Количество капель в 1 см³ воздуха колеблется от 50—100 в слабых туманах и до 500—600 в плотных. Туманы по их физическому генезису подразделяются на туманы охлаждения и туманы испарения.

По синоптическим условиям образования различают туманы внутримассовые, формирующиеся в однородных воздушных массах, и туманы фронтальные, появление которых связано с фронтами атмосферными. Преобладают туманы внутримассовые.

В большинстве случаев это туманы охлаждения, причем их делят на радиационные и адвективные. Радиационные туманы образуются над сушей при понижении температуры вследствие радиационного охлаждения земной поверхности, а от нее и воздуха. Наиболее часто они образуются в антициклонах. Адвективные туманы образуются вследствие охлаждения теплого влажного воздуха при его движении над более холодной поверхностью суши или воды. Адвективные туманы развиваются как над сушей, так и над морем, чаще всего в теплых секторах циклонов. Адвективные туманы устойчивее, чем радиационные.

Фронтальные туманы образуются вблизи атмосферных фронтов и перемещаются вместе с ними. Туманы препятствуют нормальной работе всех видов транспорта. Прогноз туманов имеет важное значение в безопасности.

Град — вид атмосферных осадков, состоящих из сферических частиц или кусочков льда (градин) размером от 5 до 55 мм, встречаются градины размером 130 мм и массой около 1 кг. Плотность градин 0,5−0,9 г/см3. В 1 мин на 1 м² падает 500−1000 градин. Продолжительность выпадения града обычно 5−10 мин, очень редко— до 1 ч.

Разработаны радиологические методы определения градоносности и градоопасности облаков и созданы оперативные службы борьбы с градом. Борьба с градом основана на принципе введения с помощью ракет или. снарядов в облако реагента (обычно йодистого свинца или йодистого серебра), способствующего замораживанию переохлажденных капель. В результате появляется огромное количество искусственных центров кристаллизации. Поэтому градины получаются меньших размеров и они успевают растаять еще до падения на землю.

Смерч — это атмосферный вихрь, возникающий в грозовом облаке и затем распространяющийся в виде темного рукава или хобота по направлению к поверхности суши или моря (рис. 23).

В верхней части смерч имеет воронкообразное расширение, сливающееся с облаками. Когда смерч опускается до земной поверхности, нижняя часть его тоже иногда становится расширенной, напоминающей опрокинутую воронку. Высота смерча может достигать 800−1500 м. Воздух в смерче вращается и одновременно поднимается по спирали вверх, втягивая пыль или поду. Скорость вращения может достигать 330 м/с. В связи с тем, что внутри вихря давление уменьшается, то происходит конденсация водяного пара. При наличии пыли и воды смерч становится видимым.

Диаметр смерча над морем измеряется десятками метров, над сушей — сотнями метров.

Смерч возникает обычно в теплом секторе циклона и движется вместо <* циклоном со скоростью 10−20 м/с.

Смерч проходит путь длиной от 1 до 40−60 км. Смерч сопровождается грозой, дождем, градом и, если достигает поверхности земли, почти всегда производит большие разрушения, всасывает в себя воду и предметы, встречающиеся на его пути, поднимает их высоко вверх и переносит на большие расстояния. Предметы в несколько сотен килограммов легко поднимаются смерчем и переносятся на десятки километров. Смерч на море представляет опасность для судов.

Смерчи над сушей называются тромбами, в США их называют торнадо.

Как и ураганы, смерчи опознают со спутников погоды.

Показать весь текст
Заполнить форму текущей работой