Подготовка территории в районах распространения карстов
Все эти методы были экспериментально проверены и получены хорошие результаты, но ни один из них не был широко опробован при инженерно-геологических изысканиях. Причиной является отсутствие серийной аппаратуры, отвечающей условиям изысканий. Выпускаемые промышленностью приборы ПИНП (для метода радиокип) из-за своей конструкции недостаточно стабильны в работе, а аппаратура скважинного просвечивания… Читать ещё >
Подготовка территории в районах распространения карстов (реферат, курсовая, диплом, контрольная)
Реферат на тему:
«Подготовка территории в районах распространения карстов»
Введение
Карстовые процессы широко развиты на территории нашей страны, в том числе на площадях, где проводят свою работу тресты инженерно-строительных изысканий. Инженерно-геологические изыскания в районах развития карста имеют свои специфические особенности. Подземные воды при встрече с легкорастворимыми горными породами (каменная соль, гипс, известняки, до ломит и др.) растворяют и выщелачивают их. Растворимые вещества уносятся вместе с водой. В результате этого в толще земной коры образуются трещины, колодцы, пустоты или пещеры. Такое образование называют карстом. В результате карстовых образований на поверхности почвы появляются просадки, провалы или воронки, заполненные водой. Характер этих образований зависит от толщины слоя и состава грунтов, покрывающих горные породы.
Закарстованные площади считают неудобными для городской застройки и используют их для озеленения и создания зон отдыха. В данном реферате мы рассмотрим инженерную подготовку территории в районах распространения карстов.
1. Общие положения
Согласно действующим нормативным документам к карстовым районам относятся территории, в геологическом разрезе которых присутствуют растворимые породы (известняки, доломиты, мел, гипсы, ангидриты и т. д.), и имеют место или возможны поверхностные и подземные проявления карста.
Выделяются следующие основные литологические типы карста: карбонатный (известняковый, доломитовый); меловой (являющийся подтипом карбонатного); гипсовый; соляной.
С точки зрения постановки геофизических работ литология карста существенного значения не имеет. На всех литологических типах карста методика проведения геофизических работ примерно одинакова.
Более существенное влияние на методику работ оказывают условия залегания карстующихся пород. По условиям залегания различают следующие типы карста:
1) открытый или средиземноморский, когда карстующиеся породы лежат непосредственно на поверхности;
2) покрытый, когда карстующиеся породы перекрыты либо водопроницаемыми, либо водонепроницаемыми нерастворимыми породами.
В случае открытого карста обнаженность карстующихся пород способствует проникновению в них поверхностных вод, развитию процессов выветривания и выщелачивания, образованию и расширению системы трещиноватости.
Благодаря неглубокому залеганию карстующихся пород облегчается производство геофизических работ, повышается их эффективность. Решение задачи может быть проведено более простыми и распространенными методами, часто с помощью одной только электроразведки постоянным током. В случае открытого карста практически легко оконтуриваются закарстованные участки, устанавливается общая мощность карстующихся пород, степень трещиноватости и обводненности массива пород.
В районах покрытого карста, в которых карстующиеся породы перекрыты слоями нерастворимых водопроницаемых пород, возникают трудности обнаружения зон возможных карстовых провалов с помощью геофизических методов при значительной мощности перекрывающих четвертичных отложений (более 20 м). Однако задача обнаружения может облегчаться за счет вторичных изменений вышележащих пород.
В случае наличия перекрывающих рыхлых отложений (пески, супеси) в зоне развития карста возникают побочные суффозионные явления, мощность их нередко возрастает вследствие понижения кровли карстующихся пород. Кроме того, существенным поисковым критерием является уменьшение влагосодержания рыхлых пород непосредственно над карстовой зоной, что влечет за собой повышение УЭС этих пород. Последнее обстоятельство связано с интенсивной инфильтрацией поверхностных вод в карстовые полости.
Другим существенным поисковым критерием для геофизических методов является резкий перепад УГВ в зоне развития карста. В районах покрытого карста, в которых карстующиеся породы перекрыты слоями нерастворимых водонепроницаемых пород, последние препятствуют развитию карста и связанных с ним явлений.
Чем больше мощность перекрывающих отложений, тем труднее установить геофизическими методами зоны карстовых пустот, развитые на глубине. В этом случае необходимо проведение широкого комплекса геофизических методов, включающих электроразведку, сейсморазведку и различные методы каротажа (КС, ПС, резистивиметрия, ГК, ГГК и др.).
По отношению к уровню подземных вод карстующиеся породы залегают: в зоне аэрации, в зоне постоянного водонасыщения и в смешанной зоне.
В зоне аэрации карст в большинстве случаев представлен в виде полостей, незаполненных вмещающим материалом; в зоне же постоянного водонасыщения карстовые полости часто заполнены вторичным переотложенным материалом (глиной, суглинком, продуктами разрушения карстующихся пород, находящимися в водонасыщенном состоянии).
Геофизические методы исследования в карстовых районах решают следующие основные задачи:
литологическое расчленение пород;
поиски и оконтуривание карстовых полостей или зон их развития (поверхностных и погребенных), определение рельефа карстующихся пород;
изучение степени трещиноватости пород и преобладающего его направления;
исследование гидрогеологических особенностей карста.
Для поисков и обнаружения карстовых полостей может быть использовано большинство существующих геофизических методов: электроразведка постоянным и переменным током, малоглубинная сейсморазведка, гравиразведка с градиентометрами, магнитометрия, различные скважинные методы. Однако применение ряда геофизических методов, таких как гравиразведка и магнитометрия, может быть рекомендовано лишь в благоприятных случаях.
В большинстве районов использование гравиметрии и магнитометрии ограничено по тем соображениям, что разрешающая способность этих методов весьма незначительна.
Крупные карстовые полости (пещеры), размеры которых соизмеримы с мощностью перекрывающих пород, могут быть обнаружены гравиразведочными наблюдениями с использованием высокоточных гравиметров. Карстовые же полости, заполненные вторичным материалом, слабо улавливаются гравиразведкой ввиду незначительного перепада плотностей вмещающих пород и карстовых образований.
Расчеты, проведенные В. К. Матвеевым показывают, что сферические пустоты радиусом 5 м при современной точности гравиметрических измерений с гравиметрами могут быть обнаружены на глубине около 7 — 8 м (градиентометры повышают эту глубину до 10 — 15 м, но при этом резко падает производительность работы).
Что касается магниторазведки, то последняя применима лишь в том случае, когда в составе материала, заполняющего карстовые полости, встречаются различные минералы с повышенной магнитной восприимчивостью, а сами полости расположены на небольшой глубине.
2. Геологические предпосылки постановки геофизических методов на карст
По своим физическим характеристикам (удельное электрическое сопротивление, скорость распространения упругих волн, плотность и т. д.) зоны карстующих пород существенно отличаются от вмещающих пород, незатронутых карстовыми процессами. Эти отличительные особенности тем больше, чем интенсивнее карстовые процессы, чем больше карстовые полости и чем резче они отличаются по своему физическому состоянию от окружающих пород (незаполненные карстовые полости). В противном случае физическая дифференциальность значительно сглаживается и выявлять и оконтуривать карстовые зоны становится затруднительно.
Известно, что особенно благоприятны для развития карста участки тектонических поднятий с малой мощностью покровных отложений, склоны современных и древних речных долин, участки, в разрезе которых гипсо-ангидритовые отложения перекрываются трещиноватыми карбонатными породами и, напротив, затрудняет развитие карста наличие перекрывающих водонепроницаемых глинистых пород (глины, мергели, алевролиты) значительной мощности.
Геофизические методы исследования на карст могут выполнять как прямую задачу поисков и оконтуривания карстовых образований (воронок, западин, понор и т. д.), так и косвенную — изучение общей геолого-гидрогеологической обстановки карстового района, определение мощности и состава покровных образований, изучение трещиноватости карстующегося массива, определение рельефа карстующихся пород и т. д.
Таким образом, задачи исследования карста геофизическими методами приобретают широкий и разнообразный характер. В настоящее время уровень геофизических исследований в методическом, техническом и теоретическом плане существенно возрос, поэтому их следует считать ведущими методами при изучении карста. При этом постановка геофизических работ должна тесно увязываться с обычными методами инженерно-геологических исследований (съемка, бурение). Комплекс инженерно-геологической съемки и геофизических исследований позволяет более уверенно и качественно проводить оценку закарстованных территорий.
3. Электроразведка
Первые теоретические и модельные работы по электроразведке карста показали, что отдельные карстовые полости могут быть отмечены только в том случае, если максимальные поперечные размеры по горизонтали равны или превышают глубину залегания полостей. Исследования проводились в однородном электрическом поле постоянного тока. В дальнейшем эти выводы были подтверждены расчетами по формулам А. И. Заборовского для шара в поле точечных источников.
На основании теоретических и модельных работ Б. К. Матвеев и А. А. Огильви сформулировали следующие важные положения для методики электроразведки карста:
1) карстовые полости, залегающие выше уровня подземных вод, отмечаются на графиках электропрофилирования максимума, а ниже — минимума кажущихся сопротивлений;
2) вероятность выделения и тех и других почти одинакова при условии, что поперечные размеры полостей по горизонтали равны или превышают глубину их залегания;
3) величина аномалий зависит от целого ряда факторов: глубины залегания полостей, их горизонтальных размеров, мощности проводящих наносов, соотношений УЭС полости и вмещающих пород, а также от размеров и вида установок.
В приложении на рис. 1 приводятся зависимости величин аномалии (h) от разносов установок профилирования при различных глубинах залегания центра сферы h. Указанные зависимости получены в отсутствие промежуточного слоя. Для комбинированного и симметричного профилирования с увеличением разносов значения аномалий очень резко возрастают, а затем медленно приближаются к асимптотическому значению, соответствующему величине аномалии в однородном поле; при h =1,2 асимптотические значения практически достигаются при разносах, равных 2. При наличии промежуточного слоя в виде проводящих наносов величина аномалии кажущегося сопротивления значительно уменьшается.
В приложении на рис. 2 показаны кривые симметричного электропрофилирования, полученные расчетным путем для случаев, когда шар залегает в среде, покрытой наносами (сплошная кривая), и без них (пунктирная кривая). Уменьшение амплитудных значений кажущихся сопротивлений над средой с наносами составляет 26,5%.
Для симметричного профилирования надежные результаты получаются только при разносах линии АВ, в 8 раз превышающих мощность наносов; при дипольном профилировании расстояние между диполями примерно в 5 раз превышает мощность перекрывающих отложений. Задача электроразведки по выявлению погребенных карстовых форм облегчается за счет вторичных явлений, сопутствующих образованию карстовых нарушений, которые могут протекать как в вышележащих так и в нижележащих образованиях. В вышележащих породах могут образовываться прогибы и оседания отдельных слоев с возникновением вертикальных трещин.
В толще рыхлых отложений, перекрывающих карстующиеся породы, непосредственно в окрестностях развития карстовых процессов наблюдаются резкие изменения гидрогеологического режима, что сильно влияет на величину УЭС рыхлых отложений в значительно более широкой зоне, чем участок, непосредственно охваченный карстовыми процессами. Данный признак позволяет выделять карстовые зоны, расположенные на значительно большей глубине, чем это допускают приведенные выше теоретические расчеты.
Таким образом, весь объем пород над карстовой полостью характеризуется измененной структурой, что существенно облегчает поиски и оконтуривание карстовых зон с установками меньших размеров. Последнее обстоятельство особенно важно в условиях работы на застроенных территориях.
4. Сеймсразведка
литологический карст электроразведка геофизический Плотность пород тесно связана с их упругими свойствами, которые могут быть положены в основу при изучении карстовых образований сейсморазведочными методами.
С помощью сейсморазведки можно определить глубину залегания и мощность закарстованной толщи, выделить наиболее разрушенные зоны и проследить их простирание.
Если карстовая полость расположена в коре выветривания коренных пород, сейсморазведкой она может быть обнаружена по совокупности признаков:
1) над карстовой полостью значения средней скорости упругих волн существенно уменьшаются;
2) низкие значения распространения продольных и поперечных волн отвечают зонам повышенной трещиноватости;
3) наблюдается изменение формы записи над карстовой полостью (аномально высокое затухание преломленных волн). При возбуждении колебаний над карстовой полостью для получения удовлетворительной записи волн необходимо применять заряды В.В. большой величины или увеличивать силу ударов.
5. Радиоволновые методы
Выявление и оконтуривание закарстованных зон, а также отдельных крупных карстовых полостей, как пустых так и заполненных водой или глинистыми отложениями, можно производить радиоволновыми методами. При этом карстовая полость искажает нормальное поле радиостанции, поскольку среда в объеме полости отличается по своим электромагнитным параметрам от вмещающих пород.
Принципиально возможны при модификации применения радиоволновых методов:
а) радиоволновые просвечивания из скважины в скважину или из скважины (пещеры) на поверхность земли или с поверхности в скважину (пещеру). Во всех случаях используются автономные передатчики и приемник; карстовые зоны или полости проявляются в виде «тени» (по измененному поглощению радиоволн);
б) измерение сопротивления излучения антенны на профилях, пересекающих площадь с предполагаемой кар стовой зоной (полостью). Антенна передатчика располагается на определенной высоте над землей и настраивается в резонанс, после чего перемещается вместе с передатчиком. Над карстовой полостью настройка нарушается и по величине изменения измеряемой мощности или по изменению настройки судят о размерах и глубине расположения полости. Зона изменения излучения в плане позволяет оконтуривать полость;
в) метод радиокип, где измеряется излучение напряженности поля удаленной радиостанции. Над карстовой полостью или зоной вектор напряженности магнитной составляющей отклоняется от горизонтали, в нем появляется вертикальная составляющая, а горизонтальная составляющая изменяется от точки к точке. На рис. 3 приведен пример аномалии поля удаленной радиостанции над закарстованной хорошо проводящей зоной в известняковом массиве.
Все эти методы были экспериментально проверены и получены хорошие результаты, но ни один из них не был широко опробован при инженерно-геологических изысканиях. Причиной является отсутствие серийной аппаратуры, отвечающей условиям изысканий. Выпускаемые промышленностью приборы ПИНП (для метода радиокип) из-за своей конструкции недостаточно стабильны в работе, а аппаратура скважинного просвечивания типа АРП обладает недостаточной мощностью для работы в средах невысокого сопротивления. Аппаратура для второй группы методов серийно не выпускалась. Существенное значение имеет также мощность и волновое сопротивление верхней толщи, перекрывающей карстующиеся породы, в которой радиоволны испытывают сплошное поглощение.
Для максимальной глубины, на которой может быть отмечен искомый объект, методом радиокип выведена эмпирическая формула
где l 0 - длина волны радиостанции (в воздухе);
r — сопротивление перекрывающей толщи в ом Ч м.
Для закрытого карста эта формула малоприменима, поскольку как указывалось ранее, карстовые процессы часто существенно изменяют гидрогеологический режим вышележащей толщи, что в свою очередь изменяет ее УЭС и e. Эти изменения будут хорошо отмечены как методом радиокип, так и методом сопротивления антенны передатчика, хотя при этом сами карстующиеся породы могут залегать на глубине, значительно большей h max.
Учитывая большие возможности радиоволновых методов и полученные положительные результаты, следует рекомендовать их включение в комплекс геофизических методов карста в благоприятной ситуации как рекогносцировочных для обследования больших площадей.
6. Скважинные методы
При поисках погребенных карстовых полостей, залегающих ниже уровня подземных вод, для изучения гидрогеологической обстановки в зоне развития карста могут использоваться скважинные методы, включая каротаж сопротивлений (КС), естественной поляризации (ЕП), резистивиметрию, и также ядерные методы каротажа: естественной гамма активности (ГК) и гамма-гамма каротажа (ГГК). Перечисленными методами устанавливаются наиболее трещиноватые зоны в карстующихся породах, определяются скорости фильтрации для различных участков карстующих пород, а также глинистость и плотность пород. По этим данным можно судить о наличии на тех или иных интервалах сильно закарстованных пород.
Для локализации обводненных зон можно применять косвенные и прямые методы. Косвенные скважинные методы (КС, ЕП, ГК, ГГК) позволяют фиксировать зоны с пониженным электрическим сопротивлением и плотностью, характерных для закарстованных пород. Прямыми методами для локализации обводненных зон являются резистивиметрия и расходометрия.
7. Электропрофилирование и электрозондирование
Основным методом исследования в карстовых районах является электропрофилирование различных видов: симметричное (СЭП), комбинированное (КЭП), градиентное (АВ fix), дипольное (ДЭП). Наилучший вид электропрофилирования при съемке на карст — площадной.
К задачам, решаемым электроразведкой при изучении карста, относятся:
1) выявление и оконтуривание зон повышенной трещиноватости и закарстованности;
2) определение глубины распространения закарстованных пород;
3) обнаружение отдельных карстовых полостей и их оконтуривание.
Решение перечисленных задач возможно при следующих условиях:
первой задачи — в большинстве случаев;
второй задачи — при достаточной ширине зон, значительной глубине распространения закарстованности и трещиноватости и залегания закарстованных пород ниже УГВ;
третьей задачи — только в том случае, когда размеры карстовых полостей соизмеримы с мощностью покрывающих отложений.
В приложении табл. 4 приведены рекомендуемые методы электроразведки для большой (200 — 300 м и более) и малой (до 60 м) мощностей карстующихся пород при различных мощностях толщи покрывающих пород.
В результате проведения работ должны быть построены геоэлектрические разрезы, карты изоом с выделением закарстованных зон, графики УЭСК, или графики и карты градиентов УЭСК, полярные диаграммы КВЗ.
Для выбора разносов профилирования предварительно проводятся геоэлектрические исследования методом ВЭЗ по редкой сети точек (200 ґ 200).
На основе анализа кривых ВЭЗ выбираются оптимальные разносы профилирования. Желательно иметь два-три разноса. Минимальный разнос охватывает зону пород, лежащих вблизи кровли карстующихся пород, второй разнос характеризует толщу закарстованных пород и третий — подстилающие породы.
Профилирование проводится по густой сети наблюдений с шагом, не превышающим 5 — 10 м. Расстояние между профилями должно быть таким, чтобы каждая карстовая форма или вторичные сопутствующие образования подсекались не менее, чем двумя-тремя профилями. В среднем расстояние между профилями не должно быть более 20 — 50 м. В этом случае, если застроенность территории достаточно большая, можно увеличить расстояние между профилями до 100 м.
Все ярко выраженные в рельефе понижения (ложбины, блюдцеобразные котловины, оседания поверхности) должны обязательно пересекаться геофизическими профилями с минимальным шагом исследования (наименьшим на данном участке работ).
Кроме того, желательно провести параметрические измерения с несколькими разносами профилирования вблизи карстовых воронок с тем, чтобы определить оптимальные параметры схемы в данной ситуации.
Наиболее употребительна для решения простых задач, связанных с поверхностным карстом, схема симметричного профилирования. В условиях плотной жилой застройки следует рекомендовать профилирование установкой АВ fix. Хорошие результаты могут быть получены с установкой комбинированного профилирования.
Размеры измерительной линии следует брать, исходя из рекомендаций Б. К. Матвеева [10], который на основе опытных работ установил следующие пределы:
при ,
где Н — средняя глубина залегания карстовых полостей;
h — мощность наносов.
Аномальные зоны, зафиксированные на соседних профилях, однозначно могут быть интерпретированы как обусловленные карстом. В случае, если полость заполнена вторичным материалом, аномалия над карстом характеризуется глубоким минимумом с двумя краевыми пиками высоких значений кажущихся сопротивлений. Такая аномалия характеризует узколокальную форму карстового проявления.
Для оценки степени трещиноватости пород, а также преобладающего направления системы трещин рекомендуется круговое зондирование (КВЗ) по трем-четырем азимутам. Точки КВЗ следует равномерно располагать на всей исследуемой площади. В среднем расстояние между точками КВЗ рекомендуется принять равным 250 — 300 м. Расстояния между точками ВЭЗ при детальной съемке не должны превышать двухкратной глубины залегания предполагаемых карстовых полостей.
В среднем следует располагать точки ВЭЗ через 50 м. Примерно такое же расстояние следует принять и между профилями.
1. Назаров Г. Н. Применение электроразведки для выявления карста и закономерностей распределения пресных вод. «Разведка и охрана недр», № 3, 1965.
2. Воронков О. К., Акатов Ю. Е. Сейсморазведочные исследования на карст. «Геология и геофизика», № 6, 1967.
3. Матвеева Б. К. Методика геофизического изучения карстовых полостей на примере работ в районе Кунгурской пещеры. Сб. «Методика изучения карста» вып. 5, Пермь, 1963.
4СП 11−104−97. «Инженерно-геодезические изыскания для строительства».
5. СНиП 11−02−96 «Инженерные изыскания для строительства. Основные положения».