Новые высокопрочные и сверхпрочные материалы с высокой пластичностью на основе железа
Для придания стали высоких механических свойств после аустенизации ее подвергают 80%-ной деформации (прокатка, волочение, гидроэкструзия и т. д.) при 250…550єС (ниже температуры рекристаллизации). При деформации аустенит претерпевает наклеп и обедняется углеродом, что приводит к повышению точек МН и МД. При этом точка МД становится выше 20єС. При охлаждении, следовательно, аустенит становится… Читать ещё >
Новые высокопрочные и сверхпрочные материалы с высокой пластичностью на основе железа (реферат, курсовая, диплом, контрольная)
НОВЫЕ ВЫСОКОПРОЧНЫЕ И СВЕРХПРОЧНЫЕ МАТЕРИАЛЫ С ВЫСОКОЙ ПЛАСТИЧНОСТЬЮ НА ОСНОВЕ ЖЕЛЕЗА.
Высокая конструктивная прочность изделия достигается только тогда, когда оно изготовлено из материала, обладающего большой прочностью и высоким сопротивлением хрупкому разрушению. Этим требованиям в значительной степени отвечают без углеродистые (?0.03% С) мартенситно-стареющие стали, углерод и азот в составе которых — вредные примеси, снижающие пластичность и вязкость стали. Эти стали упрочняются закалкой и последующим старением .
Следует вспомнить, что мартенсит является упорядоченным пересыщенным твердым раствором внедрения углерода в б — Fe: содержание углерода в мартенсите может быть таким же, как и в исходном аустените, т. е. может достигнуть 2,14%.
Мартенситное превращение происходит только в том случае, если быстрым охлаждением аустенит переохлаждён до низких температур, при которых диффузионные процессы становятся невозможными. Мартенситное превращение носит бездиффузионный характер, т. е. не сопровождается диффузионным перераспределением атомов углерода и железа в решетке аустенита.
Мартенситное превращение осуществляется путем сдвига и не сопровождается изменением состава твердого раствора. Сдвиговой механизм превращения отличается закономерным кооперативным направленным смещением атомов в процессе перестройки решетки. Отдельные атомы смещаются друг относительно друга на расстояния, не превышающие межатомные.
Пока на границе мартенсита и аустенита существует сопряженность решеток (когерентность), скорость образования и роста кристаллов мартенсита очень высока (~ 1000 м/с).
Вследствие разности удельных объемов мартенсита и аустенита увеличиваются упругие напряжения в области когерентного сопряжения, что, в конечном счете, приводит к пластической деформации и образованию межфазной границы с неупорядоченным расположением атомов.
При переохлаждении аустенита до температуры, соответствующей точке МН (МS в иностранной литературе) аустенит превращается в мартенсит. Таким образом, МH — температура начала мартенситного превращения. Если непрерывное охлаждение стали прекратить, то превращение остановится. Чем ниже охладить аустенит, тем больше образуется мартенсита.
По достижения определенной для каждой стали температуры (MK) превращение аустенита в мартенсит прекращается. Эту температуру окончания мартенситного превращения обозначают MK. Положение MH и MK не зависит от скорости охлаждения, а обусловлено химическим составом аустенита: чем больше в аустените углерода, тем ниже MH и MK. Все легированные элементы, растворенные в аустените, за исключением Co и Al, понижают MH и MK (рис.1).
Если задержать на некоторое время охлаждение при температуре, лежащей ниже температуры, соответствующей MH, например 20єC, то, аустенит, сохранившийся не превращенным при охлаждении до этой температуры, становится устойчивым (Аост). Это явление стабилизации проявляется более сильно в интервале температур MH…MK и зависит от температуры, при которой задержалось охлаждение. Температура, ниже которой проявляется этот эффект стабилизации, обозначается MС.
1.1Мартенситно — стареющие стали.
Мартенситно — стареющие стали представляют собой сплавы Fe с Ni (8−20% масс.), а часто и с Co. Для протекания процесса старения в мартенсите, сплавы дополнительно легируют Ti, Al, Mo, и другими элементами. Высокая прочность мартенситностареющих сталей обязана образованию твёрдого раствора Fe и легирующих элементов (Ni, Co, Mo, Al и другие), мартенситному превращению, сопровождающаяся фазовым наклепом и, главным образом, старению мартенсита, при котором происходит образование сегрегаций, метастабильных и стабильных фаз типа Fe3 Mo, Ni3 Mo, Ni3 Ti, Ni Al и других. Высокое сопротивление хрупкому разрушению объясняется пластичностью и вязкостью без углеродистого мартенсита («мартенсит замещения «) .
Широкое применение в технике получила высокопрочная мартенситно-стареющая сталь Н18К9 М5Т (?0,03%С, ~18%Ni, ~9%Co, ~5%Mo, ~0,6%Ti).
Сталь закаливают на воздухе от 820−850єС. После закалки, сталь состоит из безуглеродистого массивного (реечного) мартенсита, имеющего наряду с низкой прочностью хорошие пластичность и вязкость: у0.2 = 950…1100 МПа; ув = 1100…1200Мпа; д = 18…20%; ш = 70…80%; и KCU = 2,0…2,5 МДж/м2. Таким образом, характерной особенностью безуглеродистого мартенсита являются высокое значение пластичности и вязкости. В закаленном состоянии мартенситно-стареющие стали, легко обрабатываются резанием, хорошо свариваются.
Старение при 480−520єС повышает прочность мартенситно-стареющих сталей, но понижает пластичность и вязкость. Механические свойства после старения:
у0.2 = 1800…2000 Мпа; ув = 1900…2100 Мпа; д = 8…12%; ш = 40…60%; KCU = 0,4…0,6 МДж/м2; HRС = 52.
Кроме стали Н18К8М5Т нашли применение менее легированные мартенситно-стареющие стали: Н12К9М3Г2, Н10Х11М2Т и т. д.
Мартенситно-стареющие стали после закалки и старения имеют удельную вязкость того же порядка что и другие высокопрочные стали (KCU = 0,35…0,6 МДж/м2). Однако порог хладноломкости у мартенситно-стареющих сталей на 60…80K ниже, а работа распространения трещины КСТ значительно выше, чем у углеродистых высокопрочных сталей (0,25…0,3 МДж/м2 вместо 0,06…0,08 МДж/м2). Вязкость разрушения у мартенситно-стареющих сталей при ув = 1800…2000 Мпа составляет 50…70 Мпа· м в степени (½), тогда как у углеродосодержащих легированных сталей при том же значении у0.2 = 20…30 Мпа· м½.
Мартенситно-стареющие стали, имеют высокий предел упругости, поэтому могут применяться для изготовления пружин. При низких температурах прочностные свойства, как обычно, возростают, но при сохранении повышенной пластичности и вязкости, что позволяет их использовать при низких температурах. Эти стали с 11−12% Cr относятся к коррозионно-стойким. Их применяют в авиационной промышленности, в ракетной технике, судостроении, приборостроении для упругих элементов, в криогенной технике и т. д. Но эти стали дорогостоящие.
1.2. Высокопрочные стали с высокой пластичностью.
Метастабильные высокопрочные аустенитные стали называют ТRIP — сталями (TRIP — от начальных букв слов Transformation Induced Plasticity) или ПНП — сталями (пластичность, наведенная превращением). Эти стали содержат 8…14% Cr, 8…32% Ni, 0,5…2,5%Mn, 2…6%Mo, до 2% Si. Пример марочного состава: 30Х9Н8М4Г2С2, 25Н25М4Г1. Отличительной особенностью сталей является то, что после аустенизации при 980…1200єС температуры мартенситного превращения МН и МД (начало образования мартенсита деформации), находятся ниже 20єС, т. е. стали имеют аустенитную структуру.
Для придания стали высоких механических свойств после аустенизации ее подвергают 80%-ной деформации (прокатка, волочение, гидроэкструзия и т. д.) при 250…550єС (ниже температуры рекристаллизации). При деформации аустенит претерпевает наклеп и обедняется углеродом, что приводит к повышению точек МН и МД. При этом точка МД становится выше 20єС. При охлаждении, следовательно, аустенит становится метастабильным и при его дальнейшем деформировании происходит мартенситное превращение. Поэтому при испытании на растяжение участки аустенита, где локализуется деформация, претерпевают мартенситное превращение, что приводит к местному упрочнению, и деформация сосредотачивается в соседних (неупрочненных) объемах аустенита. Следовательно, превращение аустенита в мартенсит исключает возможность образования «шейки», что объясняет высокую пластичность ПНП-сталей.
Механические свойства ПНП-сталей:
у0.2 = 1400…1500 Мпа; ув = 1500…1700 Мпа; д = 50…60%.
Характерным для этой группы сталей является высокое значение вязкости разрушения и предела выносливости у-1. При одинаковой или близкой прочности ПНП-стали пластичнее, а при равной пластичности имеют более высокий предел текучести, чем мартенситно-стареющие стали или легированные высокопрочные стали.
Широкому применению ПНП-сталей препятствует их высокая легированность, необходимость использования мощного оборудования для деформации при сравнительно низких температурах, трудность сварки, анизотропия свойств деформированного металла и т. д.
Эти стали, используют для изготовления высоконагруженных деталей: проволоки, тросов, крепежных деталей и др.