Помощь в написании студенческих работ
Антистрессовый сервис

Анализ иммуномодулирующих эффектов белков теплового шока 70 кДа

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Материалы диссертации были представлены на XIV зимней международная научной школе «Перспективные направления физико-химической биологии и биотехнологии» (Москва, 2002), на шестой международной иммунологической летней школе им. Дж. Хэмфри (Пущино, 2002), на VI чтениях, посвященных памяти академика Ю. А. Овчинникова (Москва — Пущино, 2002), на шестой научной конференции с международным участием… Читать ещё >

Анализ иммуномодулирующих эффектов белков теплового шока 70 кДа (реферат, курсовая, диплом, контрольная)

Содержание

  • ОБЗОР ЛИТЕРАТУРЫ
  • ГЛАВА 1. СЕМЕЙСТВО БЕЛКОВ ТЕПЛОВОГО ШОКА
  • Общая характеристика БТШ
  • Классификация БТШ
  • Функции белков теплового шока
  • Протективные функции белков тетового шока
  • Шаперонные функции БТШ
  • ГЛАВА 2. БЕЛКИ ТЕПЛОВОГО ШОКА И КЛЕТОЧНЫЙ СТРЕСС Факторы теплового шока — детекторы стресса
  • Клеточный стресс и плазматическая мембрана
  • ГЛАВА 3. РОЛЬ БТШ В ИММУННЫХ ПРОЦЕССАХ БТШ в инфекционном иммунитете
  • Лнтигепность поверхностных БТШ
  • БТШ участвуют в представлении антигена
  • БТШ и аутоиммунные патологи
  • БТШ и опухолевые заболевания
  • Вакцины на основе БТШ
  • ГЛАВА 4. БЕЛКИ ТЕПЛОВОГО ШОКА ВО ВНЕКЛЕТОЧНОМ ПРОСТРАНСТВЕ
  • ГЛАВА 5. АКТИВНЫЕ ФОРМЫ КИСЛОРОДА И БТШ
  • Реакции с участием активных форм кислорода
  • Биологическое значение ЛФК
  • ЛФК и БТШ
  • ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТ
  • ГЛАВА 6. МАТЕРИАЛЫ И МЕТОДЫ
  • ГЛАВА 7. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ Получение БТШ70 методом аффинной хроматографии
  • Цитометрический анализ экспрессии БТШ70 лимфоидными клетками с помощью конъюгата АТФ-ФИТЦ Феномен интернализации экзогенных БТШ70 в культурах клеток лимфоидных органов
  • Активные формы кислорода и белки теплового шока. Влияние БТШ70 па продукцию активных форм кислорода
  • Влияние, А ФК на экспрессию БТШ
  • Влияние гормонов стресса на продукцию АФК и экспрессию БТШ
  • Влияние на внутриклеточное содержание АФК и БТШ70 индукторов окислительного стресса
  • Активные формы кислорода, БТШ70 и старение
  • Влияние поликатионов на продукцию АФК и БТШ
  • Возможные подходы к созданию противоопухолевых вакцин на основе секретируемых БТШ
  • ВЫВОДЫ

АКТУАЛЬНОСТЬ ПРОБЛЕМЫ

Семейство белков теплового шока (БТШ) состоит из большой группы высококонсервативных протеинов, интенсивно эксирессирующихся в клетках под действием разнообразных стрессирующих факторов и способствующих выживанию клеток в неблагоприятных условиях. Защитное действие БТШ обусловлено их протективными свойствами, направленными на сохранение нормальной конформации и функциональной активности внутриклеточных протеинов, предотвращение их денатурации и агрегации. Все изученные функции БТШ реализуются во внутриклеточном пространстве, однако в настоящее время существует много свидетельств о локализации этих протеинов на клеточной поверхности. Поверхностная локализация БТШ зарегистрирована у инфицированных, трансформированных и апоптозных лимфоцитов. Причины и механизмы транслокации БТШ на клеточную поверхность пока не изучены, однако известно, что поверхностные БТШ обладают иммуномодулирующими свойствами. В частности, было продемонстрировано, что БТШ, экспонированные на клеточной поверхности, активируют цитотоксические эффекторы иммунной системы. Наряду с явлением необычной локализации БТШ на плазматической мембране, в настоящее время установлено, что БТШ могут находиться вне клеток в виде растворимого пула, попадающего в том числе и в кровоток. Было также обнаружено, что экзогенные, внеклеточные БТШ способны взаимодействовать с клетками и проникать во внутриклеточное пространство. Причем такие интернализованпые БТШ сохраняют свои протективные функции и защищают клетки от гибели. В связи с этим очевидно, что наряду с внутриклеточными и поверхностными БТШ, внеклеточная форма этих протеинов также может оказывать влияние на функционирование иммунной системы. В настоящее время интенсивно изучается иммуномодулирующее действие экзогенных БТШ в связи с обнаружением у этих протеинов уникальных адъювантных и иммуностимулирующих свойств. Установлено, что один из механизмов иммуномодулирующих эффектов внеклеточных БТШ связан с активацией этими молекулами антигенпредставляющих клеток. В то же время, анализ описанных эффектов БТШ указывает на то, что зарегистрированные иммуномодулирующие свойства экзогенных БТШ могут быть связаны с действием этих протеинов не только па антигенпредставляющие клетки, но и на популяции лимфоцитов. Таким образом, накопленные в последнее время данные свидетельствуют о том, что молекулы БТШ участвуют во многих иммунных процессах, связанных с функционированием популяций иммунокомпетентных клеток разных типов. Однако в настоящее время эта тематика остается малоизученной. В настоящей работе были проведены исследования иммуномодулирующих эффектов БТШ, реализующихся на уровне популяций клеток иммунной системы. Основное внимание уделялось главному представителю большого семейства БТШ, протеинам с молекулярной массой 70 кДа (БТШ70).

ЦЕЛЬ ИССЛЕДОВАНИЯ

Целью работы является исследование иммуномодулирующих функций основного представителя семейства белков теплового шока — БТШ70- анализ зависимости экспрессии БТШ70 клетками иммунной системы от стрессирующих факторов, в частности в модели окислительного стрессаизучение влияния БТШ70 на продукцию перекисных форм кислорода иммунокомпетентными клетками в процессе «кислородного взрыва».

ЗАДАЧИ ИССЛЕДОВАНИЯ

1. Получение высокоочищенных охарактеризованных препаратов БТШ70 для их последующего использования в экспериментах с экзогенными БТШ70.

2. Исследование влияния различных стрессирующих факторов на экспрессию БТШ70 лимфоидными клетками.

3. Анализ взаимосвязи окислительного стресса с экспрессией БТШ70 лимфоидными клетками

4. Анализ взаимосвязи процесса «кислородного взрыва» с экспрессией БТШ70 у клеток лимфоидных тканей мыши и у фагоцитов периферической крови человека.

5. Анализ модуляции «кислородного взрыва» экзогенными БТШ70.

6. Поиск подходов к использованию продуцируемых лимфоидными клетками БТШ70 в противоопухолевой терапии.

НАУЧНАЯ НОВИЗНА

Все основные результаты данного исследования обладают высокой степенью научной новизны. В частности, впервые было охарактеризовано модулирующее действие экзогенных БТШ70 па продукцию активных форм кислорода различными клетками иммунной системы. Высокой степенью новизны обладают также зарегистрированное действие гормонов стресса на экспрессию БТШ70 и продукцию АФК клетками лимфоидных органов. Впервые описаны эффекты поликатионов, связанные с влиянием на синтез БТШ и продукцию АФК в лимфоидных клетках. К результатам особой новизны можно отнести обнаруженный феномен снижения содержания БТШ70 в клетках иммунной системы на начальном этапе их реакции на I различные стрессирующие факторы. Новизной обладают также результаты, свидетельствующие о возможности использования секретируемых опухолевыми клетками БТШ70 для создания противоопухолевых вакцин. s

ПРАКТИЧЕСКАЯ ЗНАЧИМОСТЬ РАБОТЫ

Белки теплового шока обладают уникальными иммуностимулирующими и адъювантными свойствами, которые позволяют создавать на основе БТШ эффективные противоопухолевые и противоинфекционные вакцины. Кроме этого, иммунизация экспериментальных животных препаратами БТШ позволяет предотвратить патологические аутоиммунные реакции. Известно также, что появление в сыворотке крови БТШ и антител к ним является характерным диагностическим признаком определенных этапов развития ряда патологий. Все это свидетельствует о значительных потенциальных возможностях применения БТШ в клинической практике. Очевидно, что для реализации таких возможностей необходимо изучение процессов взаимодействия БТШ с иммунной системой. Исходя из этого, данная работа, посвященная исследованию иммуномодулирующих эффектов БТШ, обладает существенной практической значимостью. Можно предположить, что направленный контроль экзоцитоза БТШ лимфоидными клетками может служить основой для разработки нового подхода к проблеме иммунорегуляции. В то же время, обнаруженные корреляции между продукцией перекисных форм кислорода и экспрессией БТШ у иммунокомпетентных клеток открывают новые возможности для терапевтического вмешательства в воспалительные процессы.

АПРОБАЦИЯ РАБОТЫ

Материалы диссертации были представлены на XIV зимней международная научной школе «Перспективные направления физико-химической биологии и биотехнологии» (Москва, 2002), на шестой международной иммунологической летней школе им. Дж. Хэмфри (Пущино, 2002), на VI чтениях, посвященных памяти академика Ю. А. Овчинникова (Москва — Пущино, 2002), на шестой научной конференции с международным участием «Дни иммунологии в Санкт-Петербурге» (Санкт-Петербург, 2002), на 7-ом региональном конгрессе Азии/Океании по геронтологии (Токио, 2003), на Всероссийской конференции «Человек и лекарство» (Москва, 2004), на VIII Всероссийском научном форуме с международным участием «Дни иммунологии в Санкт-Петербурге» (Санкт-Петербург 2004), на XVII зимней молодежной научной школе «Переспективные направления физико-химической биологии и биотехнологии» (Москва, 2005).

ПУБЛИКАЦИИ По теме диссертации опубликовано 16 печатных работ.

СТРУКТУРА И ОБЪЕМ ДИССЕРТАЦИИ

Диссертация состоит из следующих разделов: введения, обзора литературы (глава 1, 2, 3, 4 и 5), материалов и методов (глава 6), результатов исследований и обсуждения (глава 7), выводов и списка литературы. Работа изложена на 133 страницах машинописного текста, содержит 29 рисунков, 2 таблицы.

Список литературы

включает 208 источник, из которых 204 иностранных.

ОБЗОР ЛИТЕРАТУРЫ

Выводы

1. Экзогенные БТШ70 обладают модулирующим действием на продукцию АФК клетками иммунной системы. В модели «кислородного взрыва» при воздействии опсонизированного зимозана па человеческие лейкоциты, экзогенные БТШ70 существенно снижают амплитуду дыхательного взрыва. Гипертермическая активация генов БТШ70 (тепловой шок) также снижает амплитуду «кислородного взрыва».

2. «Кислородный взрыв», индуцированный ЛПС и ФМА в клетках костного мозга вызывает увеличение экспрессии БТШ70 через 4−24 часа. В более ранний период — через 30−60 минут от начала «кислородного взрыва» уровень БТШ70 в клетке падает.

3. Гормоны стресса влияют на аплитуду «дыхательного взрыва» и экспрессию БТШ70 в иммунокомпетептпых клетках. Адреналин угнетает продукцию АФК. При этом, внутриклеточная экспрессия БТШ70 вначале (1 час) надает, а на более поздних сроках (4−21 час) возрастает. Дексаметазон в этой же модели пе оказывает влияния на уровень внутриклеточных перекисных форм кислорода, но ингибирует синтез БТШ70.

4. Воздействие на лейкоциты периферической крови человека стафилококками также приводит к падению на начальной фазе ответа внутриклеточного содержания БТШ70, сопровождающего рост продукции АФК.

5. В ходе старения в человеческих лейкоцитах возрастает уровень внутриклеточных АФК и уменьшается внутриклеточная экспрессия БТШ70.

6. Поликатионы стимулируют синтез внутриклеточных АФК и снижают содержание БТШ70 в клетках костного мозга.

7. БТШ70, секретируемые опухолевыми клетками, демонстрируют противоопухолевую активность, что свидетельствует о возможности создания на их основе противоопухолевых вакцин.

Показать весь текст

Список литературы

  1. Ю.А., Азизова О. А., Дсев А. И. Свободные радикалы в живых системах. Итоги науки и техники, сер. биофизика, 1991, т. 29.
  2. В.И. Активные формы кислорода и оксидативпая модификация макромолекул: польза, вред и защита. Статьи Соросовского Образовательного журнала, Биология, 1999,
  3. A.M. Исследование . связи иммуномодулирующих свойств поликатионов с параметрами их адсорбции на поверхности иммунокомпетентных клеток. М., дисс. на соиск. уч. ст. к.б.н., 1987, с. 129.
  4. A.M., Пономарев Е.Д.', Гусарова Г. А. О взаимосвязи апоптоза клеток лимфомы EL-4 с экспрессией белков теплового шока. Доклады Академии Наук, 2000, т. 375, N 4, с. 576−579.
  5. P.M., Лесков В. П. Иммунитет и стресс. Росс, физиол. журнал им. Сеченова, 2001, т. 87, N 8, с. 1060−1072.
  6. Akbar M.A., Chatterjee N.S., Sen P., Debnath A., Pal A., Bera Т., Das P. Genes induced by a high-oxygen environment in Entamoeba histolytica. Mol. Biochem. Parasitol., 2004, v. 133, N 2, p. 187−196.
  7. Ali A., Bharadwai S., O’Carroll R., Ovenek N. HSP90 interacts with and regulate the activity of heat shock factor 1 in Xenopus oocytes. Mol. Cell. Biol., 1998, v. 18, p. 4949−4960.
  8. Altmeyer A., Maki R.G., Feldweg A.M., Heike M., Protopopov V.P., Masur S.K., Srivastava P.K. Tumor-specific cell surface expression of the KDEL containing, endoplasmic reticular heat-shock protein gp96. Int. J. Cancer, 1996, v. 69, p. 340−349.
  9. Anderson К., Cresswell P. A role of calnexin (IP90) in the assembly of class II MHC molecules. EMBO J., 1994, v. 13, p. 675−682.
  10. Arata S, Hamaguchi S., Nose K. Effects of the overexpression of the small heat shock protein, HSP27, on the sensitivity of human fibroblast cells exposed to oxidative stress. J. Cell. Physiol., 1995, v. 163, p. 458.
  11. Arnaud C., Joyeux M., Garrel C., Godin-Ribuot D., Demenge P., Ribuot C. Free-radical production triggered by hyperthermia contributes to heat stress-induced cardioprotection in isolated rat hearts. Br. J. Pharmacol., 2002, v. 135, N7, p. 1776−1782.
  12. Asea A., Kabingu E., Stevenson M.A., Calderwood S.K. HSP70 peptide-bearing and peptide-negative preparations act as chaperokines. Cell Stress Chaperones, 2000, v. 5, N 5, p. 425−431.
  13. Barazzone C., Kantengwa S., Suter S., Polla B.S. Phagocytosis of Pseudomonas aeruginosa fails to elicit heat shock protein expression in human monocytes. Inflammation, 1996, v. 20, N 3, p. 243−262.
  14. Basu S., Binger R., Ramalingam Т., Srivastava P. CD91 is a common receptor for heat shock protein gp96, hsp90, hsp70, and calreticulin. Immunity, 2001, v.'14, p. 303−313.
  15. Basu S., Srivastava P.K. Heat shock proteins: the fountainhead of innate and adaptive immune responses. Cell Stress Chaperones, 2000, v. 5, p. 443 451.
  16. Benjamin I.J., McMillan D.R. Stress protein in cardiovascular system. Circ. Res., 1998, v. 83, p. 117−132.
  17. Bharadwaj S., Ali A., Ovsenek N. Multiple components of the IISP90 chaperone complex function in regulation of heat shock factor 1 in vivo. Mol. Cell. Biol., 1999, v. 19, p. 8033−8041.
  18. Binger R., Han D., Srivastava P. CD91: a receptor for heat shock protein gp96. Nat. Immunol., 2000, v. 1, p. 151−155.
  19. Blachere N.E., Srivastava P.K. Heat shock protein-based cancer vaccines and related thoughts on immunogenicity of human tumors. Semin. Cancer Biol., 1995, v. 6, N6, p. 349−355.
  20. Blachere N.E., Udono H., Janetzki S., Li Z., Heike M., Srivastava P.K. Heat shock protein vaccines against cancer. J. Immunother., 1993, v. 14, N 4, p. 352−356.
  21. Bleeke Т., Zhang H., Madamanchi N., Patterson C., Faber J.E. Catecholamine-induced vascular wall growth is dependent on generation of reactive oxygen species. Circ. Res., 2004, v. 94, N 1, p. 37−45.
  22. Bonnerot C., Marks M., Cosson P., Robertson E., Bikof E., Germain R., Bonilacino J. Association with Bip and aggregation of class II MI 1С molecules synthesized in the absence of invariant chain. EMBO J., 1994, v. 13, p. 934−944.
  23. Bornman L., Baladi S., Richard M.J., Tyrrell R.M., Polla B.S. Differential regulation and expression of stress proteins and ferritin in human monocytes. J. Cell Physiol., 1999, v. 178, N 1, p. 1−8.
  24. Bradford M. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, v. 72, p. 248−254.
  25. Breloer M., Fleischer В., Bonin A. In vivo and in vitro activation of T cells after administration of Ag-negative heat shock proteins. J. Immunol., 1999, v. 162, p. 3141.
  26. Bruey J., Ducasse C., Bonniaud P., Ravagnan L., Susin S., Diaz-Latoud C., Gurbuxani S., Arrigo A., Kroemer G., Solary E., Garrido C. IIsp27negatively regulates cell death by interacting with cytochrome C. Nat. Cell. Biol., 2000, v. 2, p. 645−652.
  27. Bucher J. IJSP90 and Co.-a holding for folding. TIBS, 1999, v. 24, p. 136−141.
  28. Calini V., Urani C., Camatini M. Overexpression of HSP70 is induced by ionizing radiation in СЗН 10T½ cells and protects from DNA damage. Toxicol. In Vitro, 2003, v. 17, N 5−6, p. 561−566.
  29. Chen D., Androlewicz M. Heat shock protein 70 moderately enhances peptide binding and transport by the transporter associated with antigen processing. Immunol. Lett., 2001, v. 75, p. 143−148.
  30. Chong K.Y., Lai C.C., Lille S., Chang C., Su C.Y. Stable overexpression of the constitutive form of heat shock protein 70 confers oxidative protection. J. Mol. Cell Cardiol., 1998, v. 30, N 3, p. 599−608.
  31. Cleary M.L., Smith S.D., Sklar J. Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t (14−18) translocation. Cell, 1986, v. 47, p. 19.
  32. Clerget M., Polla B.S. Erythrophagocytosis induces heat shock protein synthesis by human monocytes-macrophages. Proc. Natl. Acad. Sci. USA, 1990, v. 87, p. 1081−1085.
  33. Creagh E., Cotter T. Selective protection by Hsp 70 against cytotoxic drug- but not Fas-induced T-cell apoptosis. Immunology, 1999, v. 97, p. 36−44.
  34. Dastoor Z., Dreyer J. Nuclear translocation and aggregate formation of heat shock cognate protein 70 (Hsc70) in oxidative stress and apoptosis. J. Cell Sci., 2000, v. 113, N 16, p. 2845−2854.
  35. Dean R.T., Fu S., Stocker R., Davies M.J. Biochemistry and pathology of radical-mediated protein oxidation. Biochem J., 1997, v. 324, N 1, p. 1−18.
  36. Del Giudice G. Hsp70: a carrier molecule with built-in adjuvanticity. Experientia, 1994, v. 50, N 11−12, p. 1061−1066.
  37. Demand J., Luders J., Hohfeld J. The carboxy-terminal domain of Hse70 provides binding sites for a distinct set of chaperone cofactors. Mol. Cell. Biol., 1998, v. 18, p. 2023−2028.
  38. Dimmeler S., Haendeler J., Nehls M., Zeiher A.M. Suppretion of apoptosis by nitic oxide via inhibition of IL-lbetta-converting enzime (ICE)-like and cystein protease protein (CPP)-32 like proteases. J. Exp. Med., 1997, v. 185, N 4, p. 601−607.
  39. Ding Q., Keller J.N. Proteasome inhibition in oxidative stress neurotoxicity: implications for heat shock proteins. J. Neurochem., 2001, v. 77, N 4, p. 1010−1017.
  40. Droge W. Free Radicals in the Physiological Control of Cell Function. Physiol. Rev., 2002, v. 82, N 1, p. 47−95.
  41. Dukan S., Farewell A., Ballesteros M., Taddei F., Radman M., Nystrom T. Protein oxidation in response to increased transcriptional or translational errors. PNAS, 2000, v. 97, p. 5746−5749.
  42. Eden W., Ruurd Z., Paul A.G., Prakken B.J., Wendling U., Anderton, S.M., Wauben H.M. Do heat shock proteins control the balance of T-cell regulation in inflammatory diseases? Immunol. Today, 1998, v. 19, p. 303.
  43. Elia G., Polla В., Rossi A., Santoro M.G. Induction of ferritin and heat shock proteins by prostaglandin Al in human monocytes. Evidence for transcriptional and post-transcriptional regulation. Eur. J. Biochem., 1999, v. 264, N 3, p. 736−745.
  44. Ellis J. Proteins as molecular chaperones. Nature, 1987, v. 328, p. 378 379.
  45. Erkeller-Yeksel F., Isenberg D., Dhillon V., Latchman D., Lydyard P. Surface expression of heat shock protein 90 by blood mononuclear cells from patients with systemic lupus erythematosus. J. Autoimmun., 1992, v. 5, p. 803−814.
  46. Ernani F" Tcale J. Release of stress proteins from Mesocestoides corti is a brefeldin-A inhibitable process: evidence for active export of stress proteins. Infect. Immunol., 1993, v. 61, p. 2596−2601.
  47. Feder M.E., Ilofmann G.E. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol., 1999, v. 61, p. 243−282.
  48. Ferrarini M., Heltai S., Zocchi M.R., Rugarli C. Unusual expression and localization of heat-shock proteins in human tumor cclls. Int. J. Cancer., 1992, v. 51, N4, p. 613−619.
  49. Ferraris M., Radice S., Catalani P., Francolini M., Marabini L., Chiesara E. Early oxidative damage in primary cultured trout hepatocytes: a time course study. Aquat. Toxicol., 2002, v. 59, N 3−4, p. 283−296.
  50. Ferrero R., Thiberge J-M., Kansau I., Wuscher N., Huerre M., Labigne A. The groES homolog of Helicobacter pylori confers protective immunity against mucosal infection in mice. PNAS, 1995, v. 92, p. 6499−6503.
  51. Finkel Т., Holbrook N. Oxidants, oxidative stress and the biology of ageing. Nature, 2000, v. 408, p. 239−247.
  52. Freedman M., Buu N., Ruijs Т., Williams K., Antel J. Differential expression of heat shock proteins by human glial cells. J. Neuroimmunol., 1992, v. 41, p. 231−238.
  53. Fujihara S., Nadler S. Intranuclear targeted delivery of functional NF-kB by 70kDa heat shock protein. EMBO J., 1999, v. 18, N 2, p. 411−419.
  54. Fukayama S., Lanske В., Guo J., Kronenberg H.M., Bringhurst F.R. Regulation of HSP70 by PTH: a model of gene regulation not mediated by changes in cAMP levels. Am. J. Physiol., 1996, v. 271, N 1, p. 121−129.
  55. Gabai V., Meriin A., Mosser D., Caron A., Rits S., Shifrin V., Sherman M. HSP 70 prevents activation of stress kinases. A novel pathway of cellular thermotolerance. J. Biol. Chem., 1997, v. 272, N 29, p. 18 033−18 037.
  56. Gordon S., Hoffman R., Simmons R. Induction of Heat Shock Protein 70 protects thymocytes against radiation-induced apoptosis. Arch. Surg., 1997, v. 132, p. 1277−1282.
  57. Gorman A.M., Heavey В., Creagh E., Cotter T.G., Samali A. Antioxidant-mediated inhibition of the heat shock response leads to apoptosis. FEBS Lett., 1999, v. 445, N 1, p. 98−102.
  58. Harada M., Kimura G., Nomoto K. Heat shock proteins and the antitumor T cell response. Biotherapy, 1998, v. 10, p. 229−235.
  59. Hartl F. Molecular chaperones in cellular protein folding. Nature, 1996, v. 381, p. 571−579.
  60. Ilightower L., Guidon P. Selective release from cultured mammalian cells of heat -shock (stress) proteins that resemble glia-axon transfer proteins. J. Cell Physiol., 1989, v. 138, N 2, p. 257−266.
  61. Ilightower L.E., Hendershot L.M. Molecular chaperones and the heat shock response at Cold Spring Harbor. Cell Stress Chaperones, 1997, v. 2, N 1, p. 111.
  62. Hiromatsu K., Yoshikai Y., Matsuzaki G., Ohga S., Muramatori K., Matsumoto K., Bluestone J., Nomoto K. A protective role of yS T cells in primary infection with Listeria monocytogenes in mice. J. Exp. Med., 1992, v. 175, p. 49−56.
  63. Hoeger P., Tepper M., Faith A., Iliggins J., Lamb J., Geha R. Immunosupressant deoxyspergualin inhibits antigen processing in monocytes. J. Immunol., 1994, v. 153, p. 3908−3916.
  64. Houenou L., Li L., Kent C., Tytel M. Exogenous heat shock cognate protein I Isc70 prevents axotomy-induced death of spinal sensory neurons. Cell Stress Chaperones, 1996, v. l, p. 161−166.
  65. Hurst N.P. Stress (heat shock) proteins and rheumatic disease. New advance or just another band wagon? Rheumatol. Int., 1990, v. 9, N 6, p. 271−276.
  66. Imani F., Soloski M. Heat shock proteins can regulate expression of the Tla region-encoded class lb molecule Qa-1. PNAS, 1991, v, 88, p. 10 475−10 479.
  67. Ishizaka N., Aizawa Т., Ohno M., Usui Si S., Mori L, Tang S.S., Ingelfinger J.R., Kimura S., Nagai R. Regulation and localization of IISP70 and
  68. HSP25 in the kidney of rats undergoing long-term administration of angiotensin II. Hypertension, 2002, v. 39, N 1, p. 122−128.
  69. Jacquier-Sarlin M.R., Polla B.S. Dual regulation of heat-shock transcription factor (HSF) activation and DNA-binding activity by H2O2: role of thioredoxin. Biochem. J., 1996, v. 318, N 1, p. 187−193.
  70. Jacquier-Sarlin M.R., Jornot L., Polla B.S. Differential expression and regulation of hsp70 and hsp90 by phorbol esters and heat shock. J. Biol. Chem., 1995, v. 270, N 23, p. 14 094−14 099.
  71. Jin Т., Gu Y., Zanusso G., Sy M., Kumar A., Cohen M., Gambetti P., Singh N. The chaperone protein BiP binds to a mutant prion protein and mediates its degradation by the proteasome. J. Biol. Chem., 2000, v. 275, p. 38 699−38 704.
  72. Jolly C., Morimoto R. Role of heat shock response and molecular chaperones in oncogenesis and cell death. J. Natl. Cancer Inst., 2000, v, 92, p. 15 641 572.
  73. Jurivich D.A., Sistonen L., Kroes R.A., Morimoto R.I. Effect of sodium salicylate on the human heat shock. Science, 1992, v. 255, p. 1243−1245.
  74. Kanei-Ishii C., Tanikawa J., Nakai A., Morimoto R.I., Ishii S. Activation of heat shock factor 3 by c-Myb in the absence of cellular stress. Science, 1997, v. 277, p. 246−248.
  75. Kantengwa S., Polla B.S. Phagocytosis of Staphylococcus aureus induces a selective stress response in human monocytes-macrophagcs (M phi): modulation by M phi differentiation and by iron. Infection and immunity, 1993, v. 61, N4, p. 1281−1287.
  76. Kaufmann S. Heat shock proteins and the immune response. Immunol. Today, 1990, v. 11, p. 129−136.
  77. Kaufmann S., Vath U., Thole J., van Embden J., Emmrich F. Enumeration of T-eells reactive with Mycobacterium tuberculosis organisms and specific for recombinant mycobacterial 64-kDa protein. Eur. J. Immunol., 1987, v. 17, p. 351−357.
  78. Kim J., Nueda A., Meng Y.H., Dynan W.S., Mivechi N.F. Analysis of phosphorilation of human heat shock transcription factor-1 by MAP kinase family members. J. Cell Biochem., 1997, v. 67, N 1, p. 43−54.
  79. Kroemer G., Zamzami, Susin A. Mitochondrial control of apoptosis. Immunol. Today, 1997, v. 18, N 1, p. 44.
  80. Lacoste A., De Cian M.C., Cueff A., Poulet S.A. Noradrenaline and alpha-adrenergic signaling induce the hsp70 gene promoter in mollusc immune cells. J. Cell Sci., 2001, v. 114, N 19, p. 3557−3564.
  81. Lacoste A., Malham S.K., Cueff A., Poulet S.A. Noradrenaline modulates hemocytc reactive oxygen species 'production via beta-adrenergic receptors in the oyster Crassostrea gigas. Dev. Сотр. Immunol, 2001, v. 25, N 4, p. 285−289.
  82. Lammert E., Arnold D., Nijenhuis M., Momburg F" Hammerling G., Brunner J., Stefanovic S., Rammensee H., Schild H. The endoplasmic reticulum-resident stress protein gp96 binds peptides translocated by TAP. Eur. J. Immunol., 1997, v. 27, p. 923−927.
  83. Lander H.M. An essential role for free radicals and derived species in signal transduction. FASEB J., 1997, v. 11, N 1, p. 118−124.
  84. Leppa S" Pirkkala L., Chow S.C., Eriksson I.E., Sistonen L. Thioredoxin is transcriptionally induced upon activation of heat shock factor 2. J. Biol. Chem., 1997, v. 272, p. 30 400−30 404.
  85. Lussow A.R., Barrios C., van Embden J., van der Zee R., Verdini A.S., Pessi Д., Louis J.A., Lambert P. I I., Del Giudice G. Mycobacterial heat-shock proteins as carrier molecules. Eur. J. Immunol., 1991, v. 21, N 10, p. 2297−2302.
  86. Lutz N. The heat shock response of eukaryotic cells. Biol. Zbl., 1984, v. 103, p. 357−435.
  87. Lynch M.P. Evidence for soluble factors regulating cell death and cell proliferation in primary cultures of rabbit endometrial cells grown on collagen. Proc. Natl. Acad. Sci. USA, 1986, v. 83, p. 4784.
  88. Ma Y., Cao L., Kawabata Т., Yoshino Т., Yang B.B., Okada S. Cupric nitrilotriacetate induces oxidative DNA damage and apoptosis in human leukemia HL-60 cells. Free Radic. Biol. Med., 1998, v. 25, N 4−5, p. 568−575.
  89. Mamelak D., Lingwood C. Expression and sulfogalactolipid binding specificity of the recombinant testis-specific cognate heat shock protein 70. Glycoconjugate J., 1997, v. 14, p. 715−722.
  90. Maridonneau-Parini I., Clerc J., Polla B.S. Heat shock inhibits NADPH oxidase in human neutrophils. Biochem. Biophys. Res. Commun., 1988, v. 154, N l, p. 179−186.
  91. Mariethoz E., Jacquier-Sarlin M.R., Multhoff G., Healy A.M., Tacchini-Cottier F., Polla B.S. Heat shock and proinflammatory stressors inducedifferential localization of heat shock proteins in human monocytes. Inflammation, 1997, v. 21, N6, p. 629−642.
  92. Marini M., Frabetti F., Franceschi C. Oxygen radicals induse stress protein and tolerance to oxidative stress in human lymphocytes. Int. J. Radiant. Biol., 1996, v. 70, N 3, p. 337−350.
  93. Martin J., Ulrich F. Chaperon-assisted protein folding. Curr. Opinion Stuct. Biol., 1997, v. 7, p. 41−52.
  94. Mathew A., Mathur S., Morimoto R. Heat shock response and protein degradation: regulation of HSF2 by the ubiquitin-proteasome pathway. Moll. Cell. Biol., 1998, v. 18, p. 5091−5098.
  95. McCoubrey W.K., Huang T.J., Maines M.D. Isolation and characterization of cDNA from the rat brain that encodes hemoprotein heme oxigenase-3. Eur. J. Biochem., 1997, v. 247, p. 725−732.
  96. McLaughlin В., Hartnett K.A., Erhardt J.A., Legos J.J., White R.F., Barone F.C., Aizenman E. Caspase 3 activation is essential for neuroprotection in preconditioning. Proc. Natl. Acad. Sci. USA, 2003, v. 100, N 2, p. 715−720.
  97. McLennan N., Masters M. GroE is vital for cell-wall synthesis. Nature, 1998, v. 392, p. 139.
  98. McMillan D.R., Xiao X., Shao L., Graves K., Beniamin M. Targeted disruption of heat shock transcription factor 1' abolishes thermotolerance and protection against heat-inducible apoptosis. J. Biol. Chem., 1998, v. 273, p. 75 237 528.
  99. Mehlen P., Schulzc-Osthoff K., Arrido A.P. Small stress proteins as novel regulators of apoptosis. J. Biol.Chem., 1996, v. 271, p. 16 510.
  100. Melnick J., Argon Y. Molecular chaperones and the biosynthesis of antigen receptors. Immunol. Today, 1995, v. 16, p. 243−250.
  101. Menoret A., Chandawarkar R. Heat-shock protein-based immunotherapy: an idea whose time has come. Semin. Oncol., 1998, v. 25, p. 654 660.
  102. Morimoto R.I. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Gen. Dev., 1998, v. 12, p. 3788−3796.
  103. Multhoff G., Botzler C., Wiesnet M., Muller E., Meier Т., Wilmanns W., Issels R.D. A stress-inducible 72-kD heat-shock protein (HSP72) is expressed on the surface of human tumor cells, but not on normal cells. Int. J. Cancer, 1995, v. 61, p. 272−279.
  104. Multhoff G. Heat shock protein 72 (HSP72), a hyperthermia-inducible immunogenic determinant on leukemic K562 and Ewing’s sarcoma cells. Int. J. Hyperthermia, 1997, v. 13, p. 39.
  105. Multhoff G., Botzler C., Issels R. The role of heat shock proteins in the stimulation of an immune response. Biol. Chem., 1998, v. 379, p. 295−300.
  106. Multhoff G., Botzler C., Jennen L., Schmidt J., Ellwart J., Issels R. Heat shock protein 72 on tumor cells: a recognition structure for natural killer cells. J. Immunol., 1997, v. 158, p. 4341−4350.
  107. Multhoff G., Botzler C., Wiesnet M., Eissner G., Issels R. CD3- large granular lymphocytes recognize a heat-inducible immunogenic determinantassociated with the 72-kD heat shock protein on human sarcoma cells. Blood, 1995, v. 86, p. 1374.
  108. Multhoff G., Ilightower L. Cell surface expression of heat shock proteins and immune response. Cell stress chaperones, 1996, v. 1, N 3, p. 167−176.
  109. Munk M., Schoel В., Modrow S., Karr R., Youhg R., Kaufmann S. T lymphocytes from healthy individuals with specificity to self epitopes shared by the mycobacterial and human 65-kilodalton heat shock protein. J. Immunol., 1989, v, 143, p. 2844−2849.
  110. Nageswara R.M., Li S., Patterson C., Runge M.S. Reactive Oxygen Species Regulate Heat-Shock Protein 70 via the JAK/STAT pathway. Arterioscler. Thromb. Vase. Biol., 2001, v. 21, p. 321−326.
  111. Nobel C.S., Burgess D.H., Zhivotovsky В., Burkitt M" Orrenius S" Slater A.F. Disulfiram is a potent inhibitor of proteases of the caspase family, Chem. Res. Toxicol., 1997, v. 10, N 12, p. 636.
  112. Noll A., Roggenkamp A., Heeseman J., Autenreith I. Protective role for heat shock protein-reactive aPTcells in murine yersiniosis. Infect. Immun., 1994, v. 62, p. 2784−2791.
  113. Nosseri C., Coppola S., Ghibelli L. Possible involvement of poly (ADF-ribosyl) polymerase in triggering stress-induced apoptosis. I: xp. Cell Res., 1994, v. 212, p. 367−373.
  114. Ohlmann A., Giffhorn-Katz S., Becker I., Katz N., Immenschuh S. Regulation of heme oxygenase-1 gene expression’by anoxia and reoxygenation in primary rat hepatocyte cultures. Exp. Biol. Med. (Maywood), 2003, v. 228, N 5, p. 584−589.
  115. Ohtsuka К., Suzuki Т. Roles of molecular chaperones in the nervous system. Brain Res. Bull., 2000, v. 53, p. 141−146.
  116. Ortmann В., Androlcwicz M., Cresswell P. MHC class I/p2 microglobulin complexes associate with the TAP transporter before peptide binding. Nature, 1994, v. 368, p. 864−867.
  117. Park Y.M., Han M.Y., Blackburn R.V., Lee Y.J. Overexpression of HSP25 reduces the level of TNF alpha-induced oxidative DNA damage biomarker, 8-hydroxy-2'-deoxyguanosine, in L929 cells. J. Cell Physiol., 1998, v. 174, N 1, p. 27−34.
  118. Peng P., Menoret A., Srivastava P.K. Purification of immunogenic heat shock protein 70-peptide complexes by ADP-affinity chromatography. Journal oflmmunological Methods, 1997, v. 204, p. 13−21.
  119. Poccia F., Piselli P., Vendetti S., Bach S., Amendola A., Placido R.,
  120. Colizzi V. Heat-shock protein expression on membrane of T cells undergoingapoptosis. Immunology, 1996, v. 88, p. 6−12.
  121. Pockley A.G., Shepherd J., Corton J.M. Detection of heat shock protein 70 (HSP70) and anti-HSP70 antibodies in the serum of normal individuals. Immunol. Inevst., 1998, v. 27, p. 367−377.
  122. Polla B.S., Kantengowa S., Franois D., Salvioli S., Franccschi C., Marsac C., Cossarizza A. Mitochondria are selective targets for the protective effects of heat shock against oxidative injury. Proc. Natl. Acad. Sci. USA, 1996, v. 93, p. 6458−6469.
  123. Polla B.S., Stubbe H., Kantengwa S., Maridonneau-Parini I., Jacquier-Sarlin M.R. Differential induction of stress proteins and functional effects of heat shock in human phagocytes. Inflammation, 1995, v. 19, N 3, p. 363−378.
  124. Przepiorka D., Srivastava P.K. Heat shock protein-peptide complexes as immunotherapy for human cancer. Mol. Med. Today, 1998, v. 4, N 11, p. 478 484.
  125. Raza H., Robin M.A., Fang J.K., Avadhani N.G. Multiple isoforms of mitochondrial glutathione S-transferases and their differential induction under oxidative stress. Biochem. J., 2002, v. 366, N 1, p. 45−55.
  126. Renis M" Cardile V., Grasso S., Palumbo M., Scifo C. Switching off HSP70 and i-NOS to study their role in normal and H202-stressed human fibroblasts. Life Sci., 2003, v. 74, N 6, p. 757−769.
  127. Ritossa F.A. New puffing pattern indused by heat shock and DNA in Drosophila. Experientia, 1962, v. 18, p. 571−573.
  128. Roman E., Moreno C. Delayed-type hypersensitivity elicited by synthetic peptides complexed with Mycobacterium tuberculosis hsp 70. Immunology, 1997, v. 90, p. 52−56.
  129. Roman E., Moreno C. Synthetic peptides non-covalently bound to bacterial hsp70 elicit peptide-specific T-cell responses in vivo. Immunology, 1996, v. 88, N4, p. 487−492.
  130. Sandstrom P.A. et al. Inhibition of activation-indused death in T cell hybridomas by thiol antioxidants: oxidative stress as a mediator of apoptosis. J. Leukoc. Biol., 1994, v. 55, p. 221.
  131. Sapozhnikov A.M., Gusarova G.A., Ponomarev E.D., Telford W.G. Translocation of cytoplasmic IISP70 onto the surface of EL-4 cells during apoptosis. Cell Prolif., 2002, v. 35, N 4, p. 193−206.
  132. Sato S., Fujita N., Tsuruo T. Modulation of Akt kinase activity by binding to Hsp90. PNAS, 2000, v. 97, p. 10 832−10 837.
  133. Schirmbeck R., Reimann J. Peptide transporter-independent stress protein-mediated endosomal processing of endogenous protein antigens for major histocompatibility complex class I presentation. Eur. J. Immunol., 1994, v. 24, p. 1478−1486.
  134. Schlesinger M. Heat shock proteins. J. Biol. Chem., 1990, v. 265, p. 12 111−12 114.
  135. Schoenberger S., van der Voort E., Krietemeijer G., Offringa R., Melief C., Toes R. Cross priming of CTL responses in vivo does not require antigenic peptides in the endoplasmic reticulum of immunizing cells. J. Immunol., 1998, v. 161, p. 3808−3812.
  136. Shinnick T. Heat shock proteins as antigens of bacterial and parasitic pathogens. Curr. Top. Microbiol. Immunol., 1991, v. 167, p. 145−160.
  137. Slater A.F. et al. Nitrone spin traps and nitroxide antioxidant inhibit a common pathway of thymocyte apoptosis. Biochem. J., 1995, v. 306, p. 771.
  138. Slater A.F., Stefan С., Nobel I., van den Dobbelsteen D.J., Orrenius S. Signalling mechanisms and oxidative stress in apoptosis. Toxicol. Lett., 1995, v. 8283, p. 149−153.
  139. Smith D.F., Whitesell L., Katsanis E. Molecular chaperones: biology and prospects for pharmacological intervention. Pharm. Rev., 1998, v. 50, N 4, p. 493−513.
  140. Srivastava P., Hegde L.G., Patnaik G.K., Dikshit M. Role of endothelial-derived reactive oxygen species and nitric oxide in norepinephrine-induced rat aortic ring contractions. Pharmacol. Res., 1998, v. 38, N 4, p. 265−274.
  141. Srivastava P. Heat shock proteins in immune response to cancer: the fourth paradigm. Experientia, 1994, v. 50, p. 1054−1060.
  142. Srivastava P. Roles of heat-shock proteins in innate and adaptive immunity. Nat. Rev. Immunol., 2002, v. 2, p. 185−194.
  143. Srivastava P.K., Udono H. Heat shock protein-peptide complexes in cancer immunotherapy. Curr. Opin. Immunol., 1994, v. 6, N 5, p. 728−732.
  144. Srivastava P.K. Heat shock proteins in immune response to cancer: the Fourth Paradigm. Experientia, 1994, v. 50, N 11−12, p. 1054−1060.
  145. Steinhoff U., Zugel U., Hengel H., Rosch R., Munk M., Kaufmann S.H. Prevention of autoimmune lysis by T cells with specificity for a heat shock protein by anti-sense oligonucleotide treatment. Proc. Natl. Acad. Sci. USA, 1994, v. 91, p. 5085−5088.
  146. Suzue K., Young R. Adjuvant-free hsp70 fusion protein system elicits humoral and cellular immune responses to HIV-1 p24. J. Immunol., 1996, v. 156, p. 873−879.
  147. Suzue K., Young R. Heat shock proteins as immunological carriers and vaccines. EXS., 1996, v. 77, p. 451−465.
  148. Suzuki Y.J., Forman H.J., Sevanian A. Oxidants as stimulators of signal transduction. Free Radical. Biol. Med., 1997, v. 22, N 1−2, p. 269−285.
  149. Tavaria M., Gabriele Т., Kola I., Anderson R.L. A hitchhiker’s guide to the human IISP70 family. Cell Stress Chaperones, 1996, v. 1, p. 23−28.
  150. Taylor D., Badiani P., Weston K. A dominant interfering Myb mutant causes apoptosis in T cells. Genes Dev., 1996, v. 10, N 21, p. 2732.
  151. Thomas G., Souil E., Richard M.J., Saunier В., Polla B.S., Bachelet M. Hyperthermia assists survival of astrocytes from oxidative-mediated necrotic cell death. Cell Mol. Biol. (Noisy-le-grand), 2002, v. 48, N 2, p. 191−198.
  152. Tissieres A., Mitchell N.K., Tracy U.M. Protein synthesis in salivary glands of Drosophila Melanogaster: relation of chromosome puffs. J. Mol. Biol., 1974, v. 84, p. 389−398.
  153. Troadec J.D., Marien M., Darios F., Hartmann A., Ruberg M., Colpaert F., Michel P.P. Noradrenaline provides long-term protection to dopaminergic neurons by reducing oxidative stress. J. Neurochem., 2001, v. 79, N 1, p. 200−210.
  154. Udono H., Srivastava P.K. Comparison of tumor-specific immunogenicities of stress-induced proteins gp96, hsp90, and hsp70. J. Immunol., 1994, v. 152, N 11, p. 5398−5403.
  155. Ueom J., Kwon S., Kim S., Chae Y., Lee K. Acquisition of heat shock tolerance by regulation of intracellular redox states. Biochim. Biophys. Acta., 2003, v. 1642, N 1−2, p. 9−16.
  156. Van Eden W., Thole J., van der Zee' R., Nordzij A., van Embden J., Hensen E., Cohen I. Cloning of the mycobacterial epitope recognized by T lymphocytes in adjuvant arthritis. Nature, 1988, v. 331, p. 171−173.
  157. Vanbuskirk A., Crump В., Margoliash E., Pierce S. A peptide binding protein having a role in antigen presentation is a member of the hsp70 heat shock family. J. Exp. Med., 1989, v. 170, p. 1799−1809.
  158. Verbeke P., Clark B.F., Rattan S.I. Reduccd levels of oxidized and glycoxidized proteins in human fibroblasts exposed to repeated mild heat shock during serial passaging in vitro. Free Radic. Biol. Med., 2001, v. 31, N 12, p. 15 931 602.
  159. Verbeke P., Fonager J., Clark В., Rattan S. Heat shock response and aging: mechanisms and applications. Cell Biol. Int., 2001, v. 25, N 9, p. 845−857.
  160. Vigh L., Maresca В., Harwood J.L. Docs the membrane’s physical state control the expression of heat shock and other genes? TIBS, 1998, v. 23, p. 369−374.
  161. Wand-Wurttenberger A., Schoel В., Ivanyi J., Kaufmann S. Surface expression by mononuclear phagocytes of an epitope shared with mycobacterial heat shock protein 60. Eur. J. Immunol., 1991, v. 21, p. 1089−1092.
  162. Wang X.Y., Kazim L., Repasky E.A. et al. Characterization of Heat, Shock Protein 110 and Glucose-Regulated Protein' 170 as Cancer Vaccines and the Effect of Fever-Range Hyperthermia on Vaccine Activity. J. Immunol., 2001, v. 166, N l, p. 490−497.
  163. Welch W.J. Mammalian stress response: cell physiology, structure/ function of stress proteins, and implications for medicine and disease. Physiol. Rev., 1992, v. 72, N4, p. 1063−1081.
  164. Wells A., Rai S., Salvato M., Band H., Malkovsky M. Hsp72-mediated augmentation of MHC class I surface expression and endogenous antigen presentation. Int. Immunol., 1998, v. 10, p. 609−617.
  165. White F. The synthesis and possible transport of specific proteins by cells associated with brain capillaries. J. Neurochem., 1980, v. 35, p. 88−94.
  166. Wiseman H., Halliwell B. Damage to DNA by reactivc oxygen and nitrogen species: role in inflammatory disease and-progression to canccr. Biochem. J., 1996, v. 313, N l, p. 17−29.
  167. Xanthoudakis S., Nicholson D. Heat-shock proteins as death determinants. Nat. Cell. Biol., 2000, v. 2, p. 163−165.
  168. Xu Q., Schett G., Seitz C.S., Hu Y., Gupta R.S., Wick G. Surface staining and cytotoxic activity of heat-shock protein 60 antibody in stressed aortic endothelial cells. Circ. Res., 1994, v. 75, N 6, p. 1078−1085.
  169. Yun J.K., McCormick T.S., Villabona C., Judware R.R., Espinosa M.B., Lapetina E.G. Inflammatory mediators are perpetuated in macrophages resistant to apoptosis induced by hypoxia. Proc. Natl. Acad. Sci. USA, 1997, v. 94, N25, p. 13 903−13 908.
  170. Zhong M., Orosz A., Wu C. Direct sensing of heat and oxidation by Drosophila heat shock transcription factor. Mol. Cell. Biol., 1998, v. 2, p. 101−108.
  171. Zugel U., Kaufmann S.H. Role of Heat Shock Proteins in protection from and pathogenesis of infectious diseases. Clin. Microb. Rew., 1999, v. 12, N 1, p. 19−39.У
Заполнить форму текущей работой