Помощь в написании студенческих работ
Антистрессовый сервис

Подбор и расчет теплообменной установки, предназначенной для использования в производстве крепленого вина

КурсоваяПомощь в написанииУзнать стоимостьмоей работы

Конструктивное оформление машин и аппаратов, применяемых в химической и пищевой промышленности, неразрывно связано с их функциональным назначением и полностью определяется характером и технологическими параметрами протекающих в них процессов. При этом конструкция химического и пищевого оборудования должна не только отвечать требованиям самых совершенных технологий, но и обладать также прочностью… Читать ещё >

Подбор и расчет теплообменной установки, предназначенной для использования в производстве крепленого вина (реферат, курсовая, диплом, контрольная)

1. Постановка задачи

2. Описание технологической схемы

3. Описание конструкции аппарата и обоснование его выбора

4. Технологический расчет

5. Гидравлический расчет

6. Элементы механического расчета Заключение Список литературы

Теплообменные аппараты (теплообменники) применяются для осуществления теплообмена между двумя теплоносителями с целью нагрева или охлаждения одного из них. В зависимости от этого теплообменные аппараты называют подогревателями или холодильниками.

По способу передачи тепла различают следующие типы теплообменных аппаратов:

— поверхностные, в которых оба теплоносителя разделены стенкой, причем тепло передается через поверхность стенки;

— регенеративные, в которых процесс передачи тепла от горячего теплоносителя к холодному разделяется по времени на два периода и происходит при попеременном нагревании и охлаждении насадки теплообменника;

— смесительные, в которых теплообмен происходит при непосредственном соприкосновении теплоносителей.

В химической промышленности наибольшее распространение получили поверхностные теплообменники, отличающиеся разнообразием конструкций, основную группу которых представляют трубчатые теплообменники, такие как: кожухотрубчатые, оросительные, погруженные и «труба в трубе» .

Одним из самых распространенных типов теплообменников являются кожухотрубчатые теплообменники. Они представляют из себя пучек труб, концы которых закреплены в специальных трубных решетках путем развальцовки, сварки, пайки, а иногда на сальниках. Пучек труб расположен внутри общего кожуха, причем один из теплоносителей движется по трубам, а другой — в пространстве между кожухом и трубами.

Кожухотрубчатые теплообменники могут быть с неподвижной трубной решеткой или с температурным компенсатором на кожухе, вертикальные или горизонтальные. В соответствии с ГОСТ 15 121–79, теплообменники могут быть двухчетырехи шестиходовыми по трубному пространству.

Достоинствами кожухотрубчатых теплообменников являются: компактность; небольшой расход метала; легкость очистки труб изнутри, а недостатками — трудность пропускания теплоносителей с большими скоростями; трудность очистки межтрубного пространства и трудность изготовления из материалов, не допускающих развальцовки и сварки.

Кожухотрубчатые теплообменники могут использоваться как для нагрева, так и для охлаждения.

В качестве греющего агента в теплообменниках часто используется насыщенный водяной пар имеющий целый ряд достоинств:

— высокий коэффициент теплоотдачи;

— большое количество тепла, выделяемое при конденсации пара;

— равномерность обогрева, так как конденсация пара происходит при постоянной температуре;

— легкое регулирование обогрева.

1. Постановка задачи

В курсовой работе необходимо:

1. Выполнить технологический расчет выбранной конструкции аппарата (рассчитать тепловой поток и расход хладоагента);

2. Рассчитать коэффициент теплопередачи; определить площадь поверхности теплообмена;

3. Выполнить гидравлический расчет контактных устройств;

4. Произвести механический расчет элементов аппарата;

2. Описание технологической схемы

Принципиальная схема ректификационной установки представлена на рис. 2.1. Исходная смесь из промежуточной емкости 1 центробежным насосом 2 подается в теплообменник 3, где она подогревается до температуры кипения. Нагретая смесь поступает на разделение в ректификационную колонну 5 на тарелку питания, где состав жидкости равен составу исходной смеси.

Стекая вниз по колонне, жидкость взаимодействует с поднимающимся вверх паром, образующимся при кипении кубовой жидкости в кипятильнике 4. Начальный состав пара примерно равен составу кубового остатка, т. е. обеднен легколетучим компонентом. В результате массообмена с жидкостью пар обогащается легколетучим компонентом. Для более полного обогащения верхнюю часть колонны орошают в соответствии с заданным флегмовым числом жидкостью (флегмой), которая получается в дефлегматоре 6 путем конденсации пара, выходящего из колонны. Часть конденсата выводится из дефлегматора в виде готового продукта разделения — дистиллята, который охлаждается в холодильнике 7, и направляется в промежуточную емкость 8.

Из кубовой части колонны насосом 9 непрерывно выводится кубовая жидкость — продукт, обогащенный труднолетучим компонентом, который охлаждается в холодильнике 10 и направляется в емкость 11.

Таким образом, в ректификационной колонне осуществляется непрерывный неравновесный процесс разделения исходной смеси на дистиллят с высоким содержанием легколетучего компонента и кубовый остаток, обогащенный труднолетучим компонентом.

Рис. 2.1. Принципиальная схема ректификационной установки:

1 — емкость для исходной смеси; 2, 9 — насосы; 3 — теплообменник подогреватель; 4 — кипятильник; 5 — ректификационная колонна; 6 — дефлегматор; 7 — холодильник дистиллята; 8 — емкость для сбора дистиллята; 10 — холодильник кубовой жидкости; 11 — емкость для кубовой жидкости

3. Описание конструкции аппарата и обоснование его выбора

Кожухотрубчатые теплообменники — наиболее распространенная конструкция теплообменной аппаратуры. В зависимости от назначения кожухотрубчатые аппараты могут быть теплообменниками, холодильниками, конденсаторами и испарителями; их изготовляют однои многоходовыми.

Конструктивное оформление машин и аппаратов, применяемых в химической и пищевой промышленности, неразрывно связано с их функциональным назначением и полностью определяется характером и технологическими параметрами протекающих в них процессов. При этом конструкция химического и пищевого оборудования должна не только отвечать требованиям самых совершенных технологий, но и обладать также прочностью, высокой надежностью, быть легкой, эстетичной и требовать как можно меньшего расхода дорогостоящих и дефицитных материалов. Для обеспечения сочетания прочности и надежности пищевой и химической аппаратуры с ее экономичностью и малой материалоемкостью на стадии проектирования необходимо провести подробный механический (прочностной) расчет каждого узла и детали вновь создаваемого оборудования.

Для подвода и отвода рабочих сред (теплоносителей) аппарат снабжен штуцерами. Один из теплоносителей в этих аппаратах движется по трубам, другой — в межтрубном пространстве, ограниченном кожухом и наружной поверхностью труб. Особенностью аппаратов типа Н является то, что трубы жестко соединены с трубными решетками, а решетки приварены к кожуху. В связи с этим исключена возможность взаимных перемещений труб и кожуха; поэтому аппараты этого типа называют еще теплообменниками жесткой конструкции. Трубы в кожухотрубчатых теплообменниках стараются разместить так, чтобы зазор между внутренней стенкой кожуха и поверхностью, огибающей пучок труб, был минимальным; в противном случае значительная часть теплоносителя может миновать основную поверхность теплообмена. Для уменьшения количества теплоносителя, проходящего между трубным пучком и кожухом, в этом пространстве устанавливают специальные заполнители.

Четырехходовой горизонтальный теплообменник типа Н состоит из цилиндрического сварного кожуха 3, распределительной камеры 2 и двух крышек 1 и 6. Трубный пучок образован трубами 4, закрепленными в двух трубных решетках 7. Трубные решетки приварены к кожуху. Крышки, распределительная камера и кожух соединены фланцами. В кожухе и распределительной камере выполнены штуцера для ввода и вывода теплоносителей из трубного (штуцера 8) и межтрубного пространств (штуцера 9). Перегородки 10 в распределительной камере образуют ходы теплоносителя по трубам. Поскольку интенсивность теплоотдачи при поперечном обтекании труб теплоносителем выше, чем при продольном, в межтрубном пространстве теплообменника установлены поперечные перегородки 11, обеспечивающие зигзагообразное по длине аппарата движение теплоносителя в межтрубном пространстве.

4. Технологический расчет

Теплотехнические свойства креплёного вина (при 600С):

Плотность:

Теплоёмкость:

Теплопроводность:

Вязкость:

Определение средней разности температур и средних температур потоков.

Заданием предусмотрено использование кожухотрубчатых теплообменников. Обычно в качестве холодильников используются многоходовые аппараты по трубному и межтрубному пространству, в которых движение теплоносителей соответствует схеме смешанного тока. Поэтому определяем поправку еДt для четырехходового теплообменника по трубному пространству и имеющего поперечные перегородки в межтрубном пространстве, предполагая, что именно такой конструкции теплообменник подойдет для охлаждения смеси.

Средняя разность температур противотоков:

; (1) .

Рассчитаем коэффициенты R и P:

; (2)

.

; (3)

.

По графику определили значение поправочного коэффициента

Находим среднюю температуру потоков:

; (4)

.

Поступающее в аппарат сырьё (креплёноё вино) меняет свою температуру на, а вода — на. Следовательно, в соответствии с правилом, средняя температура сырья составит:

;

а средняя температура воды:

.

Определение свойств индивидуальных веществ при средних температурах.

Таблица № 1

Свойства индивидуальных веществ при средних температурах

Свойство

Креплёное вино

Вода

Средняя температура,

Плотность,

Теплоёмкость,

Вязкость,

1,310-3

1,15 510-3

Теплопроводность,

0,418

0,587

Определение тепловой нагрузки, расхода хладагента, расчёт ориентировочной поверхности теплообмена, выбор типа и конструкции теплообменника. Так как в начале расчёта коэффициент теплопередачи К не известен, то для нахождения поверхности теплопередачи F принимаем его ориентировочное значение, которое выбирается на основе опыта эксплуатации теплообменного оборудования.

Определим тепловую нагрузку необходимую для охлаждения сырья до необходимой температуры. Так как в заданном нам процессе не происходит изменение агрегатного состояния ни вещества теплоносителя, ни вещества хладоагента, то тепловая нагрузка находится по формуле:

; (5)

Определим расход хладагента (воды):

; (6)

.

Вычислим ориентировочное значение требуемой поверхности теплопередачи Fор:

; (7)

.

Так как нам выгодно снижение температуры креплёного вина, направим горячий поток в межтрубное пространство, а хладагент — в трубное. В этом случае будут потери теплоты в окружающую среду через кожух теплообменника.

Примем размер труб трубного пучка мм. Зададимся величиной критерия Рейнольдса для трубного пространства Reтр=10 000. Найдём число труб n, которое обеспечит развитое турбулентное движение хладагента.

; (8)

.

Теперь, ориентируясь на величину поверхности теплопередачи Fор и количеством труб, выбираем нормализованный кожухотрубчатый теплообменник.

Таблица № 2

Характеристики нормализованного кожухотрубчатого теплообменника

Параметр

Значение

Поверхность теплопередачи Fт, м2

Диаметр кожуха внутренний D, мм

Общее число труб n, шт

Длина труб L, м

4,0

Площадь трубного пространства Sтр, м2

0,055

Площадь межтрубного пространства Sмтр, м2

0,106

Число рядов труб по вертикали nр

Число ходов z

Расчёт коэффициентов теплоотдачи для трубного и межтрубного пространств. Расчёт коэффициента теплоотдачи для межтрубного пространства. Определяем объёмный расход креплёного вина:

; (9)

.

Находим скорость потока в межтрубном пространстве:

; (10)

.

Находим значение критерия Рейнольдса Re1 для межтрубного пространства:

; (11)

.

Вычисляем критерий Прандтля:

; (12)

.

Определяем критерий Нуссельта. Примем, а значение скобки

.

; (13)

.

Теперь находим коэффициент теплоотдачи для межтрубного пространства:

; (14)

.

Расчёт коэффициента теплоотдачи для трубного пространства.

Определяем объёмный расход воды:

; (15)

.

Находим скорость потока в межтрубном пространстве:

; (16)

.

Находим значение критерия Рейнольдса Re1 для трубного пространства:

; (17)

.

Вычисляем критерий Прандтля:

; (18)

.

Определяем критерий Нуссельта. Примем, а значение скобки

.

; (19)

.

Теперь находим коэффициент теплоотдачи для трубного пространства:

; (20)

.

Определяем расчётное значение коэффициента теплоотдачи Кр

Теплообменник будет изготовлен из обычной углеродистой стали с коэффициентом теплопроводности лст=46,5 Вт/(м•К). Учтем также появление в процессе эксплуатации аппарата загрязнений как со стороны дистиллята rзаг.1 = 1/5800 Вт/(м2•К), так и со стороны охлаждающей воды rзаг.2 = 1/1500 Вт/(м2•К).

Тогда коэффициент теплопередачи будет равен:

; (21)

.

Определение температур стенок.

Определение температуры стенки для горячего потока tст1:

; (22)

.

Определение температуры стенки для холодного потока tст2:

; (23)

.

Расчёт критерия Прандтля для горячего и холодного потоков с использованием физико-химических свойств, взятых при температурах стенки tст1 и tст2.

Таблица № 3

Свойства индивидуальных веществ при температурах стенки tст1 и tст2

Свойство

Креплёное вино

Вода

Средняя температура,

Плотность,

Теплоёмкость,

Вязкость,

1,810-3

1,010-3

Теплопроводность,

0,410

0,599

Критерий Прандтля для горячего потока (креплёного вина):

; (24)

.

Критерий Прандтля для холодного потока (воды):

; (25)

.

Вычислим значение скобок в формулах (13) и (19).

Для горячего потока: .

Для холодного потока: .

Определение расчётной поверхности теплопередачи и её запаса Определим расчётную поверхность теплопередачи

; (26)

.

Теперь определим запас поверхности теплопередачи

; (27)

.

5. Гидравлический расчет

Выбор диаметра штуцеров для трубного и межтрубного пространств Для расчета диаметров штуцеров необходимо принять значение допустимой скорости в штуцерах, которая зависит от того, является трубопровод напорным или самотечным. Уходящий с верха колонны пар конденсируется и самотеком поступает в емкость. Из этой емкости жидкость насосом по одному трубопроводу направляется на верх колонны для создания орошения, а по второму (нашему) прокачивается через холодильник и далее на склад. Таким образом, скорость во всех штуцерах берем как для напорных трубопроводов wдоп = 1,5 м/с.

Диаметр штуцеров для трубного пространства

; (28)

.

Диаметр штуцеров для межтрубного пространства

; (29)

.

По ГОСТу выбираем стандартный условный диаметр :

;

; .

Перед проведением гидравлического расчёта уточняем скорость потока в штуцере.

Скорость потока для трубного пространства

; (30)

.

Скорость потока для межтрубного пространства

; (31)

.

Определим коэффициент трения для шероховатых труб:

; (32)

.

Отсюда получаем:

Вычислим гидравлическое сопротивление трубного пространства.

Под термином «гидравлическое сопротивление» принято понимать величину разности статических давлений на входе потока в рассматриваемый аппарат и на выходе из него в зависимости от средней скорости потока, свойств веществ потока, геометрических размеров и конфигурации аппарата, через который протекает поток.

; (33)

.

Вычислим гидравлическое сопротивление межтрубного пространства:

; (34)

6. Элементы механического расчета

Расчет толщины кожуха Главным составным элементом корпуса большинства химических аппаратов является кожух (обечайка). Наибольшее распространение получили цилиндрические кожухи, которые отличаются простотой изготовления, рациональным расходом материала и достаточной прочностью.

Цилиндрические кожухи из стали при избыточном давлении среды в аппарате р следует рассчитывать по формуле:

д = D p / (2 • уд ц) + Ск + Сокр ,

где D — внутренний диаметр кожуха, м;

уд — допускаемое напряжение на растяжение для материала кожуха, МН/м2 (уд = 140 МН/м2).

Коэффициент ц учитывает ослабление кожуха из-за сварного шва и наличия неукрепленных отверстий, ц = цш = 0,95.

Прибавка толщины с учетом коррозии Ск определяется формулой: Ск = П•фа ,

П = 0,1 мм/год; фа = 10 лет, а суммарное значение толщины округляется до ближайшего нормализованного значения добавлением Сокр.

Cк = П . фа = 0,1 . 10 = 0,001 м.

Границей применимости формулы для расчета кожуха является условие:

(д — Ск) / D ? 0,1.

Толщина кожуха с учетом запаса на коррозию и округления равна:

д = 0,8 • 0,392 / (2 • 140 • 0,95) + 0,001 = 0,0022 м = 2,2 мм.

Условие (0,0022 — 0,001) / 1 < 0,1 выполняется.

На основании данных практического использования кожухотрубчатых теплообменных аппаратов принимаем толщину стенки кожуха равной 4 мм.=0,004 м.

Допускаемое избыточное давление в обечайке можно определить из формулы:

рд = 2 • уд ц (д — Ск ) / (D + (д — Ск )) =

= 2 • 140 • 0,95 • (0,0022 — 0,001) / (0,8 + (0,0022 — 0,001))= 0,39 МПа.

Расчет толщины днища Составным элементами корпусов химических аппаратов являются днища, которые обычно изготавливаются из того же материала, что и кожуха, и привариваются к ней. Днище неразъемно ограничивает корпус горизонтального аппарата с боков. Форма днища может быть эллиптической, сферической, конической и плоской. Наиболее рациональной формой днищ для цилиндрических аппаратов является эллиптическая. Днища такой формы изготавливаются из листового проката штамповкой и могут использоваться в аппаратах с избыточным давлением до 10 МПа. Толщину стандартных эллиптических днищ, работающих под внутренним избыточным давлением р, рассчитывают по формуле, которая справедлива при условии: (д — Ск) / D? 0,125.

Примем, что днище у аппарата стандартное отбортованное эллиптическое сварное и в нем нет неукрепленных отверстий.

Примем ц = цш = 0,95.

Толщина днища:

д = D • p / (2 • уд • ц) + Ск + Сокр = 0,8• 0,3924 / (2 • 140 • 0,95) + 0,001= 0,0022 м = 2,2 мм.

Требуемое условие (0,0022 — 0,001) / 1 < 0,125 выполняется. Исходя из условия, по которому толщина стенки полусферического днища должна быть не меньше толщины стенки кожуха принимаем толщину стенки днища равной 5 мм.=0,005 м.

Расчет фланцевых соединений Подсоединение трубопроводов к сосудам и аппаратам осуществляется с помощью вводных труб или штуцеров. Штуцерные соединения могут быть разъемными и неразъемными. Наиболее употребительны разъемные соединения с помощью фланцевых штуцеров. Стальные фланцевые штуцера представляют собой короткие куски труб с приваренными к ним фланцами либо с фланцами, удерживающимися на отбортовке, либо с фланцами, откованными заодно со штуцером. В зависимости от толщины стенок патрубки штуцеров могут быть тонкоили толстостенными. Штуцера не рассчитывают на прочность, а выбирают. Типы штуцеров определены действующими стандартами, сводную таблицу которых можно найти в справочнике.

По назначению все фланцевые соединения в химическом аппаратостроении подразделяются на фланцы для трубной арматуры и труб и фланцы для аппаратов. Фланцевое соединение состоит из двух симметрично расположенных фланцев, уплотнительного устройства и крепежных элементов.

Конструкцию фланцевого соединения принимают в зависимости от рабочих параметров аппарата: при р? 2,5 МПа и t ? 300? С применяют плоские приварные фланцы (рис. 6.2).

Рис. 6.2. Конструкция плоского приварного фланцевого соединения Во фланцевых соединениях при р? 2,5 МПа и t ? 300? С применяют болты.

Опоры служат для установки аппаратов на фундамент. Опора имеет обечайку цилиндрической или конической формы и фундаментное кольцо из полосовой стали, приваренное к кожуху. Опору приваривают к корпусу аппарата сплошным швом.

При установке аппарата внутри помещения на полу применяются отдельные опорные лапы обычно 4. Выбирают лапы по нормали в зависимости от нагрузки. Подвесные опорные лапы рекомендуется располагать выше центра масс аппарата.

Выбор конструкции опор аппарата Опоры служат для установки аппаратов на фундамент. Опора имеет обечайку цилиндрической или конической формы и фундаментное кольцо из полосовой стали, приваренное к кожуху. Опору приваривают к корпусу аппарата сплошным швом.

При установке аппарата внутри помещения на полу применяются отдельные опорные лапы обычно 4. Выбирают лапы по нормали в зависимости от нагрузки. Подвесные опорные лапы рекомендуется располагать выше центра масс аппарата.

Выбор типа опоры аппарата зависит от ряда условий: места установки аппарата, соотношения высоты и диаметра аппарата, его массы и т. д. При установке колонных аппаратов на открытой площадке, когда отношение высоты опоры к диаметру аппарата меньше или равно 5, то рекомендуют использовать опоры в виде ножек. Для горизонтальных аппаратов, устанавливаемых в помещениях, рекомендуют применять седловые опоры. Руководствуясь этими рекомендациями, мы выбираем седловые опоры.

Расчет трубных решеток Одним из основных элементов кожухотрубчатых теплообменников являются трубные решетки. Они представляют собой перегородки, в которых закрепляются трубы и которыми трубное пространство отделяется от межтрубного.

Для большинства типов неподвижно закрепленных решеток их высоту рассчитывают по формуле:

h = K D v p / ц0уи.д + Ск + Сокр,

где К = 0,45;

D = Dп — средний диаметр цилиндрической обечайки кожуха аппарата:

м;

р = 0,392 МПа — рабочее давление;

уи.д = 140 МН/м2 — допускаемое напряжение на изгиб материала решетки;

Ск = 0,001 м;

ц0 — коэффициент ослаблений решетки отверстиями:

ц0 = (Dп - zр dн) / Dп = (0,805 -10 • 0,02) / 0,805= 0,75,

где zр — число труб на диаметре решетки;

dн — наружный диаметр труб.

h = 0,45 • 0,805 • v0,392 / (0,75 • 140) + 0,001 = 0,023 м = 23 мм.

Высоту решетки снаружи определяют по формуле:

h1 = K1 Dп v p / уи.д + Ск + Сокр,

h1 = 0,36 • 0,805 • v0,392 / 140 + 0,001 = 0,016 м = 16 мм.

где K1= 0,36; Dп = 0,805 м; р = 0,392 МПа.

Минимальный шаг между трубами t рекомендуется принимать соответственно диаметру труб: dн = 25 мм, t = 1,3 • dн

t = 1,3 • 25 = 32,5 мм.

Высоту трубной решетки принимаем 32 мм

Заключение

В данном курсовом проекте я произвел подбор и расчет теплообменной установки, предназначенной для использования в производстве крепленого вина. Мной был произведен технологический, гидравлический расчет, а также элементы механического расчета. Исходя из полученных данных был подобран по каталогу нормализованный четырехходовой кожухотрубчатый теплообменник. Кроме того была подробна рассмотрена технологическая схема теплообмена.

1. Основные процессы и аппараты химической технологии: Пособие по проектированию/Под ред. Ю. И. Дытнерского, 2-е изд., перераб. и доп. М.: Химия, 1991. 496с.

2. Павлов К. Ф. Примеры и задачи по курсу процессов и аппаратов химической технологии: Учебное пособие для вузов/ К. Ф. Павлов, П. Г. Романков, А.А. Носков//Под ред. Чл-корр. АН СССР П. Г. Романкова.- 10-е изд., перераб. и доп. Л.: Химия, 1987. 576с.

3. Расчет теплообменных аппаратов: Учеб. пособ./ В. Д. Измайлов, В. В. Филиппов; Самар. гос. техн. ун-т. Самара, 2006. 108с.

Показать весь текст
Заполнить форму текущей работой