Помощь в написании студенческих работ
Антистрессовый сервис

Расчет электрической цепи постоянного тока

КонтрольнаяПомощь в написанииУзнать стоимостьмоей работы

Для того, чтобы рассчитать, необходимо знать токи знать токи и. После разрыва схема содержит 3 независимых контура и 4 независимых узла. Поэтому рассчитаем токи методом контурных токов. Система уравнений в общем виде будет такой: Подставив значения, получаем, что количество уравнений, составленных по первому закону равно 4, а по второму также 4. Приняв положительное направление обхода контуров… Читать ещё >

Расчет электрической цепи постоянного тока (реферат, курсовая, диплом, контрольная)

Задание на выполнение работы

Схема исследуемой цепи:

Рис. 1. Принципиальная схема исследуемой цепи Таблица 1. Параметры элементов схемы

Элемент схемы

E1

E2

R1

R2

R3

R4

R5

R6

R7

R8

U, V

RF,

Пункт 1. Рассчитаем значения токов ветвей методом уравнений Кирхгофа. Для расчета используем схему, приведенную на рис. 1. Данная схема содержит 5 узлов, 8 ветвей, 2 источника ЭДС и не содержит источников тока. Подсчитаем количество уравнений системы, составленной по методу Кирхгофа.

Количество уравнений для первого закона равно:

где Nу — количество узлов рассматриваемой принципиальной схемы.

Количество уравнений для второго закона равно:

где Nв, NT — количество узлов и источников тока соответственно.

Подставив значения, получаем, что количество уравнений, составленных по первому закону равно 4, а по второму также 4. Приняв положительное направление обхода контуров и направления токов в ветвях, отметим это на схеме (рис. 2.).

Рис. 2

Составим систему уравнений, основываясь на направлениях токов и положительном направлении обхода.

Подставив значения сопротивлений резисторов из таблицы 1, сформируем матричное уравнение вида A X = B, где Решая указанную систему, получаем искомую матрицу Х, которая содержит значения токов.

Найденные токи перечислены в таблице 2.

Таблица 2

Номер тока

Значение тока, mA

— 16

— 9

— 10

Пункт 2. Рассчитаем токи в исходной схеме по методу контурных токов. Количество уравнений для данного метода равно количеству уравнений для второго закона Кирхгофа, которое было подсчитано ранее. Исследуемая принципиальная схема содержит 4 контура, в которых действуют 4 контурных тока, направления которых показаны на рис. 3.

Рис. 3. Условные положительные направления контурных токов Учитывая эти положительные направления можно записать систему уравнений по методу контурных токов в общем виде:

Собственные сопротивления контуров:

Общие сопротивления контуров:

Контурные Э.Д.С.:

Матрицы, составленные по представленным данным имеют вид:

Решив систему, получим:

Зная контурные токи, находим токи в ветвях:

Сравнивая значения токов, полученные методом контурных токов и методом уравнения Кирхгофа, видим, что они практически совпадают.

Пункт 3. Рассчитаем токи методом узловых напряжений. Схема с нумерацией узлов и условными положительными направлениями узловых напряжений показана на рис. 4.

Рис. 4. Направления узловых напряжений.

Анализируемая схема содержит четыре независимых узла, значит количество уравнений будет равно количеству уравнения первого закона Кирхгофа, а общий вид системы для определения узловых напряжений будет таким:

Собственные проводимости узлов:

Общие проводимости узлов:

Узловые токи:

Матрицы имеют вид:

Решив систему, получим:

Зная узловые напряжения, найдем токи ветвей. Для этого воспользуемся вторым законом Кирхгофа:

Найденные токи совпадают с рассчитанными ранее другими методами.

Пункт 4. Преобразование заданной схемы в трёхконтурную.

Рис. 5. Преобразование заданной схемы в трёхконтурную Изменяются параллельно соединённые участки цепи одним эквивалентным.

Пункт 5. Рассчитаем токи в исходной схеме по методу контурных токов. Схема содержит три независимых контура с тремя контурными токами, она изображена на рис. 6.

Рис. 6. Нахождение тока в преобразованной цепи Необходимо составить систему уравнений для первого и второго уравнения Кирхгофа.

Составляем матрицу для получения нужных токов.

Получаем искомые токи:

Пункт 6. Расчёт тока в заданной ветке методом эквивалентного генератора.

После разрыва исследуемой ветви схема примет вид, показанный на рис. 7.

Рис. 7.

После разрыва ветви схема упрощается: резисторы теперь образуют одну ветвь с током .

Рассчитаем напряжение холостого хода, составив уравнение второго закона Кирхгофа:

.

Для того, чтобы рассчитать, необходимо знать токи знать токи и. После разрыва схема содержит 3 независимых контура и 4 независимых узла. Поэтому рассчитаем токи методом контурных токов. Система уравнений в общем виде будет такой:

Собственные сопротивления контуров:

Общие проводимости узлов:

Узловые токи:

Матрицы имеют вид:

Ее решение: Искомые токи

Теперь можно найти:

Для расчета исключим из схемы источники энергии, оставив их внутренние сопротивления. Для этого имеющиеся в схеме источники напряжения необходимо замкнуть накоротко. Схема без источников имеет вид (рис. 8):

Рис. 8. Схема для определения

В принципиальной схеме резисторы, и соединены треугольником. Заменим это соединение эквивалентной звездой, ,. Имеем:

После замены схема имеет вид (рис. 9):

Рис. 9.

Проведём нужные преобразования ещё раз:

Рис. 10.

После сделанных преобразований мы имеем еще один условный треугольник ,

Рис. 11.

Эквивалентное сопротивление генератора можно найти следующим способом:

Для проверки правильности расчетов определим по формуле эквивалентного генератора ток в ветви с в исходной схеме:

Этот ток практически совпадает с найденным ранее, что свидетельствует о буквальной правильности вычислений.

Ток

Метод уравнений закона Кирхгофа

Метод контурных токов

Метод узловых напряжений

Метод уравнений Кирхгофа для преобразованной схемы

Метод эквивалентного генератора

I1

0,11

0,11

0,11

I2

— 0,16

— 0,16

— 0,12

I3

0,02

0,02

0,02

— 0,02

I4

— 0,07

— 0,07

0,07

— 0,1

— 0,07

I5

— 0,1

— 0,1

— 0,1

I6

— 0,01

— 0,01

— 0,01

0,01

I7

0,06

0,06

0,06

0,06

I8

0,02

0,02

0,02

I9

0,15

I10

0,11

Показать весь текст
Заполнить форму текущей работой