Помощь в написании студенческих работ
Антистрессовый сервис

Разработка технологического процесса термообработки детали из стали марки 15Х

КонтрольнаяПомощь в написанииУзнать стоимостьмоей работы

Хром является легирующим элементом, он широко применяется для легирования. Содержание его в конструкционных сталях составляет 0,7 — 1,1%. Присадка хрома, образующего карбиды, обеспечивает высокую твердость и прочность стали. После цементации и закалки получается твердая и износоустойчивая поверхность и повышенная по сравнению с углеродистой сталью прочностью сердцевины. Эти стали применяются для… Читать ещё >

Разработка технологического процесса термообработки детали из стали марки 15Х (реферат, курсовая, диплом, контрольная)

Разработка технологического процесса термической обработки детали

Разработать технологический процесс термической обработки стальной детали: Поршневой палец.

Марка стали: Ст. 15Х Твердость после окончательной термообработки:

HRC 56−64 (пов.), НВ 212 (серд.)

Цель задания: практическое ознакомление с методикой разработки технологического процесса термической обработки деталей (автомобилей, тракторов и сельскохозяйственных машин); приобретение навыков самостоятельной работы со справочной литературой, более глубокое усвоение курса, а также проверка остаточных знаний материала, изучаемого в 1 семестре.

Порядок выполнения задания:

Расшифровать марку заданной стали, описать ее микроструктуру, механические свойства до окончательной термообработки и указать, к какой группе по назначению она относится.

Описать характер влияния углерода и легирующих элементов заданной стали на положение критических точек Ас1 и Ас3, Асm. Рост зерна аустенита, закаливаемость и прокаливаемость, на положение точек Мн и Мк, на количество остаточного аустенита и на отпуск. При отсутствии легирующих элементов в заданной марке стали описать влияние постоянных примесей (марганца, кремния, серы, фосфора, кислорода, азота и водорода) на ее свойства.

Выбрать и обосновать последовательность операции предварительной и окончательной термообработки деталей, увязав с методами получения и обработки заготовки (литье, ковка или штамповка, прокат, механическая обработка).

Назначить и обосновать режим операций предварительной и окончательной термообработки деталей (температура нагрева и микроструктура в нагретом состоянии, охлаждающая среда).

Описать микроструктуру и механические свойства материала детали после окончательной термообработки.

1. Расшифровка марки стали

Сталь марки 15Х: низкоуглеродистая хромистая конструкционная цементуемая сталь содержит 0,15% углерода, 0,75% хрома, 0,55% марганца.

Хром является легирующим элементом, он широко применяется для легирования. Содержание его в конструкционных сталях составляет 0,7 — 1,1%. Присадка хрома, образующего карбиды, обеспечивает высокую твердость и прочность стали. После цементации и закалки получается твердая и износоустойчивая поверхность и повышенная по сравнению с углеродистой сталью прочностью сердцевины. Эти стали применяются для изготовления деталей, работающих при больших скоростях скольжения и средних давлениях (для зубчатых колес, кулачковых муфт, поршневых пальцев и т. п.). Хромистые стали с низким содержанием углерода подвергают цементации с последующей термической обработкой, а со средним и высоким содержанием углерода — улучшению (закалке и высокому отпуску). Хромистые стали имеют хорошую прокаливаемость. Недостатком хромистых сталей является их склонность к отпускной хрупкости второго рода.

Основным требованием, предъявляемым к легированным конструкционным сталям, является сочетание высокой прочности, твердости и вязкости. Наряду с этим они должны иметь хорошие технологические и эксплуатационные свойства и быть дешевыми.

Введение

в сталь легирующих элементов само по себе уже улучшает ее механические свойства.

Таблица 1. Массовая доля элементов, % по ГОСТ 4543–57

C

Cr

Mn

уb, в кг/мм2

уS, в кг/мм2

д5, в %

Ш, в %

0,12 — 0,18

0,7 — 1,0

0,40 — 0,70

Назначение:

Зубчатые колеса, кулачковые муфты, поршневые пальцы, оси, коленчатые валы, шестерни, фрикционные диски, полуоси и т. д.

2. Анализ влияния углерода и легирующих элементов стали на технологию ее термообработки и полученные результаты

Хром — относительно дешевый и очень распространенный легирующий элемент. Он повышает точку А3 и понижают точку А4 (замыкает область г-железа). Температура эвтектоидного превращения стали (точку А1) в присутствии хрома повышается, а содержание углерода в эвтектоиде (перлите) понижается. С углеродом хром образует карбиды (Cr7C3, Cr4C) более прочные и устойчивые, чем цементит. При содержании хрома 3 — 5% в стали одновременно присутствуют легированный цементит и карбид хрома Cr7C3, а если более 5% хрома, то в стали находится только карбид хрома. Растворяясь в феррите, хром повышает его твердость и прочность и прочность, незначительно снижая вязкость. Хром значительно увеличивает устойчивость переохлажденного аустенита.

В связи с большой устойчивостью переохлажденного аустенита и длительностью его распада, изотермический отжиг и изотермическую закалку хромистой стали проводить нецелесообразно.

Хром значительно уменьшает критическую скорость закалки, поэтому хромистая сталь обладает глубокой прокаливаемостью. Температура мартенситного превращения при наличии хрома снижается. Хром препятствует росту зерна и повышает устойчивость против отпуска. Поэтому отпуск хромистых сталей проводится при более высоких температурах по сравнению с отпуском углеродистых сталей. Хромистые стали подвержены отпускной хрупкости и поэтому после отпуска детали следует охлаждать быстро (в масле).

Карбидообразующими элементами являются хром и марганец. При растворении карбидообразующих элементов в цементите образующиеся карбиды называются легированным цементитом. При повышении содержания карбидообразующего элемента образуются самостоятельные карбиды данного элемента с углеродом, так называемые простые карбиды, например, Cr7C3, Cr4C, Mo2C. Все карбиды очень тверды (HRC 70 — 75) и плавятся при высокой температуре (Cr7C3 примерно при 1700°С).

При наличии карбидообразующих элементов кривая изотермического распада не сохраняет свой обычный С-образный вид, а становится как бы двойной С-образной кривой. На такой кривой наблюдаются две зоны минимальной устойчивости аустенита и между ними — зона максимальной устойчивости аустенита. Верхняя зона минимальной устойчивости аустенита расположена в интервале температур 600 — 650 °C. В этой зоне происходит распад переохлажденного аустенита с образованием феррито-цементитной смеси.

Нижняя зона минимальной устойчивости аустенита расположена в интервале температур 300 — 400 °C. В этой зоне происходит распад переохлажденного аустенита с образованием игольчатого троостита.

Микроструктура игольчатого троостита

Необходимо иметь в виду, что карбидообразующие элементы только в том случае повышают устойчивость аустенита, если они растворены в аустените. Если же карбиды находятся вне раствора в виде обособленных карбидов, то аустенит, наоборот, становится менее устойчивым. Это объясняется тем, что карбиды являются центрами кристаллизации, а также тем, что наличии нерастворенных карбидов приводит к обеднению аустенита легирующим элементом и углеродом.

При большом содержании хрома в стали находятся специальные карбиды хрома. Твердость такой стали при нагревании до более высокой температуры 400 — 450 °C почти не изменяется. При нагревании до более высокой температуры (450 — 500°С) происходит повышение твердости.

3. Последовательность операции предварительной и окончательной термообработки деталей

Поршневые пальцы работают при больших скоростях скольжения и средних давлениях, поэтому основным требованием, предъявляемым к легированным конструкционным сталям, является сочетание высокой прочности, твердости и вязкости. Наряду с этим они должны иметь хорошие технологические и эксплуатационные свойства и быть дешевыми.

Введение

в сталь легирующих элементов само по себе уже улучшает ее механические свойства.

Для получения после цементации и последующей термической обработки высокой твердости поверхности и пластичной сердцевины детали изготовляют из низкоулеглеродистых сталей 15 и 20. получающаяся после цементации и последующей термической обработки твердая и прочная сердцевина у сталей с повышенным содержанием углерода предохраняет цементованный слой от продавливания при больших предельных нагрузках. Это позволяет снизить глубину цементованного слоя, т. е. сократить длительность цементации.

Хромистые стали с низким содержанием углерода подвергают цементации с последующей термической обработкой, а со средним и высоким содержанием углерода — улучшению (закалке и высокому отпуску).

Доэвтектоидные стали при закалке нагревают до температуры на 30 -50°С выше верхней критической точки Ас3. При таком нагревании исходная феррито-перлитная структура превращается в аустенит, а после охлаждения со скоростью больше критической образуется структура мартенсита. Скорость охлаждения оказывает решающее влияние на результат закалки. Преимуществом масла является то, что закаливающаяся способность не изменяется с повышением температуры масла.

Масло недостаточно быстро охлаждает при 550 — 650 °C, что ограничивает его применение только тех сталей, которые обладают небольшой критической скоростью закалки.

4. Режим операций предварительной и окончательной термообработки деталей (температура нагрева и микроструктура в нагретом состоянии, охлаждающая среда)

Последовательность операций обработки поршневого пальца, изготовленного из стали 15Х :

Отливка — цементация — механическая обработка — закалка — высокий отпуск — механическая обработка;

В результате длительной выдержки при высокой температуре цементации происходит перегрев, сопровождающийся ростом зерна. Для получения высокой твердости цементованного слоя и достаточно высоких механических свойств сердцевины, а также для получения в поверхностном слое мелкоигольчатого мартенсита, деталь после цементации подвергнем последующей термической обработке.

В результате цементации поверхностный слой деталей науглероживается (0,8 — 1% С), а в сердцевине остается 0,12 — 0,32% С, т. е. получается как бы двухслойный металл. Поэтому для получения нужной структуры и свойств в поверхностном слое и в сердцевине необходима двойная термическая обработка.

Первая — закалка от 850 — 900 °C; Вторая от 750 — 800 °C и отпуск при 150 — 170 °C. В результате первой закалке улучшается структура низкоуглеродистой сердцевины (перекристаллизация). При этой закалке структура поверхностного слоя тоже улучшается, так как быстрым охлаждением устраняется цементитная сетка. Но для науглероживания поверхностного слоя температура 850 — 900 °C является слишком высокой и поэтому не устраняет перегрева. После цементации деталь поступает на механическую обработку.

Основная цель закалки стали это получение высокой твердости, и прочности что является результатом образования в ней неравновесных структур — мартенсита, троостита, сорбита. Заэвтектоидную сталь нагревают выше точки Ас1 на 30 — 90 0С. Нагрев заэвтектоидной стали выше точки Ас1 производится для того, чтобы сохранить в структуре закаленной стали цементит, является еще более твердой составляющей, чем мартенсит (температура заэвтектоидных сталей постоянна и равна 760 — 780 0С).

Вторая закалка от 750 — 800 °C является нормальной закалкой для науглероженного слоя — устраняется перегрев и достигается высокая твердость слоя.

Отпуск при 150 — 170 °C проводится для снятия внутренних напряжений. После такого режима термической обработки структура поверхностного слоя — мелкоигольчатый мартенсит с вкраплениями избыточного цементита, а сердцевины — мелкозернистый феррит+перлит.

Механические свойства стали после термической обработки:

— Твердость в сердцевине повысилась до НВ 212;

HRC 56−64 (пов.), НВ 212 (серд.)

— Предельная прочность (ув) равна 620 Н/мм2;

Микроструктура закаленной углеродистой стали после отпуска

Список использованной литературы

1. Пожидаева С. П. Технология конструкционных материалов: Уч. Пособие для студентов 1 и 2 курса факультета технологии и предпринимательства. Бирск. Госуд. Пед. Ин-т, 2002.

2. Марочник сталей и сплавов. 2-е изд., доп. и испр. / А. С. Зубченко, М. М. Колосков, Ю. В. Каширский и др. Под общей ред. А. С. Зубченко — М.: Машиностроение, 2003.

3. Самохоцкий А. И. Технология термической обработки металлов, М., Машгиз, 1962.

Показать весь текст
Заполнить форму текущей работой