Нетрадиционные и возобновляемые источники энергии
В настоящее время строятся установки с параболическими концентраторами мощностью 9—25 кВт. Разрабатываются бытовые установки мощностью 3 кВт. КПД подобных систем около 22—24%, что выше, чем у фотоэлектрических элементов. Коллекторы производятся из обычных материалов: сталь, медь, алюминий, и т. д. без использования кремния солнечной чистоты. В металлургии используется так называемый… Читать ещё >
Нетрадиционные и возобновляемые источники энергии (реферат, курсовая, диплом, контрольная)
На современном этапе развития цивилизации экономический рост в любой стране самым тесным образом связан с функционированием топливно-энергетического комплекса. При этом наиболее конкурентоспособными являются те страны, где энергетические ресурсы используются в максимальном объеме и с высокой степенью эффективности. Экономика России базируется на невозобновляемых углеводородных топливно-энергетических ресурсах, причем, в большей степени, чем в большинстве промышленно развитых стран мира Разведанные запасы традиционных углеводородных ресурсов в России пока позволяют обеспечивать текущие потребности национальной экономики и получать существенные доходы от экспорта энергоносителей. В то же время с каждым годом наблюдается ухудшение горно-геологических условий добычи горючих полезных ископаемых. С начала 90-х годов прошлого века восполнение запасов углеводородных ресурсов отстает от темпов роста их добычи.
В перспективе будут постоянно возрастать требования к защите окружающей среды при сжигании традиционных углеводородных ресурсов. Снижение энергоемкости российской экономики в отличие от ведущих промышленно развитых стран не являлось следствием комплексного проведения энергосберегающих мероприятий. В данном случае сыграли свою роль факторы, связанные со спадом производства, глобальным потеплением климата, повышением доли природного газа в энергетическом балансе и изменением структуры производства ВВП в сторону увеличения доли производства услуг. Производство услуг обычно менее энергоемко по сравнению с производством товаров.
Если разрыв в уровне энергоемкости ВВП будет сохраняться, то это несомненно окажет негативное воздействие на конкурентоспособность российских товаров на мировом рынке.
Уже в ближайшей перспективе все большую часть прироста национальных потребностей России в топливе и энергии необходимо будет обеспечивать за счет мероприятий по энергосбережению. В основных положениях Энергетической стратегии России до 2020 года энергосбережение предполагается в основном осуществлять за счет организационных и технологических мероприятий, направленных на более эффективное использование традиционных видов топливно-энергетических ресурсов.
Следует, однако, подчеркнуть, что энергосбережение — это не только внедрение технологий, позволяющих увеличить эффективность использования традиционных энергоносителей, но также и диверсификация энергобаланса за счет использования альтернативных источников энергии. К сожалению, последнему аспекту в стратегии энергосбережения уделяется недостаточно внимания.
В стратегическом плане среди альтернативных источников энергии наиболее важную роль будут играть возобновляемые источники энергии (ВИЭ). Среди них особый интерес представляют нетрадиционные возобновляемые источники энергии (НВИЭ): энергия солнца, ветра, тепла земли, малых рек, океана, биомассы и торфа.
В данном реферате мы рассмотрим возобновляемые источники энергии, их достоинства и недостатки, и перспективы использования ВИЭ в России.
Глава 1. Характеристики возобновляемых источников энергии и основные аспекты их использования в России
1.1 Возобновляемые источники энергии
Это виды энергии, непрерывно возобновляемые в биосфере Земли. К ним относится энергия солнца, ветра, воды (в том числе сточных вод), исключая применения данной энергии на гидроаккумулирующих электроэнергетических станциях. Энергия приливов, волн водных объектов, в том числе водоемов, рек, морей, океанов. Геотермальная энергия с использованием природных подземных теплоносителей. Низкопотенциальная тепловая энергия земли, воздуха, воды с применением особых теплоносителей. Биомасса, включающая в себя специально выращенные для получения энергии растения, в том числе деревья, а также отходы производства и потребления, за исключением отходов, полученных в процессе использования углеводородного сырья и топлива. А также биогаз; газ, выделяемый отходами производства и потребления на свалках таких отходов; газ, образующийся на угольных разработках.
Теоретически возможна и энергетика, основанная на использовании энергии волн, морских течений, теплового градиента океанов (ГЭС установленной мощностью более 25 МВт). Но пока она не получила распространения.
Способность источников энергии возобновляться не означает, что изобретен вечный двигатель. Возобновляемые источники энергии (ВИЭ) используют энергию солнца, тепла, земных недр, вращения Земли. Если солнце погаснет, то Земля остынет, и ВИЭ не будут функционировать.
1.2 Преимущества возобновляемых источников энергии в сравнении с традиционными
Традиционная энергетика основана на применении ископаемого топлива, запасы которого ограничены. Она зависит от величины поставок и уровня цен на него, конъюнктуры рынка.
Возобновляемая энергетика базируется на самых разных природных ресурсах, что позволяет беречь невозобновляемые источники и использовать их в других отраслях экономики, а также сохранить для будущих поколений экологически чистую энергию.
Независимость ВИЭ от топлива обеспечивает энергетическую безопасность страны и стабильность цен на электроэнергию ВИЭ экологично чисты: при их работе практически нет отходов, выброса загрязняющих веществ в атмосферу или водоемы. Отсутствуют экологические издержки, связанные с добычей, переработкой и транспортировкой ископаемого топлива.
В большинстве случаев ВИЭ-электростанции легко автоматизируются и могут работать без прямого участия человека.
В технологиях возобновляемой энергетики реализуются новейшие достижения многих научных направлений и отраслей: метеорологии, аэродинамики, электроэнергетики, теплоэнергетики, генераторои турбостроения, микроэлектроники, силовой электроники, нанотехнологий, материаловедения и т. д. Развитие наукоемких технологий позволяет создавать дополнительные рабочие места за счет сохранения и расширения научной, производственной и эксплуатационной инфраструктуры энергетики, а также экспорта наукоемкого оборудования.
1.3 Наиболее распространенные возобновляемые источники энергии
И в России, и в мире — это гидроэнергетика. Около 20% мировой выработки электроэнергии приходится на ГЭС.
Активно развивается мировая ветроэнергетика: суммарные мощности ветрогенераторов удваиваются каждые четыре года, составляя более 150 000 МВт. Во многих странах ветроэнергетика занимает прочные позиции. Так, в Дании более 20% электроэнергии вырабатывается энергией ветра.
Доля солнечной энергетики относительно небольшая (около 0,1% мирового производства электроэнергии), но имеет положительную динамику роста.
Геотермальная энергетика имеет важное местное значение. В частности, в Исландии такие электростанции вырабатывают около 25% электроэнергии.
Приливная энергетика пока не получила значительного развития и представлена несколькими пилотными проектами.
1.4 Состояние возобновляемой энергетики в России
Этот вид энергетики представлен в России главным образом крупными гидроэлектростанциями, обеспечивающими около 19% производства электроэнергии в стране. Другие виды ВИЭ в России пока заметны слабо, хотя в некоторых регионах, например на Камчатке и Курильских островах, они имеют существенное значение в местных энергосистемах. Суммарная мощность малых гидроэлектростанций порядка 250 МВт, геотермальных электростанций — около 80 МВт. Ветроэнергетика позиционируется несколькими пилотными проектами общей мощностью менее 13 МВт. Приливная энергетика ограничена возможностями экспериментальной Кислогубской ПЭС.
Глава 2. Обзор возобновляемых источников энергии
2.1 Энергия солнца
Солнечная энергетика — использование солнечного излучения для получения энергии в каком-либо виде. Солнечная энергетика использует возобновляемый источник энергии и в перспективе может стать экологически чистой, то есть не производящей вредных отходов
2.1.1 Способы получения электричества и тепла из солнечного излучения
Получение электроэнергии с помощью фотоэлементов Преобразование энергии в фотоэлементах основано на фотовольтаическом эффекте, который возникает в неоднородных полупроводниковых структурах при воздействии на них солнечного излучения.
Неоднородность структуры фотоэлементов может быть получена легированием одного и того же полупроводника различными примесями (создание p-n переходов) или путём соединения различных полупроводников с неодинаковой шириной запрещённой зоны — энергии отрыва электрона из атома (создание гетеропереходов), или же за счёт изменения химического состава полупроводника, приводящего к появлению градиента ширины запрещённой зоны (создание варизонных структур). Возможны также различные комбинации перечисленных способов. Эффективность преобразования зависит от электрофизических характеристик неоднородной полупроводниковой структуры, а также оптических свойств фотоэлементов, среди которых наиболее важную роль играет фотопроводимость. Она обусловлена явлениями внутреннего фотоэффекта в полупроводниках при облучении их солнечным светом.
гелиотермальная энергетика — нагревание поверхности, поглощающей солнечные лучи и последующее распределение и использование тепла (фокусирование солнечного излучения на сосуде с водой для последующего использования нагретой воды в отоплении или в паровых электрогенераторах).
Солнечный водонагреватель Устройство состоит из короба со змеевиком, бака холодной воды, бака-аккумулятора и труб. Короб стационарно устанавливается под углом 30−50° с ориентацией на южную сторону. Холодная, более тяжелая, вода постоянно поступает в нижнюю часть короба, там она нагревается и, вытесненная холодной водой, поступает в бак-аккумулятор. Она может быть использована для отопления, для душа либо для других бытовых нужд. Дневная производительность на широте 50° примерно равна 2 кВт/ч с квадратного метра. Температура воды в баке-аккумуляторе достигает 60−70°. КПД установки — 40%.
«Солнечный парус» — приспособление, использующее давление солнечного светана зеркальную поверхность для приведения в движение космического аппарата.
Давление солнечного света чрезвычайно мало (на Земле — около 5· 10-6 Н/м) и уменьшается пропорционально квадрату расстояния от Солнца. Но солнечный парус не требует ракетного топлива, и может действовать в течение длительного периода времени, поэтому в некоторых случаях его использование может быть привлекательно. Эффект солнечного паруса использовался несколько раз для проведения малых коррекций орбиты космических аппаратов, в роли паруса использовались солнечные батареи или радиаторы системы терморегуляции. Однако на сегодняшний день ни один из космических аппаратов не использовал солнечный парус в качестве основного двигателя.
Термовоздушные электростанции (преобразование солнечной энергию в энергию воздушного потока, направляемого на турбогенератор).
Солнечные аэростатные электростанции (генерация водяного пара внутри баллона аэростата за счет нагрева солнечным излучением поверхности аэростата, покрытой селективно-поглощающим покрытием). Преимущество — запаса пара в баллоне достаточно для работы электростанции в темное время суток и в ненастную погоду.
2.1.2 Практическое использование солнечной энергии
a) Солнечные коллекторы-концентраторы
Солнечный коллектор — устройство для сбора энергии Солнца, переносимой видимым светом и ближним инфракрасным излучением. Солнечные коллекторы применяются для отопления промышленных и бытовых помещений, для горячего водоснабжения производственных процессов и бытовых нужд. Наибольшее количество производственных процессов, в которых используется тёплая и горячая вода (30—90°C), проходят в пищевой и текстильной промышленности, которые таким образом имеют самый высокий потенциал для использования солнечных коллекторов. В Европе в 2000 г. общая площадь солнечных коллекторов составляла 14,89 млн. мІ, а во всём мире — 71,341 млн. мІ. Солнечные коллекторы — концентраторы могут производить электроэнергию с помощью фотоэлектрических элементов
б) Параболоцилиндрические концентраторы
Параболоцилиндрические концентраторы имеют форму параболы, протянутую вдоль прямой. Параболоцилиндрический зеркальный концентратор фокусирует солнечное излучение в линию и может обеспечить его стократную концентрацию. В фокусе параболы размещается трубка с теплоносителем (масло), или фотоэлектрический элемент. Масло нагревается в трубке до температуры 300—390°C.
Параболоцилиндрические зеркала изготовляют длиной до 50 метров. Зеркала ориентируют по оси север—юг, и располагают рядами через несколько метров. Теплоноситель поступает в тепловой аккумулятор для дальнейшей выработки электроэнергии паротурбинным генератором. С 1984 по 1991 г. в Калифорнии было построено девять электростанций из параболоцилиндрических концентраторов общей мощностью 354 МВт. Стоимость электроэнергии составляла около $ 0,12 за кВт*ч. Германская компания Solar Millennium AG строит во Внутренней Монголии (Китай) солнечную электростанцию. Общая мощность электростанции увеличится до 1000 МВт к 2020 году. Мощность первой очереди составит 50 МВт. В июне 2006 г. в Испании была построена первая термальная солнечная электростанция мощностью 50 МВт. В Испании к 2010 году может быть построено 500 МВт электростанций с параболоцилиндрическими концентраторами. Всемирный банк финансирует строительство подобных электростанций в Мексике, Марокко, Алжире, Египте и Иране. Концентрация солнечного излучения позволяет сократить размеры фотоэлектрического элемента. Но при этом снижается его КПД, и требуется некая система охлаждения.
c) Параболические концентраторы
Параболические концентраторы имеют форму спутниковой тарелки. Параболический отражатель управляется по двум координатам при слежении за солнцем. Энергия солнца фокусируется на небольшой площади. Зеркала отражают около 92% падающего на них солнечного излучения. В фокусе отражателя на кронштейне закреплён двигатель Стирлинга, или фотоэлектрические элементы. Двигатель Стирлинга располагается таким образом, чтобы область нагрева находилась в фокусе отражателя. В качестве рабочего тела двигателя Стирлинга используется, как правило, водород, или гелий.
В феврале 2008 года Национальная лаборатория Sandia достигла эффективности 31,25% в установке, состоящей из параболического концентратора и двигателя Стирлинга.
В настоящее время строятся установки с параболическими концентраторами мощностью 9—25 кВт. Разрабатываются бытовые установки мощностью 3 кВт. КПД подобных систем около 22—24%, что выше, чем у фотоэлектрических элементов. Коллекторы производятся из обычных материалов: сталь, медь, алюминий, и т. д. без использования кремния солнечной чистоты. В металлургии используется так называемый «металлургический кремний» чистотой 98%. Для производства фотоэлектрических элементов используется кремний «солнечной чистоты», или «солнечной градации» с чистотой 99,9999%.В 2001 году стоимость электроэнергии, полученной в солнечных коллекторах составляла $ 0,09—0,12 за кВт*ч. Департамент энергетики США прогнозирует, что стоимость электроэнергии, производимой солнечными концентраторами снизится до $ 0,04—0,05 к 2015—2020 г. Компания Stirling Solar Energy разрабатывает солнечные коллекторы крупных размеров — до 150 кВт с двигателями Стирлинга. Компания строит в южной Калифорнии крупнейшую в мире солнечную электростанцию. До 2010 г. будет построено 20 тыс. параболических коллекторов диаметром 11 метров. Суммарная мощность электростанции может быть увеличена до 850 МВт.
д) Освещение зданий с помощью световых колодцев
Световой колодец (англ. lighttubeorlightpipe) — оборудование для освещения помещений при помощи естественного солнечного света. Световой колодец представляет cобой трубу, передающую солнечный свет с минимальными потерями. Простейший вариант светового колодца — отверстие в потолке. Солнечные колодцы применяются для освещения как промышленных, так и жилых зданий в дневное время суток. Могут применяться в больших промышленных зданиях: складах, цехах, подземных помещениях и т. д.
2.1.3 Достоинства и недостатки солнечной энергетики
Достоинства
*Общедоступность и неисчерпаемость источника.
*Теоретически, полная безопасность для окружающей среды (однако в настоящее время в производстве фотоэлементов и в них самих используются вредные вещества). Существует вероятность того, что повсеместное внедрение солнечной энергетики может изменить альбедо земной поверхности и привести к изменению климата (однако при современном уровне потребления энергии это крайне маловероятно).
Недостатки
*Солнечная электростанция не работает ночью и недостаточно эффективно работает в утренних и вечерних сумерках.
*Дороговизна солнечных фотоэлементов. Вероятно, с развитием технологии этот недостаток преодолеют. В 1990—2005 гг. цены на фотоэлементы снижались в среднем на 4% в год.
*Недостаточный КПД солнечных элементов (вероятно, будет вскоре увеличен).
*Поверхность фотопанелей нужно очищать от пыли и других загрязнений. При их площади в несколько квадратных километров это может вызвать затруднения.
*Эффективность фотоэлектрических элементов заметно падает при их нагреве, поэтому возникает необходимость в установке систем охлаждения, обычно водяных.
*Через 30 лет эксплуатации эффективность фотоэлектрических элементов начинает снижаться.
Вывод
Сегодня солнечная энергетика широко применяется в случаях, когда малодоступность других источников энергии в совокупности с изобилием солнечного излучения оправдывает её экономически. В России солнечная энергетика существует только в виде небольших установок автономного энергоснабжения, не подключенных к энергосистеме и применяемых частными лицами и небольшими организациями.
2.2 Ветровая энергия
Ветер — поток воздуха, движущийся относительно земной поверхности со скоростью свыше 0,6 м/с.
Ветры над большими площадями образуют обширные воздушные течения — муссоны, пассаты, из которых слагается общая и местная циркуляция атмосферы.
Ветроэнергетика — отрасль энергетики, специализирующаяся на использовании энергии ветра — кинетической энергии воздушных масс в атмосфере. Энергию ветра относят к возобновляемым видам энергии, так как она является следствием деятельности солнца.
2.2.1 Получение энергии с помощью ветрогенераторов
Ветрогенератор (ветроэлектрическая установка или сокращенно ВЭУ) — устройство для преобразования кинетической энергии ветра в электрическую.
Ветрогенераторы можно разделить на две категории: промышленные и домашние (для частного использования). Промышленные устанавливаются государством или крупными энергетическими корпорациями. Как правило, их объединяют в сети, в результате получается ветряная электростанция. Её основное отличие от традиционных (тепловых, атомных) — полное отсутствие как сырья, так и отходов. Единственное важное требование для ВЭС — высокий среднегодовой уровень ветра. Мощность современных ветрогенераторов достигает 6 МВт.
2.2.2Типы ветродвигателей
Большинство типов ветродвигателей известны так давно, что история умалчивает имена их изобретателей. Основные разновидности ветроагрегатовделятся на две группы:
1. ветродвигатели с горизонтальной осью вращения (крыльчатые) (2−5);
2. ветродвигатели с вертикальной осью вращения (карусельные: лопастные (1) и ортогональные (6)).
Типы крыльчатых ветродвигателей отличаются только количеством лопастей.
a) Крыльчатые
Для крыльчатых ветродвигателей, наибольшая эффективность которых достигается при действии потока воздуха перпендикулярно к плоскости вращения лопастейкрыльев, требуется устройство автоматического поворота оси вращения. С этой целью применяют крыло-стабилизатор. Распространение крыльчатых ветроагрегатов объясняется величиной скорости их вращения. Они могут непосредственно соединяться с генератором электрического тока без мультипликатора. Скорость вращения крыльчатых ветродвигателей обратно пропорциональна количеству крыльев, поэтому агрегаты с количеством лопастей больше трех практически не используются.
б) Карусельные
Различие в аэродинамике дает карусельным установкам преимущество в сравнении с традиционными ветряками. При увеличении скорости ветра они быстро наращивают силу тяги, после чего скорость вращения стабилизируется. Карусельные ветродвигатели тихоходны и это позволяет использовать простые электрические схемы, например, с асинхронным генератором, без риска потерпеть аварию при случайном порыве ветра. Тихоходность выдвигает одно ограничивающее требование — использование многополюсного генератора работающего на малых оборотах. Такие генераторы не имеют широкого распространения, а использование мультипликаторов — повышающий редуктор не эффективно из-за низкого КПД последних. Еще более важным преимуществом карусельной конструкции стала ее способность без дополнительных ухищрений следить за тем «откуда дует ветер», что весьма существенно для приземных рыскающих потоков. Ветродвигатели подобного типа строятся в США, Японии, Англии, ФРГ, Канаде. Карусельный лопастный ветродвигатель наиболее прост в эксплуатации. Его конструкция обеспечивает максимальный момент при запуске ветродвигателя и автоматическое саморегулирование максимальной скорости вращения в процессе работы. С увеличением нагрузки уменьшается скорость вращения и возрастает вращающий момент вплоть до полной остановки.
c) Ортогональные
Ортогональные ветроагрегаты, как полагают специалисты, перспективны для большой энергетики. Сегодня перед ветропоклонниками ортогональных конструкций стоят определенные трудности. Среди них, в частности, проблема запуска. В ортогональных установках используется тот же профиль крыла, что и в дозвуковом самолете. Самолет, прежде чем «опереться» на подъемную силу крыла, должен разбежаться. Так же обстоит дело и в случае с ортогональной установкой. Сначала к ней нужно подвести энергию — раскрутить и довести до определенных аэродинамических параметров, а уже потом она сама перейдет из режима двигателя в режим генератора.
Отбор мощности начинается при скорости ветра около 5 м/с, а номинальная мощность достигается при скорости 14−16 м/с. Предварительные расчеты ветроустановок предусматривают их использование в диапазоне от 50 до 20 000 кВт. В реалистичной установке мощностью 2000 кВт диаметр кольца, по которому движутся крылья, составит около 80 метров. У мощного ветродвигателя большие размеры. Однако можно обойтись и малыми — взять числом, а не размером. Снабдив каждый электрогенератор отдельным преобразователем можно просуммировать выходную мощность вырабатываемую генераторами. В этом случае повышается надежность и живучесть ветроустановки.
2.2.3 Достоинства и недостатки ветрогенераторов
Достоинства
— Экологически-чистый вид энергии
— Эргономика
— Возобновимая энергия
— Ветровая энергетика — лучшее решение для труднодоступных мест.
Недостатки
— Нестабильность
— Относительно невысокий выход электроэнергии
— Высокая стоимость
— Природные условия
— Шумовое загрязнение
— Пожары
Вывод
Ветроэнергетика является наиболее развитой сферой практического использования природных возобновляемых энергоресурсов. Мировыми лидерами в ветроэнергетике являются США, Германия, Нидерланды, Дания, Индия. В настоящее время в России возникли новые организации, занимающиеся ветроэнергетикой, постепенно налаживается сотрудничество с зарубежными партнерами.
В России, по мнению экспертов, уникальное сочетание благоприятных факторов для развития ветроэнергетики:
— обширная территория;
— богатый и хорошо изученный потенциал ветра (127 ТВтч);
— большие объёмы энергопотребления, связанные с климатическими условиями и структурой экономики.
В настоящее время, прорабатывается и реализуется целый ряд проектов строительства ветроэнергетических станций (ВЭС), мощностью чаще всего от 100 до 300 МВт каждая, практически по всей территории страны, хотя большая часть сконцентрирована на северо-западе и юге европейской части России: Ленинградская область; Псковская область; Ростовская область и Северный Кавказ (Порт Кавказ, Анапа, Темрюк, Карачаево-Черкесия); Оренбург; Остров Русский в Приморье.
Всего в России насчитывается 20−25 проектов ВЭС в разной степени продвижения.
электричество солнце ветер биомасса
2.3 Геотермальная энергия
Геотермальная энергетика — производство электроэнергии, а также тепловой энергии за счёт тепловой энергии, содержащейся в недрах земли. Обычно относится к альтернативным источникам энергии, возобновимым энергетическим ресурсам.
Тепловая энергия недр образуется за счет расщепления радионуклидов в середине планеты. Этот экологически чистый и постоянно обновляемый источник энергии может быть использован в регионах с вулканическими проявлениями и геологическими аномалиями, когда вода вблизи от поверхности земли нагревается до температуры кипения, в результате чего в виде водяного пара может подаваться на турбины для производства тока. Горячая вода естественных источников (гейзеров) может быть использована непосредственно.
Однако тепло Земли очень «рассеянно», и в большинстве районов мира человеком может использоваться с выгодой только очень небольшая часть энергии. Из них пригодные для использования геотермальные ресурсы составляют около 1% общей теплоемкости верхней 10-километровой толщи земной коры.
Источники геотермальной энергии
по классификации Международного энергетического агентства делятся на 5 типов:
— месторождения геотермального сухого пара — сравнительно легко разрабатываются, но довольно редки; тем не менее, половина всех действующих в мире ГеоТЭС использует тепло этих источников;
— источники влажного пара (смеси горячей воды и пара) — встречаются чаще, но при их освоении приходится решать вопросы предотвращения коррозии оборудования ГеоТЭС и загрязнения окружающей среды (удаление конденсата из-за высокой степени его засоленности);
— месторождения геотермальной воды (содержат горячую воду или пар и воду) — представляют собой так называемые геотермальные резервуары, которые образуются в результате наполнения подземных полостей водой атмосферных осадков, нагреваемой близко лежащей магмой;
— сухие горячие скальные породы, разогретые магмой (на глубине 2 км и более) — их запасы энергии наиболее велики;
— магма, представляющая собой нагретые до 1300 °C расплавленные горные породы.
Опыт, накопленный различными странами (в том числе и Россией), относится в основном к использованию природного пара и термальных вод, которые остаются пока наиболее реальной базой геотермальной энергетики. Однако ее крупномасштабное развитие в будущем возможно лишь при освоении петрогеотермальных ресурсов, т. е. тепловой энергии горячих горных пород, температура которых на глубине 3−5 км обычно превышает 100 °C.
Для использования геотермальной энергии используют высокотемпературные геотермальные энергетические и тепловые станции (ГеоЭС) и низкотемпературные тепловые насосы (ТН).
2.3.1 Геотермальные электростанции
Способы использования геотермальной энергии
Существует два основных способа использования геотермальной энергии: прямое использование тепла и производство электроэнергии. Прямое использование тепла является наиболее простым и поэтому наиболее распространенным способом. Практика прямого использования тепла широко распространенна в высоких широтах на границах тектонических плит, например в Исландии и Японии. Водопровод в таких случаях монтируется непосредственно в глубинные скважины. Получаемая горячая вода применяется для подогрева дорог, сушки одежды и обогрева теплиц и жилых строений. Способ производства электричества из геотермальной энергии очень похож на способ прямого использования. Единственным отличием является необходимость в более высокой температуре (более 1500С).
Принципы работы
В настоящее время существует три схемы производства электроэнергии с использованием гидротермальных ресурсов: прямая с использованием сухого пара, непрямая с использованием водяного пара и смешанная схема производства (бинарный цикл). Тип преобразования зависит от состояния среды (пар или вода) и ее температуры. Первыми были освоены электростанции на сухом пару. Для производства электроэнергии на них пар, поступающий из скважины, пропускается непосредственно через турбину/генератор. Электростанции с непрямым типом производства электроэнергии на сегодняшний день являются самыми распространенными. Они используют горячие подземные воды (температурой до 182 0С) которая закачивается при высоком давлении в генераторные установки на поверхности. Геотермальные электростанции со смешанной схемой производства отличаются от двух предыдущих типов геотермальных электростанций тем, что пар и вода никогда не вступают в непосредственный контакт с турбиной/генератором.
Геотермальные электростанции, работающие на сухом пару
Паровые электростанции работают преимущественно на гидротермальном пару. Пар поступает непосредственно в турбину, которая питает генератор, производящий электроэнергию. Использование пара позволяет отказаться от сжигания ископаемого топлива (также отпадает необходимость в транспортировке и хранении топлива). Это старейшие геотермальные электростанции. Первая такая электростанция была построена в Лардерелло (Италия) в 1904 году, она действует и в настоящее время. Паровая технология используется на электростанции «Гейзерс» в Северной Калифорнии — это самая крупная геотермальная электростанция в мире.
Геотермальные электростанции на парогидротермах
Для производства электричества на таких заводах используются перегретые гидротермы (температура выше 182°С). Гидротермальный раствор нагнетается в испаритель для снижения давления, из-за этого часть раствора очень быстро выпаривается. Полученный пар приводит в действие турбину. Если в резервуаре остается жидкость, то ее можно выпарить в следующем испарителе для получения еще большей мощности.
Геотермальные электростанции с бинарным циклом производства электроэнергии
Большинство геотермальных районов содержат воду умеренных температур (ниже 2000С). На электростанциях с бинарным циклом производства эта вода используется для получения энергии. Горячая геотермальные вода и вторая, дополнительная жидкость с более низкой точкой кипения, чем у воды, пропускаются через теплообменник. Тепло геотермальной воды выпаривает вторую жидкость, пары которой приводят в действие турбины. Так как это замкнутая система, выбросы в атмосферу практически отсутствуют. Воды умеренной температуры являются наиболее распространенным геотермальным ресурсом, поэтому большинство геотермальных электростанций будущего будут работать на этом принципе.
2.3.2 Тепловые насосы
Одним их приоритетных направлений развития альтернативной энергетики в мире является освоение низкопотенциальной энергии Земли (тепла грунта, грунтовых вод и поверхностных водоемов, аккумулированное в поверхностных слоях земной коры).
Низкопотенциальные геотермальные ресурсы (НГР) могут использоваться для обеспечения теплои хладоснабжения (кондиционирования), горячего водоснабжения зданий и сооружений всех типов, а также энергоснабжения технологических процессов. Технология их освоения заключается в использовании систем извлечения энергии, ее обработки и доставки теплоносителя к потребителю. Главным компонентом подобных систем являются геотермальные тепловые насосы (ГТН).
Геотермальные тепловые насосы представляют собой устройства, осуществляющие обратный термодинамический цикл, благодаря чему низкопотенциальная энергия переносится на более высокий уровень.
Помимо геотермального тепла, источником энергии для тепловых насосов может служить тепло сточных и оборотных вод, что позволяет параллельно решать проблему эксплуатации вторичных энергоносителей.
На сегодняшний день используются парокомпрессионные геотермальные тепловые насосы (ПТН), работающие на хладонах, и адбсорционные геотермальные тепловые насосы (АТН), в которых рабочими веществами выступают вода и водный раствор бромистого лития. Однако, в связи с меньшей эффективностью и сложностью конструкции, АТН не получили распространения.
Принцип работы теплового насоса
Тепловой насос — это устройство, которое работает по принципу обратной холодильной машины, передавая тепло от низкотемпературного источника к среде с более высокой температурой, например системе отопления вашего дома.
Каждая теплонасосная система имеет следующие основные компоненты:
— бак-аккумулятор — теплоизолированная ёмкость для воды, предназначена для накопления горячей воды, с целью выравнивания тепловых нагрузок системы отопления и горячего водоснабжения, а также увеличивает срок работы теплового насоса.
— первичный грунтовый контур — закрытая циркуляционная система, которая состоит из испарителя (теплового насоса), циркуляционного насоса грунтового контура, трубопроводов, и служит для передачи тепла от грунта к тепловому насосу.
— вторичный грунтовый контур — закрытая система, которая состоит с конденсатора (теплового насоса), циркуляционного насоса, трубопроводов, и служит для передачи тепла от теплового насоса к системе отопления в доме.
Принцип работы теплового насоса похож к работе обыкновенного холодильника, только наоборот. Холодильник отбирает тепло от пищевых продуктов и переносит его наружу. Тепловой насос переносит тепло, накопленное в почве, земле, водоеме, подземных водах или воздухе, в Ваш дом. Как и холодильник, этот энергоэффективный теплогенератор имеет следующие основные элементы:
— конденсатор (теплообменник, в котором происходит передача тепла от хладагента к элементам системы отопления помещения: низкотемпературным радиаторам, фанкойлам, теплому полу);
— дроссель (устройство, которое служит для снижения давления, температуры и, как следствие, замыкания теплофикационного цикла в тепловом насосе);
— испаритель (теплообменник, в котором происходит отбор тепла от низкотемпературного источника к тепловому насосу);
— компрессор (устройство, в которое повышает давление и температуру паров хладагента).
Виды теплосъема тепловым насосам
1) Земляной горизонтальный контур Использует энергию, накопленную на поверхности земли (глубина от 1 м до 2,5 м). Летом Тепловой насос забирает лишнее тепло из дома и переносит его под землю. Зимой Тепловой насос забирает накопленное за лето тепло и отдаёт обратно в дом
2) Земляной вертикальный контур Использует энергию, накопленную в глубине земли (глубина 30−200 м). Бурится вертикальная скважина и в неё опускается замкнутая труба, по которому течёт теплоноситель. Тепло уносится грунтовыми водами летом и подается зимой.
3) Подземные воды Использует энергию, грунтовой воды. Грунтовые воды круглогодично имеют температуру +5+12 С. Даже в самый сильный мороз Вы получите «бездонный» источник тепла, а летом — приятную прохладу
4) Энергия водоёма Использует энергию, накопленную в летний период водоёма. Энергия водоёма имеет зимой температуру +3 +5 С. Даже в самый сильный мороз Вы получите «бездонный» источник тепла, а летом — приятную прохладу.
Преимущества и недостатки теплового насоса
Преимущества
— Высокая экономичность.
— Не требует постоянного сервисного обслуживани.
— Длительный срок эксплуатации (до 50 лет).
— Экологически чистая и безопасная систем.
— Возможность использования в одной установке нескольких систем (отопление, горячее водоснабжение, кондиционирование.
— Низкий уровень шумов.
— Срок окупаемости установки от 3-х до 5-ти лет.
Недостатки
— Высокая начальная стоимость оборудования и установки внешнего коллектора или скважины забора воды.
2.3.3 Преимущества и недостатки геотермальной энергетики
Основной недостаток геотермальной энергии — необходимость обратной закачки отработанной воды в подземный водоносный горизонт. Другой недостаток этой энергии заключается в высокой минерализации термальных вод большинства месторождений и наличии в воде токсичных соединений и металлов, что в большинстве случаев исключает возможность сброса этих вод в расположенные на поверхности природные водные системы. Отмеченные выше недостатки геотермальной энергии приводят к тому, что для практического использования теплоты геотермальных вод необходимы значительные капитальные затраты на бурение скважин, обратную закачку отработанной геотермальной воды, а также на создание коррозийно-стойкого теплотехнического оборудования.
Вывод
Всего в России можно выделить три основные зоны, в зависимости от типа и возможностей использования геотермальной энергии:
Камчатка и Курилы — наиболее «горячие"точки;
Северный Кавказ и зона, прилегающая к Байкалу, где возможно использование глубинных вод для теплоснабжения;
Потенциально обширная территория, охватывающая 2/3 России, где возможно использование низкопотенциальной энергии с помощью тепловых насосов.
Принципом теплового насоса, используемым в большом масштабе, можно назвать и петротермальную энергетику, использующую энергию фонового теплового потока, исходящего из недр Земли.
Геотермальная энергетика России ориентирована как на строительство «гигантов» (крупных объектов), так и на использование геотермальной энергии для отдельных домов, школ, больниц, частных магазинов и других объектов мощностью 0,1−0,4 МВт с использованием геотермальных циркуляционных систем.
В настоящий момент в России разведано около полусотни геотермальных месторождений. Для дальнейшего развития геотермальной энергетики необходимы инвестиции и поддержка государства.
Введение
геотермальной энергетики в энергобаланс страны позволит, с одной стороны, повысить энергетическую безопасность, с другой — снизить вредное воздействие на экологическую обстановку по сравнению с традиционными источниками.
2.4 Биогазовая энергетика
Биогаз — газ, получаемый метановым брожением биомассы. В результате биохимической реакции, в которой принимают участие метановые бактерии, выделяется биогаз, его основными составляющими являются: метан (СН4, около 70%), углекислый газ (СО2, около 30%) и некоторое количество H2, H2S, N2. Теплотворная способность данной газовой смеси от 5000 до 8000 Ккал/м3, в зависимости от состава органических отходов.
2.4.1 Получение биогаза
Суть процесса получения биогаза в биореакторе сводится к следующему:
· загрузка реактора измельченными органическими отходами,
· создание условий для начала химической реакции разложения органики,
· отвод полученного биогаза и его накопление с одновременным созданием необходимого рабочего давления,
· вывод твердых фракций за пределы реактора, полученных в результате реакции разложения.
Теперь более подробно о каждом процессе.
2.4.2 Сырьё:
навоз и помет птиц, растительные и молочные отходы, энергетические культуры (силосная кукуруза).
Следует отметить, что для большей эффективности, растительные отходы следует измельчать до минимально возможных размеров и готовить смесь.
Пропорциональное смешение органики с целью повышения объема выхода биогаза:
· навоз КРС + помет птиц дает увеличение выхода биогаза на 6%
· навоз КРС + куриный помет + навоз свиней (1: 0,5: 0,5) — на 11%
· навоз КРС + свиной — на 7%
· навоз КРС + сосняки (опавшая хвоя) — на 5%
· надо заметить, что птичий помет в чистом виде не может перерабатываться в биогаз в обычном реакторе поскольку содержат высокий уровень кислот, при котором метановые бактерии погибают (на птицефабриках дополнительно используют реактор гидролиза)
· наличие большого количества мочи не способствует увеличению выхода биогаза, зато, сказывается на азотонасыщенности конечных твердых фракций; вода так же является лишь источником разжижения массы для ускорения реакции и ее (воды) объем на увеличении количества биогаза не отражается (достаточная влажность биосырья должна составлять 60−70%).
В принципе, процесс биореакции в закрытом пространстве (анаэробное сбраживание), со временем, начинается сам по себе, но существенно замедляется при низких температурах воздуха. Наиболее оптимальная температура для поддержания биологической активности метановых бактерий 30−400С. Для искусственного ускорения начала процесса применяют подогрев биомассы с помощью обычного обогревателя-змеевика до температуры +380С.
Метантек (биореактор) с целью поддержания температурного режима тщательно теплоизолируют.
Для увеличения скорости брожения и образования биогаза применяют механическоеперемешивание биомассы в биогазовой установке. Этот прием позволяет существенно сэкономить на объеме реактора, так как при отсутствии данной процедуры для получения того же объема биогаза потребуется реактор больших размеров.
На процесс брожения влияют и химические показатели, в частности, уровнь РН: если он высок, процесс существеннно замедляется либо вовсе останавливается.
Замедлению реакции сбраживания способствует наличие в биомассе сырья, содержащего антибиотики, консерванты и остатки моющих средств. Поэтому отходы жизнедеятельности человека малопригодны для биогазовых реакторов.
С целью ускорения биопроцесса в метантеках применяются стимулирующие добавки.
В примитивных биогазовых установках биогаз скапливается под тяжелой крышкой реактора, доводится до определенного давления и после отводится в систему газопотребления. В качестве газгольдера на подворье может служить и внешняя установка наподобие кузнечных мехов. Для поддержания необходимого давления в данной конструкции используется гнет.
2.4.3 Типы биогазовых установок
По типу конструкции биогазовые установки бывают следующих типов:
— без обогрева и без промешивания ферментируемой органики в реакторе;
— без обогрева, но с промешиванием органической массы;
— с обогревом и промешиванием;
— с обогревом, с промешиванием и с приборам, позволяющими контролировать и управлять процесс ферментации.
Биогазовая установка первого типа подходит для небольшого хозяйства и рассчитана на психрофильные бактерии: внутренний объем биореактора 1−10 м3 (переработка 50−200 кг навоза за сутки), минимальная комплектация, полученный биогаз не хранится — сразу поступает к потребляющим его бытовым приборам. Такую установку можно использовать только в южных районах, она рассчитана на внутреннюю температуру 5−20°С. Удаление ферментированной (сброженной) органики производится одновременно с загрузкой новой партии, отгрузка выполняется в емкость, объем которой должен быть равным или больше внутреннего объема биореактора. Содержимое емкости храниться в ней до введения в удобряемую почву.
Конструкция второго типа также рассчитана на небольшое хозяйство, ее производительность несколько выше биогазовых установок первого типа — в ее оснащение входит перемешивающее устройство с ручным или механическим приводом.
Третий тип биогазовых установок оснащен помимо промешивающего устройства принудительным обогревом биореактора, водогрейный котел при этом работает на альтернативном топливе, производимом биогазовой установкой. Выработкой метана в таких установках занимаются мезофильные и термофильные бактерии, в зависимости от интенсивности обогрева и уровня температуры в реакторе.
Последний тип биогазовых установок наиболее сложен и рассчитан на нескольких потребителей биогаза, в конструкцию установок вводятся электроконтактный манометр, предохранительный клапан, водогрейный котел, компрессор (пневматическое промешивание органики), ресивер, газгольдер, газовый редуктор, отвод для загрузки биогаза в транспорт. Эти установки работают непрерывно, допускают установку любого из трех температурных режимов благодаря точно настраиваемому обогреву, отбор биогаза выполняется в автоматическом режиме.
2.4.4 Достоинства и недостатки биогаза
Биогазовая отрасль производит не один конечный продукт, а целый спектр дорогих и важных продуктов и без ущерба экологии:
Достоинства.
* Тепло — от охлаждения генератора или от сжигания биогаза. Полученное тепло используют для обогрева помещений.
* Электричество — из 1 мі биогаза можно выработать около 2 кВт электроэнергии.
* Биогаз — биогаз можно сжимать, накапливать, перекачивать излишки, продавать. Существуют модели автомобилей, которые используют в качестве топлива газ. Эти машины могут без дополнительной адаптации заправляться биометаном. Сейчас появляются первые заправочные биогазовые станции. В Швеции и Швейцарии биометан уже долгое время используется в городских автобусах (Volvo, Skania) и грузовых машинах.
* Удобрения — удобрения, получаемые в виде переброженной массы являются экологически чистыми, жидкими удобрениями, лишенными нитритов, семян сорников, болезнетворной микрофлоры, специфических запахов. Расход таких удобрений составляет 1−5 т вместо 60 т необработанного навоза для обработки 1 га земли. В полученное удобрение могут добавляться фосфорные, калийные или другие удобрения, в зависимости от культуры, под которые будут использоваться удобрения. Испытания показывают увеличение урожайности в 2−4 раза.
* Утилизация органических отходов — биогазовые установки могут устанавливаться как очистные сооружения на фермах, птицефабриках, спиртовых заводах, сахарных заводах, мясокомбинатах, что повышает санитарно-гигиеническое состояние этих предприятий.
* Решение экологических проблем — производство биогаза позволяет предотвратить выбросы метана в атмосферу, снизить применение химических удобрений, сократить нагрузку на грунтовые воды.
Недостатки
Складирование биогаза в закрытых ёмкостях повышает требования к безопасности при использовании биогазовых установок.
Вывод
Агропромышленный комплекс России сегодня сталкивается с проблемой утилизации огромного количества биологических отходов — чаще всего они просто вывозятся с территорий ферм и складируются. Стало происходить заметное загрязнение прилегающих к фермам рельефа почв, водоемов, лесов и пастбищ. В итоге наносится серьезный экономический, экологический и социальный ущерб не только сельскохозяйственным землям, но и жителям близлежащих населенных пунктов.
Развитие биогазовой энергетики в сельскохозяйственных регионах России может стать не только возможным решением проблемы отходов, но и решением энергетических проблем сельского хозяйства. Кроме того, биогазовая энергетика — это еще и источник дешевых и доступных комплексных органических удобрений, которые образуются как субпродукт при производстве биогаза.
Заключение
Перспективы развития возобновляемых источников энергии и энергоэффективности в России По оценкам, технический потенциал возобновляемых источников энергии составляет порядка 4,6 млрд. т у.т. в год, то есть в пять раз превышает объем потребления всех топливно-энергетических ресурсов России, а экономический потенциал определен в 270 млн. т у.т. в год, что немногим более 25 процентов от годового внутреннего потребления энергоресурсов в стране.
Важно отметить, что экономический потенциал возобновляемых источников энергии существенно увеличился, и будет продолжать расти в связи с подорожанием традиционного топлива.
Помимо неистощаемости и экологической чистоты ВИЭ, которые являются очевидными преимуществами этих видов энергии, существует ряд других причин обусловливающих необходимость их интенсивного использования.
Энергетическая стратегия России до 2020 года подчеркивает, что необходимость использования ВИЭ определяется их существенной ролью при решении следующих проблем:
— обеспечение устойчивого теплои электроснабжения населения и производства в зонах децентрализованного энергоснабжения, в первую очередь в районах Крайнего Севера и приравненных к ним территориях;
— обеспечение гарантированного минимума энергоснабжения населения и производства в зонах централизованного энергоснабжения, испытывающих дефицит энергии, предотвращение ущерба от аварийных и ограничительных отключений;
— снижение экологической нагрузки от деятельности топливно-энергетического комплекса.
В настоящее время одними из ключевых факторов, сдерживающих развитие ВИЭ в России, являются дефицит инвестиций для реализации необходимых проектов, а также недостатки нормативно-правовой базы.
1. Лятхер, В. М. Развитие ветроэнергетики / В. М. Лятхер //Журнал «Малая энергетика». — 2006. — № 1−2 (4−5).
2. Шпильрайн Э. Э. Проблемы и перспективы возобновляемой энергии в России
3. Щелкунов Г. Солнечная энергетика. Глобальные проекты // Электроника. НТБ. 2002. № 6.
4. Производство и использование биомассы // Энергосбережение. 2007. № 5.
5. Твайделл Дж., Уэйр А. Возобновляемые источники энергии: Пер. с англ. — М. Энергоатомиздат. 1990. — 392 с.
6. Ресурсы Интернета. Тема реферата: «Нетрадиционные и возобновляемые источники энергии»