Расчет цикла паротурбинной установки
1 — изобарный процесс перегрева пара в парогенераторе. Параметры рабочего тела в характерных точках цикла приведены в таблице 3. ПТУ работает на перегретом паре t1=550 0C P1=15 МПа, но при этом применяется вторичный перегрев до параметров tn=540 0C, Pn=5 МПа. Ривкин С. Л., Александров А. А Термодинамические свойства воды и водяного пара: Справочник.- М.: Энергоатомиздат, 1984… Читать ещё >
Расчет цикла паротурбинной установки (реферат, курсовая, диплом, контрольная)
РАСЧЕТ ЦИКЛА ПАРОТУРБИННОЙ УСТАНОВКИ
Для паротурбинной установки, работающей по обратимому (теоретическому) циклу Ренкина, расчетом определить:
v параметры воды и пара в характерных точках;
v количество тепла, подведенного в цикле;
v работу, произведенную паром в турбине;
v работу, затраченную на привод питательного насоса;
v работу, совершенную в цикле;
v термический КПД цикла;
v теоретические расходы пара и тепла на выработку электроэнергии.
1. У работает на сухом насыщенном паре с начальным давлением P1=15 МПа, P2=5 КПа
Схема паротурбинной установки:
ПТ — паровая турбина;
ЭГ — электрогенератор;
К — конденсатор;
ПН — питательный насос;
ПГ — парогенератор.
Для определения параметров рабочего тела в характерных точках в теоретическом цикле Ренкина воспользуюсь PV, TS и HS диаграммами, которые схематично изображены ниже. По ним легко видеть, какие параметры меняются, а какие нет.
1−2 — адиабатическое расширение пара в турбине;
2−3 — изобарно-изотермический процесс конденсации пара (P2=const, t2=const) ;
3−4 — адиабатное сжатие воды в насосе (можно считать и изохорным);
4−5 — изобарный процесс подогрева;
5−1 — изобарно-изотермический процесс парообразования в парогенераторе.
Параметры рабочего тела в характерных точках цикла приведены в таблице 1.
Таблица 1.
Точки | P1, KПa | t, 0С | h, кДж/кг | V, м3/кг | S, кДж/кг*К | X | |
342,12 | 2611,6 | 0,1 035 | 5,3122 | 342,12 | |||
32,9 | 1619,428 | 17,685 | 5,3122 | 0,611 | 32,9 | ||
32,9 | 137,77 | 0,10 052 | 0,4762 | 32,9 | |||
36,48 | 152,843 | 0,10 052 | 0,4762 | —————; | 36,48 | ||
342,12 | 0,1 658 | 3,71 | 342,12 | ||||
Параметры точек 1,3,5 беру из таблицы.
Параметры точки 4 рассчитываю:
Дh3−4=V3(P1-P2)=0.1 0052(15 000−5)=15.037
h4=h3+ Дh3−4=137.77+15.037=152.843 кДж/кг*к
t4=h4/Cp=152.843/4.19=36.48 0C
Параметры точки 2 рассчитываю:
X=(S2-S`)/(S``-S`)=(5.3122−0.4762)/(8.396−0.4493)=0.611
V2=X2*V``=0.611*38.196=17.685 м3/кг
h2=h`+X2(h``-h`)=137.77+0.611(2557.65−137.77)=1619.428 кДж/кг Теплоту q1, подведенную в процессах 4−5-1 определю по изменению энтальпии:
q1=h1-h4=2611.6 — 152.843=2458.7 кДж/кг Отвод теплоты в конденсаторе:
q2=h2-h3=1619.4 — 137.77=1481.65 кДж/кг Работа, совершенная паром в турбине при адиабатном расширении определяется величиной располагаемого теплового перепада:
lт=Hp=h1-h2=2611.6−1619.4=992.17 кДж/кг Работа, затраченная на сжатие в насосе:
lH=V`*(P1-P2)= 0.1 0052(15 000−5)=15.07 кДж/кг Полученная работа в цикле:
lц=lт-lh=992.17−15.07=997.099 кДж/кг Термический КПД цикла Ренкина:
з=lц/q1=997.099/2458.75=0.397
Теоретический удельный расход пара, необходимый для выработки 1 кВтч электроэнергии:
d0=3600/Hp=3600/992.17=3.628 кг/кВтч Теоретический удельный расход тепла, необходимый для выработки 1 кВтч электроэнергии:
q0=d0*q1=3.628*2458.75=8921.4 кДж/кВтч
2. ПТУ работает на перегретом паре до температуры t1=550 0С при давлении P1=15 МПа
Схема паротурбинной установки:
ПТ — паровая турбина;
ЭГ — электрогенератор;
К — конденсатор;
ПН — питательный насос;
ПГ — парогенератор;
ПП — пароперегреватель.
Для определения параметров рабочего тела в характерных точках в теоретическом цикле Ренкина воспользуюсь PV, TS и HS диаграммами, которые схематично изображены ниже. По ним легко видеть, какие параметры меняются, а какие нет.
1−2 — адиабатическое расширение пара в турбине;
2−3 — изобарно-изотермический процесс конденсации пара (P2=const, t2=const) ;
3−4 — адиабатное сжатие воды в насосе (можно считать и изохорным);
4−5 — изобарный процесс подогрева;
5−6 — изобарно-изотермический процесс парообразования в парогенераторе;
6−1 — изобарный процесс перегрева пара.
Параметры рабочего тела в характерных точках цикла приведены в таблице 2.
Таблица 2.
Точки | P1,Kna | t1 | h | V | S | X | |
0,019 | 6,53 | ————; | |||||
32,9 | 1992,538 | 22,139 | 6,53 | 0,764 | |||
32,9 | 137,77 | 0,10 052 | 0,4762 | ||||
36,48 | 152,843 | 0,10 052 | 0,4762 | ====== | |||
342,12 | 0,1 658 | 3,71 | |||||
342,12 | 2611,6 | 0,1 035 | 5,3122 | ||||
Теплоту q1, подведенную в процессах 4−5-1 определю по изменению энтальпии:
q1=h1-h4=3455 — 152.843=3302.157 кДж/кг Отвод теплоты в конденсаторе:
q2=h2-h3=1992.538 — 137.77=1854.77 кДж/кг Работа, совершенная паром в турбине при адиабатном расширении определяется величиной располагаемого теплового перепада:
lт=Hp=h1-h2=3455−1992.538=1462.462 кДж/кг Работа, затраченная на сжатие в насосе:
lH=V`*(P1-P2)= 0.1 0052(15 000−5)=15.07 кДж/кг Полученная работа в цикле:
lц=lт-lh=1462.462−15.07=1447.389 кДж/кг Термический КПД цикла Ренкина:
з=lц/q1=1447.389/3302=0.438
Теоретический удельный расход пара, необходимый для выработки 1 кВтч электроэнергии:
d0=3600/Hp=3600/1462.462=2.462 кг/кВтч Теоретический удельный расход тепла, необходимый для выработки 1 кВтч электроэнергии:
q0=d0*q1=2.462*3302=8128.6 кДж/кВтч
3. ПТУ работает на перегретом паре t1=550 0C P1=15 МПа, но при этом применяется вторичный перегрев до параметров tn=540 0C, Pn=5 МПа
Схема паротурбинной установки:
ПТ — паровая турбина;
ЭГ — электрогенератор;
К — конденсатор;
ПН — питательный насос;
ПГ — парогенератор;
ПП — пароперегреватель;
ВПП — вторичный пароперегреватель .
Для определения параметров рабочего тела в характерных точках в теоретическом цикле Ренкина воспользуюсь PV, TS и HS диаграммами, которые схематично изображены ниже. По ним легко видеть, какие параметры меняются, а какие нет.
1-a — адиабатическое расширение пара в турбине;
a-b — изобарный процесс вторичного перегрева пара;
b-2 — адиабатическое расширение пара в турбине;
2−3 — изобарно-изотермический процесс конденсации пара (P2=const, t2=const) ;
3−4 — адиабатное сжатие воды в насосе (можно считать и изохорным);
4−5 — изобарный процесс подогрева воды в парогенераторе;
5−6 — изобарно-изотермический процесс парообразования в парогенераторе;
6−1 — изобарный процесс перегрева пара в парогенераторе. Параметры рабочего тела в характерных точках цикла приведены в таблице 3.
Таблица 3.
Точки | P1,KПa | t, 0С | h, кДж/кг | V, м3/кг | S, кДж/кгК | X | |
0,019 | 6,53 | ==== | |||||
a | 0,082 | 6,53 | ==== | ||||
b | 3546.2 | 0,11 | 7,3 | ===== | |||
32,9 | 2228,452 | 24,955 | 7,3 | 0,862 | |||
32,9 | 137,77 | 0,10 052 | 0,4762 | ||||
36,48 | 152,843 | 0,10 052 | 0,4762 | ====== | |||
342,12 | 0,1 658 | 3,71 | |||||
342,12 | 2611,6 | 0,1 035 | 5,3122 | ||||
Теплоту q1, подведенную в процессах 4−5-1 определю по изменению энтальпии:
q1=(h1-h4)+(hb-ha)=(3455 — 152.843)+(3546.2−2872)=3893.357 кДж/кг Отвод теплоты в конденсаторе:
q2=h2-h3=2228.452 — 137.77=2090.682 кДж/кг Работа, совершенная паром в турбине при адиабатном расширении определяется величиной располагаемого теплового перепада:
lт=Hp=(h1-h2)+(hb-ha) =(3455−2228.452)+(3546−2872)=1817.748 кДж/кг Работа, затраченная на сжатие в насосе:
lH=V`*(P1-P2)= 0.1 0052(15 000−5)=15.07 кДж/кг Полученная работа в цикле:
lц=lт-lh=1817.748−15.07=1802.675 кДж/кг Термический КПД цикла Ренкина:
з=lц/q1=1802.675/3893.357=0.463
Теоретический удельный расход пара, необходимый для выработки 1 кВтч электроэнергии:
d0=3600/Hp=3600/1817.748=1.98 кг/кВтч Теоретический удельный расход тепла, необходимый для выработки 1 кВтч электроэнергии:
q0=d0*q1=1.98*3893.357=7710.685 кДж/кВтч Сравнение рассчитанных результатов представлена в сводной таблице.
Сводная таблица
q1 кДж/кг | q2 кДж/кг | lt кДж/кг | lH кДж/кг | lц кДж/кг | з | d0 кг/кВтч | q0 кг/кВтч | ||
2458.75 | 1481.66 | 992.17 | 15.07 | 977.099 | 0.397 | 3.628 | 8921.36 | ||
3302.16 | 1854.77 | 1462.46 | 15.07 | 1447.38 | 0.438 | 2.462 | 8128.6 | ||
3893.36 | 2090.68 | 1817.75 | 15.07 | 1802.67 | 0.463 | 1.98 | 7710.68 | ||
Вывод
Таким образом, при сравнении результатов расчетов, приведенных в сводной таблице, легко заметить, что установки с вторичным перегревом пара имеют больший КПД. Так же из-за большей сухости пара продлевается срок службы частей турбины в связи с меньшим износом. Уменьшаются энергозатраты на выработку 1 кВт/ч энергии и затраты пара. Экономически выгоднее использовать третий вариант.
1. Ривкин С. Л., Александров А. А Термодинамические свойства воды и водяного пара: Справочник.- М.: Энергоатомиздат, 1984
2. Драганов Б. Х. и др. Теплотехника и применение теплоты в сельском хозяйстве.- М.: Агропромиздат, 1990.