Помощь в написании студенческих работ
Антистрессовый сервис

Идентификация и характеристика генов, влияющих на поддержание и фенотипическое проявление прионоподобного детерминанта [ISP+], у дрожжей Saccharomyces cerevisiae

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

В связи с этим, перспективными представляются исследования направленные на изучение свойств признаков неменделевской природы, связанных с регуляцией точности трансляции. Один из таких детерминантов, как уже отмечалось выше, проявляется как антисупрессор по отношению к мутациям sup35. Ряд свойств свидетельствует, что он может быть еще одним прионом дрожжей, однако прямых доказательств этого нет… Читать ещё >

Идентификация и характеристика генов, влияющих на поддержание и фенотипическое проявление прионоподобного детерминанта [ISP+], у дрожжей Saccharomyces cerevisiae (реферат, курсовая, диплом, контрольная)

Содержание

  • ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ. РОЛЬ ГЕНЕТИЧЕСКИХ И ЭПИГЕНЕТИЧЕСКИХ ФАКТОРОВ В ОБЕСПЕЧЕНИИ ТОЧНОСТИ ТРАНСЛЯЦИИ У ЭУКАРИОТ
    • 1. 1. Характеристика процесса трансляции и типы ошибок, возникающих в ходе трансляции
    • 1. 2. Генетический контроль точности трансляции. Факторы, влияющие на считывание стоп кодонов
      • 1. 2. 1. Роль мутантных и естественных нонсенс-супрессорных тРНК в считывании стоп-кодонов
      • 1. 2. 2. Роль факторов терминации в распознавании стоп-кодонов
      • 1. 2. 3. Роль рРНК и рибосомных белков в поддержании точности трансляции
      • 1. 2. 4. Роль факторов элонгации трансляции в поддержании точности трансляции
      • 1. 2. 5. Роль компонентов системы деградации? содержащих нонсенс-мутации мРНК? в поддержании точности трансляции
      • 1. 2. 6. Роль белка РаЫ в поддержании точности трансляции
      • 1. 2. 7. Влияние тоннельного белка рибосомы Rpl39 и связанных с рибосомой шаперонов на точность трансляции
      • 1. 2. 8. Роль белков цитоскелета в регуляции точности трансляции. Новые функции факторов терминации трансляции
      • 1. 2. 9. Другие факторы, влияющие на считывание стоп-кодонов
    • 1. 3. Эпигенетический контроль точности трансляции
      • 1. 3. 1. Фактор [.PSf ] и его влияние на точность трансляции
  • Молекулярно-генетический и биохимический анализ свойств агрегатов белка Sup
    • 1. 3. 2. Белок-белковые взаимодействия Sup35 — влияние на поддержание и свойства фактора
    • 1. 3. 3. Взаимодействие фактора [Р57+] с другими прионами
    • 1. 3. 4. Эпигенетический детерминант [/5!Р+], вовлеченный в контроль точности трансляции

Трансляция последовательности триплетов мРНК в последовательность аминокислот в белке, осуществляемая в соответствии с правилами генетического кода, является важнейшим этапом реализации генетической информации. Точность считывания триплетов — необходимое условие этого процесса, однако, известно, что она не абсолютна. Исходя из принципа поливариантности матричных процессов, сформулированного С.Г. Инге-Вечтомовым почти 40 лет назад (Инге-Вечтомов, 1969), определенный уровень неточности и неоднозначности при считывании триплетного кода является характерным свойством белоксинтезирующего аппарата. Нарушения в работе компонентов аппарата трансляции могут дополнительно влиять на уровень возникновения ошибок трансляции, приводя к снижению ее точности или, наоборот, повышению.

Наиболее простой моделью для изучения точности трансляции является изучение супрессии нонсенс-мутаций, приводящих к преждевременному появлению стоп-кодона в открытой рамке считывания. Изменения в точности трансляции в этом случае могут быть обнаружены на фенотипическом уровне, так как считывание стоп-кодонов как значащих восстанавливает прерванный мутацией синтез белка.

Более чем 40-летняя история изучения нонсенс-супрессии у дрожжей S. cerevisiae показала, что возможность и эффективность считывания стоп-кодонов как значащих у этого объекта контролируется факторами генетической и эпигенетической природы. Большинство мутаций, влияющих на считывание стоп-кодонов, было изолировано в генах, кодирующих тРНК, рРНК, белки рибосомы, факторы терминации и элонгации трансляции. К факторам, влияющим на считывание стоп-кодонов на эпигенетическом уровне^относят наследственные детерминанты белковой природы — прионы. Наиболее изученный прион дрожжей является продуктом прионного превращения белка Sup35, фактора терминации трансляции eRF3 (см.

Wickner et al., 1999). В присутствии [PS/*] повышается эффективность считывания стоп-кодонов как значащих за счет снижения количества растворимого белка Sup35 (Paushkin et al., 1996). Другой прион — [PIN*] также косвенно вовлечен в контроль точности трансляции, поскольку необходим для индукции [PiST*] de novo (Derkatch et al., 1997). Показано, что [PIN*] может появляться в клетке в результате прионизации 11 различных белков (Derkatch et al., 2001). Один из этих белков — иге2ргявляется структурным белком еще одного приона дрожжей — [URE3], который участвует в контроле метаболизма азота (см. Wickner et al., 1999).

На точность трансляции влияют также некоторые нехромосомные эпигенетические детерминанты, природа которых пока не известна. Один из них, детерминант [/<£Р+], был идентифицирован в лаборатории физиологической генетики при изучении свойств мутаций sup35: он практически полностью нейтрализует эффект мутаций sup35−10 и sup35−25, восстанавливая нарушенную точность трансляции (Волков, 2000). [75Р+] обладает рядом свойств, характерных для дрожжевых прионов, и способен излечиваться при воздействии универсального антиприонного агента, хлорида гуанидина (GuHCl). Тем не менее, прямых доказательств того, что [/ЯР4] может являться еще одним прионом дрожжей пока не получено.

Данная работа посвящена дальнейшему изучению механизмов эпигенетической регуляции точности трансляции у дрожжей на примере детерминанта [/iSP+].

ВЫВОДЫ.

1. Скрининг дрожжевой центромерной библиотеки генов показал, что поддержание и проявление антисупрессорного нехромосомного детерминанта [ISP+] зависит от генов SUP45 и HAL3.

2. Показано, что проявление детерминанта [ISP+] зависит от аллелеспецифичного взаимодействия мутаций sup35 и sup45.

3. Показано, что эффект гена HAL3 зависит от его дозы. В низкокопийном состоянии он индуцирует потерю [ISP+], в мультикопийном состоянииусиливает нарушение терминации трансляции за счет аллосупрессорного эффекта по отношению к мутации sup35. Делеция гена HAL3 в [isp'] штаммах приводит к антисупрессии.

4. Показано, что влияние HAL3 на точность трансляции опосредовано, в основном, его взаимодействием с фосфатазой Ppzl. Зависимость точности трансляции от взаимодействия белков На13 и Ppzl показана впервые.

5. Получены данные, свидетельствующие о существовании дополнительной мишени На13, взаимодействие с которой влияет на точность трансляции.

6. Показано, что делеция гена SAL6, кодирующего фосфатазу Ppql, вовлеченную в контроль точности трансляции, не влияет на фенотип [ZS'/>+] и [isp'] штаммов.

7. Получены данные, косвенно свидетельствующие в пользу того, что точность трансляции у дрожжей зависит от уровня фосфорилирования фактора элонгации трансляции eEFlBa, регулируемого комплексом Hal3-Ppzl.

8. Показано, что [/SP*] и [isp'] штаммы содержат разное количество белка На13 и предложена гипотеза, согласно которой различный уровень белка На13 в [/SP*] и [isp'] штаммах поддерживается эпигенетически, а излечивание [ZST^] является следствием индуцированного GuHCl увеличения количества белка На13.

9. Показано, что делеция гена HAL3 приводит к чувствительности к GuHCl и блокирует излечивание [/.

10. Показано, что [/.

11. Получены данные, свидетельствующие о том, что элиминация приона [PS/*] при воздействии GuHCI также зависит от белка На13.

1.4.

Заключение

.

Как обсуждалось выше, точность трансляции находится под сложным генетическим и эпигенетическим контролем. Кроме того, точность трансляции зависит и от воздействия факторов окружающей среды, таких как температура, антибиотики (в частности аминогликозидные антибиотики), повышенные или пониженные концентрации определенных катионов.

В настоящее время достигнут определенный прогресс в изучении точности трансляции на прокариотических моделях и у низших эукариот. Однако, многие механизмы, обеспечивающие оптимальную точность трансляции в различных условиях до сих пор мало или практически полностью не изучены. Особенный интерес представляют механизмы позволяющие регулировать точность синтеза белка на эпигенетическом уровне, поскольку они могут лежать в основе модификационной изменчивости.

В связи с этим, перспективными представляются исследования направленные на изучение свойств признаков неменделевской природы, связанных с регуляцией точности трансляции. Один из таких детерминантов [/£Р+], как уже отмечалось выше, проявляется как антисупрессор по отношению к мутациям sup35. Ряд свойств [/"SP4] свидетельствует, что он может быть еще одним прионом дрожжей, однако прямых доказательств этого нет. Для того, чтобы выяснить молекулярную природу [ZS!P+], необходимо, в первую очередь, идентифицировать гены, влияющие на фенотипическое проявление и поддержание этого детерминанта.

Целью данного исследования явилось дальнейшее изучение механизмов эпигенетической регуляции точности трансляции у дрожжей на примере детерминанта [/57>+].

В задачи работы входил поиск и идентификация генов, влияющих на фенотипическое проявление и поддержание детерминанта [/5!Р+]- выяснение роли этих генов в регуляции точности трансляциидальнейшее исследование свойств детерминанта [/57>+].

Глава 2. МАТЕРИАЛЫ И МЕТОДЫ.

2.1. Штаммы.

В работе, в основном, использовали штаммы дрожжей Saccharomyces cerevisiae Петергофских генетических линий (ПГЛ), а также сегреганты диплоидов — продуктов гибридизации штаммов ПГЛ со штаммами, полученными из других лабораторий. Генотипы штаммов приведены в таблице 1.

В работе использовали штаммы Echerichia coli XL 1-Blue и DH5a (Sambrook et al., 1989).

2.2. Плазмиды и библиотеки генов.

В работе использована геномная библиотека дрожжей S. cerevisiae приобретенная в American Type Culture Collection (http://www.atcc.org). Она создана на основе центромерного вектора УСр50 (рисунок 1) и содержит фрагменты геномной ДНК дрожжей размером около 10 т.п.н. (Rose et al., 1987).

Рисунок 1. Физическая карта плазмиды YCp50.

АРГ — ген устойчивости к ампициллинуТСГген устойчивости к тетрациклинуCEN4 -участок дрожжевой центромерыARS1 — дрожжевой ориджин репликацииURA3 -дрожжевой ген URA3.

Показать весь текст

Список литературы

  1. В.М., Миронова Л. Н., Инге-Вечтомов С.Г.полудоминантной супрессорной мутацией // Вестник ЛГУ. 1973. Сер. 9. Вып. 2. С. 130−135.
  2. А.С., Инге-Вечтомов С.Г. О роли генов SUP35 и в контроле клеточного цикла дрожжей-сахаромицетов // Доклады РАН. 1997. Т. 353. С. 553−556.
  3. К.В., Ильмов Е. А., Инге-Вечтомов С.Г., Миронова Л. Н. Свойства мутантного фактора Р57. прионоподобного элемента дрожжей // Доклады РАН. 1997. Т. 357. С. 123−125.
  4. К.В. Новый прионоподобный детерминант дрожжей Saccharomyces cerevisiae, вовлеченный в контроль трансляции: Диссертация на соискание уч. степ, кандидата биол. наук. СПб., 2000. 125 с.
  5. Н.В., Животовский Л. А., Хованов Н. В., Хромов-Борисов Н.Н. Биометрия. Л.: Изд. ЛГУ, 1982. 264 с.
  6. И.А., Кожин С. А., Кожина Т. Н., Федорова И. В. Сборник методик по генетике дрожжей-сахаромицетов. Л.: Наука., 1984. 143с.
  7. Инге-Вечтомов С. Г. Точность реализации генетической информации // Вестник АН СССР. 1969. Т. 8. С. 25 30.
  8. Инге-Вечтомов С.Г., Андрианова В. М. Рецессивные супер-супрессоры у дрожжей. // Генетика. 1970. Т. 6. С. 103−115.
  9. Инге-Вечтомов С.Г., Андрианова В. М. Рецессивные супрессоры у дрожжей//Генетика. 1970. Т.6.№ 11. С. 103−115. 10. Клонирование ДНК. Методы. // под ред. Гловера М: Мир. 1988. 538 р.
  10. Температурочувствительностьдрожжей, обусловленная
  11. Миронова J1.H., Тер-Аванесян М. Д. Циклогексимидзависимые мутанты у дрожжей Saccharomyces cerevisiae// Генетика. 1983. Т. 19. С. 1925−1933.
  12. JT.H. Генетический и эпигенетический контроль считывания стоп-кодонов у дрожжей Saccharomyces cerevisiae: Диссертация на соискание уч. степ. Доктора биол. наук. СПб., 2002. 240 с.
  13. Тер-Аванесян М.Д., Инге-Вечтомов С. Г. Генетический контроль синтеза белка. Л.: Изд-во Ленингр. ун-та., 1988. 295с.
  14. В. Ю. Статистический анализ в биологических и медицинских исследованиях. М.: Медицина, 1975.296 с.
  15. Alksne L.E., Anthony R.A., Liebman S.W., Warner J.R. An accuracy center in the ribosome conserved over 2 billion years // Proc Natl Acad Sci USA. 1993. V.90.P. 9538−9541.
  16. Amrani N., Ganesan R., Kervestin S., Mangus D.A., Ghosh S., Jacobson A. A faux 3-UTR promotes aberrant termination and triggers nonsense-mediated mRNA decay //Nature. 2004. V.432. P. 112−118.
  17. Anand M., Chakraburtty K., Marton M.J., Hinnebusch A.G., Kinzy T.G. Functional interactions between yeast translation eukaryotic elongation factor (eEF) 1A and eEF3 // J Biol Chem. 2003. V.278. P. 6985−6991.
  18. Andersen G.R., Pedersen L., Valente L., Chatterjee I., Kinzy T.G., Kjeldgaard M., Nyborg J. Structural basis for nucleotide exchange and competition with tRNA in the yeast elongation factor complex eEFlA: eEFlBalpha // Mol Cell. 2000. V.6. P. 1261−1266.
  19. Andersen G.R., Nyborg J. Structural studies of eukaryotic elongation factors // Cold Spring Harb Symp Quant Biol. 2001. V.66. P. 425−437.
  20. Andersen G.R., Nissen P., Nyborg J. Elongation factors in protein biosynthesis // Trends Biochem Sci. 2003. V.28. P. 434−441.
  21. Anthony R.A., Liebman S.W. Alterations in ribosomal protein RPS28 can diversely affect translational accuracy in Saccharomyces cerevisiae // Genetics. 1995. V.140.P. 1247−1258.
  22. Arino J. Novel protein phosphatases in yeast // Eur J Biochem. 2002. V.269. P. 1072−1077.
  23. Arkov A.L., Freistroffer D.V., Ehrenberg M., Murgola E.J. Mutations in RNAs of both ribosomal subunits cause defects in translation termination // Embo J. 1998. V.17. P. 1507−1514.
  24. Baker K.E., Parker R. Nonsense-mediated mRNA decay: terminating erroneous gene expression // Curr Opin Cell Biol. 2004. V.16. P. 293−299.
  25. Beier H., Grimm M. Misreading of termination codons in eukaryotes by natural nonsense suppressor tRNAs // Nucleic Acids Res. 2001. V.29. P. 4767−4782.
  26. Belgrader P., Cheng J., Maquat L.E. Evidence to implicate translation by ribosomes in the mechanism by which nonsense codons reduce the nuclear level of human triosephosphate isomerase mRNA // Proc Natl Acad Sci USA. 1993. V.90. P. 482−486.
  27. Berezikov E., Guryev V., Van De Belt J., Wienholds E., Plasterk R.H., Cuppen E. Phylogenetic shadowing and computational identification of human microRNA genes // Cell. 2005. V.120. P. 21−24.
  28. Bertram G., Bell H.A., Ritchie D.W., Fullerton G., Stansfield I. Terminating eukaryote translation: domain 1 of release factor eRFl functions in stop codon recognition // Rna. 2000. V.6. P. 1236−1247.
  29. Bonetti В., Fu L., Moon J., Bedwell D.M. The efficiency of translation termination is determined by a synergistic interplay between upstream and downstream sequences in Saccharomyces cerevisiae II J Mol Biol. 1995. V.251.P. 334−345.
  30. Borchsenius A.S., Tchourikova A.A., Inge-Vechtomov S.G. Recessive mutations in SUP35 and SUP45 genes coding for translation release factors affect chromosome stability in Saccharomyces cerevisiae И Curr Genet. 2000. V.37. P. 285−291.
  31. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding // Anal Biochem. 1976. V.72. P. 248−254.
  32. Breining P., Piepersberg W. Yeast omnipotent suppressor SUP1 (SUP45): nucleotide sequence of the wildtype and a mutant gene // Nucleic Acids Res. 1986. V. 11. P. 5187−5197.
  33. Buckingham R.H. Codon context and protein synthesis: enhancements of the genetic code // Biochimie. 1994. V.76. P. 351−354.
  34. Buckingham R.H., Grentzmann G., Kisselev L. Polypeptide chain release factors //Mol Microbiol. 1997. V.24. P. 449−456.
  35. Carr-Schmid A., Valente L., Loik V.I., Williams Т., Starita L.M., Kinzy T.G. Mutations in elongation factor lbeta, a guanine nucleotide exchange factor, enhance translational fidelity // Mol Cell Biol. 1999b. V.19. P. 5257−5266.
  36. Chacinska A., Szczesniak В., Kochneva-Pervukhova N.V., Kushnirov V.V., Ter-Avanesyan M.D., Boguta M. Ssbl chaperone is a PSf. prion-curing factor // Curr Genet. 2001. V.39. P. 62−67.
  37. Chavatte L., Seit-Nebi A., Dubovaya V., Favre A. The invariant uridine of stop codons contacts the conserved NIKSR loop of human eRFl in the ribosome // Embo J. 2002. V.21. P. 5302−5311.
  38. Chernoff Y.O., Derkach I.L., Inge-Vechtomov S.G. Multicopy SUP35 gene induces de-novo appearance of psi-like factors in the yeast Saccharomyces cerevisiae // Curr Genet. 1993. V.24. P. 268−270.
  39. Chernoff Y.O., Vincent A., Liebman S.W. Mutations in eukaryotic 18S ribosomal RNA affect translational fidelity and resistance to aminoglycoside antibiotics // Embo J. 1994. V.13. P. 906−913.
  40. Chernoff Y.O., Lindquist S.L., Ono В., Inge-Vechtomov S.G., Liebman S.W. Role of the chaperone protein Hspl04 in propagation of the yeast prion-like factor PSf. // Science. 1995. V.268. P. 880−884.
  41. Chernoff Y.O., Newnam G.P., Kumar J., Allen K., Zink A.D. Evidence for a protein mutator in yeast: role of the Hsp70-related chaperone ssb in formation, stability, and toxicity of the PSf. prion // Mol Cell Biol. 1999. V.19. P. 81 038 112.
  42. Clotet J., Posas F., De Nadal E., Arino J. The NH2-terminal extension of protein phosphatase PPZ1 has an essential functional role // J Biol Chem. 1996. V.271.P. 26 349−26 355.
  43. Clotet J., Gari E., Aldea M., Arino J. The yeast ser/thr phosphatases Sit4 and Ppzl play opposite roles in regulation of the cell cycle // Mol Cell Biol. 1999. V.19. P. 2408−2415.
  44. Condeelis J. Elongation factor 1 alpha, translation and the cytoskeleton // Trends Biochem Sci. 1995. V.20. P. 169−170.
  45. Cox B.S. Psi, a cytoplasmic supperssor of supersuppressors in yeast // Heredity. 1965. V. 20. P. 505−521.
  46. Cox B. S. Allosuppressors in yeast // Genet. Res. 1977. V. 30. P. 187−205.
  47. Cox B.S., Tuite M.F., Mundy C.J. Reversion from suppression to nonsuppression in SUQ5 PS/. strains of yeast: the classificaion of mutations // Genetics. 1980. V.95. P.589−609.
  48. Culbertson M.R., Leeds P.F. Looking at mRNA decay pathways through the window of molecular evolution // Curr Opin Genet Dev. 2003. V.13. P. 207 214.
  49. Culbertson M.R., Neeno-Eckwall E. Transcript selection and the recruitment of mRNA decay factors for NMD in Saccharomyces cerevisiae II Rna. 2005. V.ll.P. 1333−1339.
  50. Czaplinski K., Majlesi N., Banerjee Т., Peltz S.W. Mttl is a Upfl-like helicase that interacts with the translation termination factors and whose overexpression can modulate termination efficiency // Rna. 2000. V.6. P. 730−743.
  51. De Nadal E., Fadden R.P., Ruiz A., Haystead Т., Arino J. A role for the Ppz Ser/Thr protein phosphatases in the regulation of translation elongation factor IB alpha// J Biol Chem. 2001. V.276. P. 14 829−14 834.
  52. De Pace A.H., Santoso A., Hillner P., Weissman J.S. A critical role for amino-terminal glutamine/asparagine repeats in the formation and propagation of a yeast prion//Cell. 1998. V.93.P. 1241−1252.
  53. Derkatch I.L., Chernoff Y.O., Kushnirov V.V., Inge-Vechtomov S.G., Liebman S.W. Genesis and variability of PS/. prion factors in Saccharomyces cerevisiae II Genetics. 1996. V.144. P. 1375−1386.
  54. Derkatch I.L., Bradley M.E., Zhou P., Chernoff Y.O., Liebman S.W. Genetic and environmental factors affecting the de novo appearance of the PS7*. prion in Saccharomyces cerevisiae II Genetics. 1997. V.147. P. 507−519.
  55. Derkatch I.L., Bradley M.E., Liebman S.W. Overexpression of the SUP45 gene encoding a Sup35p-binding protein inhibits the induction of the de novo appearance of the PSI*. prion I I Proc Natl Acad Sci USA. 1998. V.95. P. 2400−2405.
  56. Derkatch I.L., Bradley M.E., Masse S.V., Zadorsky S.P., Polozkov G.V., Inge-Vechtomov S.G., Liebman S.W. Dependence and independence of PSI*. and [PIN*]: a two-prion system in yeast? // Embo J. 2000. V.19. P. 1942−1952.
  57. Derkatch I.L., Bradley M.E., Hong J.Y., Liebman S.W. Prions affect the appearance of other prions: the story of PIN*. II Cell. 2001. V.106. P. 171 182.
  58. Doel S.M., Mccready S.J., Nierras C.R., Cox B.S. The dominant PNM2-mutation which eliminates the psi factor of Saccharomyces cerevisiae is the result of a missense mutation in the SUP35 gene // Genetics. 1994. V.137. P. 659−670.
  59. Dong H., Kurland C.G. Ribosome mutants with altered accuracy translate with reduced processivity // J Mol Biol. 1995. V.248. P. 551−561.
  60. Dube P., Wieske M., Stark H., Schatz M., Stahl J., Zemlin F., Lutsch G., Van Heel M. The 80S rat liver ribosome at 25 A resolution by electron cryomicroscopy and angular reconstitution // Structure. 1998. V.6. P. 389−399.
  61. Edelman I., Culbertson M.R. Exceptional codon recognition by the glutamine tRNAs in Saccharomyces cerevisiae II Embo J. 1991. V. 10. P. 1481−1491.
  62. Eggertsson G., Soil D. Transfer ribonucleic acid-mediated suppression of termination codons in Escherichia coli II Microbiol Rev. 1988. V.52. P. 354 374.
  63. Espinosa-Ruiz A., Belles J.M., Serrano R., Culianez-Macia F.A. Arabidopsis thaliana AtHAL3: a flavoprotein related to salt and osmotic tolerance and plant growth // Plant J. 1999. V.20. P. 529−539.
  64. Ferrando A., Kron S.J., Rios G., Fink G.R., Serrano R. Regulation of cation transport in Saccharomyces cerevisiae by the salt tolerance gene HAL3 II Mol Cell Biol. 1995. V.15. P. 5470−5481.
  65. Ferreira P.C., Ness F., Edwards S.R., Cox B.S., Tuite M.F. The elimination of the yeast PST. prion by guanidine hydrochloride is the result of Hspl04 inactivation // Mol Microbiol. 2001. V.40. P. 1357−1369.
  66. Frolova L., Seit-Nebi A., Kisselev L. Highly conserved NIKS tetrapeptide is functionally essential in eukaryotic translation termination factor eRFl // Rna. 2002. V.8.P. 129−136.
  67. Gallie D.R. A tale of two termini: a functional interaction between the termini of an mRNA is a prerequisite for efficient translation initiation // Gene. 1998. V.216.P. 1−11.
  68. Gautschi M., Mun A., Ross S., Rospert S. A functional chaperone triad on the yeast ribosome // Proc Natl Acad Sci USA. 2002. V.99. P. 4209−4214.
  69. Gietz R.D., Sugino A. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites // Gene. 1988. V.74. P. 527−534.
  70. Gietz D., St Jean A., Woods R.A., Schiestl R.H. Improved method for high efficiency transformation of intact yeast cells //Nucleic Acids Res. 1992. V.20. P. 1425.
  71. Glover J.R., Kowal A.S., Schirmer E.C., Patino M.M., Liu J.J., Lindquist S. Self-seeded fibers formed by Sup35, the protein determinant of PST*., a heritable prion-like factor of S. cerevisiae // Cell. 1997. V.89. P. 811−819.
  72. Goldstein A.L., Mccusker J.H. Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae // Yeast. 1999. V.15. P. 15 411 553.
  73. Gozalbo D., Hohmann S. Nonsense suppressors partially revert the decrease of the mRNA level of a nonsense mutant allele in yeast // Curr Genet. 1990. V.17. P. 77−79.
  74. Hatfield D.L., Smith D.W., Lee B.J., Worland P.J., Oroszlan S. Structure and function of suppressor tRNAs in higher eukaryotes // Crit Rev Biochem Mol Biol. 1990. V.25.P. 71−96.
  75. He F., Li X., Spatrick P., Casillo R., Dong S., Jacobson A. Genome-wide analysis of mRNAs regulated by the nonsense-mediated and 5' to 3' mRNA decay pathways in yeast // Mol Cell. 2003. V.12. P. 1439−1452.
  76. Hiraga K., Suzuki K., Tsuchiya E., Miyakawa T. Cloning and characterization of the elongation factor EF-1 beta homologue of Saccharomyces cerevisiae. EF-1 beta is essential for growth // FEBS Lett. 1993. V.316. P. 165−169.
  77. Hirokawa G., Demeshkina N., Iwakura N., Kaji H., Kaji A. The ribosome-recycling step: consensus or controversy? // Trends Biochem Sci. 2006. V.31. P. 143−149.
  78. Hirsh D. Tryptophan transfer RNA as the UGA suppressor // J Mol Biol. 1971. V.58. P. 439−458.
  79. Hosoda N., Kobayashi Т., Uchida N., Funakoshi Y., Kikuchi Y., Hoshino S., Katada T. Translation termination factor eRF3 mediates mRNA decay through the regulation of deadenylation // J Biol Chem. 2003. V.278. P. 38 287−38 291.
  80. Hughes D. Mutant forms of tufA and tufB independently suppress nonsense mutations // J Mol Biol. 1987. V. 197. P. 611 -615.
  81. Hughes D., Atkins J.F., Thompson S. Mutants of elongation factor Tu promote ribosomal frameshifting and nonsense readthrough // Embo J. 1987. V.6. P. 4235−4239.
  82. Inge-Vechtomov S.G., Ilmov E.A., Mironova L.N., Tikchomirova V.L., Volkov K.V., Zadorsky S.P. Yeast approach to protein «prionization»: SUP35-P.S7*. system // In: Prions and Brain Diseases in Animals and Humans. 1998. Plenum Press. N.Y. P. 99−109.
  83. Inge-Vechtomov S., Zhouravleva G., Philippe M. Eukaryotic release factors (eRFs) history // Biol Cell. 2003. V.95. P. 195−209.
  84. Inoue H., Nojima H., Okayama H. High efficiency transformation of Escherichia coli with plasmids // Gene. 1990. V.96. P. 23−28.
  85. Ito K., Ebihara K., Uno M., Nakamura Y. Conserved motifs in prokaryotic and eukaryotic polypeptide release factors: tRNA-protein mimicry hypothesis // Proc Natl Acad Sci USA. 1996. V.93. P. 5443−5448.
  86. Ito K., Ebihara K., Nakamura Y. The stretch of C-terminal acidic amino acids of translational release factor eRFl is a primary binding site for eRF3 of fission yeast // Rna. 1998. V.4. P. 958−972.
  87. Jacobson A., Peltz S.W. Interrelationships of the pathways of mRNA decay and translation in eukaryotic cells // Annu Rev Biochem. 1996. V.65. P. 693 739.
  88. Janssen G.M., Maessen G.D., Amons R., Moller W. Phosphorylation of elongation factor 1 p by an endogenous kinase affects its catalytic nucleotide exchange activity//J Biol Chem. 1988. V.263. P. 11 063−11 066.
  89. Janssen G.M., Moller W. Kinetic studies on the role of elongation factors 1 beta and 1 gamma in protein synthesis // J Biol Chem. 1988. V.263. P. 17 731 778.
  90. Jones G.W., Song Y., Masison D.C. Deletion of the Hsp70 chaperone gene SSB causes hypersensitivity to guanidine toxicity and curing of the PSf. prion by increasing guanidine uptake in yeast // Mol Genet Genomics. 2003. V.269. P. 304−311.
  91. Jung G., Masison D.C. Guanidine hydrochloride inhibits Hspl04 activity in vivo: a possible explanation for its effect in curing yeast prions // Curr Microbiol. 2001. V.43. P. 7−10.
  92. Kahvejian A., Roy G., Sonenberg N. The mRNA closed-loop model: the function of PABP and PABP-interacting proteins in mRNA translation // Cold Spring Harb Symp Quant Biol. 2001. V.66. P. 293−300.
  93. Kaiser C., Michaelis S., Mitchell A. Methods in yeast genetics. New York: Cold Spring Harbor Laboratory Press., 1994. 234 p.
  94. Kandl K.A., Munshi R., Ortiz P.A., Andersen G.R., Kinzy T.G., Adams A.E. Identification of a role for actin in translational fidelity in yeast // Mol Genet Genomics. 2002. V.268. P. 10−18.
  95. Kawakami К., Nakamura Y. Autogenous suppression of an opal mutation in the gene encoding peptide chain release factor 2 // Proc Natl Acad Sci USA. 1990. V.87. P. 8432−8436.
  96. Keeling K.M., Lanier J., Du M., Salas-Marco J., Gao L., Kaenjak-Angeletti A., Bedwell D.M. Leaky termination at premature stop codons antagonizes nonsense-mediated mRNA decay in S. cerevisiae II Rna. 2004. V.10. P. 691 703.
  97. Khromov-Borisov, N.N., Saffi, J., Henriques, J.A.P. Perfect order plating: principle and applications // Technical Tips Online 2002. V. 1. P. T02638
  98. Kikuchi Y., Shimatake H., Kikuchi A. A yeast gene required for the Gl-to-S transition encodes a protein containing an A-kinase target site and GTPase domain//Embo J. 1988. V.7. P. 1175−1182.
  99. Kim S.Y., Craig E.A. Broad sensitivity of Saccharomyces cerevisiae lacking ribosome-associated chaperone ssb or zuol to cations, including aminoglycosides // Eukaryot Cell. 2005. V.4. P. 82−89.
  100. King C.Y., Tittmann P., Gross H., Gebert R., Aebi M., Wuthrich K. Prion-inducing domain 2−114 of yeast Sup35 protein transforms in vitro into amyloid-like filaments // Proc Natl Acad Sci USA. 1997. V.94. P. 6618−6622.
  101. Kinzy T.G., Ripmaster T.L., Woolford J.L., Jr. Multiple genes encode the translation elongation factor EF-1 gamma in Saccharomyces cerevisiae II Nucleic Acids Res. 1994. V.22. P. 2703−2707.
  102. Kisselev L.L., Buckingham R.H. Translational termination comes of age // Trends Biochem Sci. 2000. V.25. P. 561−566.
  103. Klaholz В .P., Pape Т., Zavialov A.V., Myasnikov A.G., Orlova E.V., Vestergaard В., Ehrenberg M., Van Heel M. Structure of the Escherichia coli ribosomal termination complex with release factor 2 // Nature. 2003. V.421. P. 90−94.
  104. Klaholz B.P., Myasnikov A.G., Van Heel M. Visualization of release factor 3 on the ribosome during termination of protein synthesis // Nature. 2004. V.427. P. 862−865.
  105. Kobayashi Т., Funakoshi Y., Hoshino S., Katada T. The GTP-binding release factor eRF3 as a key mediator coupling translation termination to mRNA decay //J Biol Chem. 2004. V.279. P. 45 693−45 700.
  106. Kong C., Ito K., Walsh M.A., Wada M., Liu Y., Kumar S" Barford D., Nakamura Y., Song H. Crystal structure and functional analysis of the eukaryotic class II release factor eRF3 from S. pombe II Mol Cell. 2004. V.14. P. 233−245.
  107. J., Натре C., Goldman R., Reches M., Engelberg-Kulka H. Influence of codon context on UGA suppression and readthrough // J Mol Biol. 1992. V.225.P. 261−269.
  108. Kryndushkin D.S., Alexandrov I.M., Ter-Avanesyan M.D., Kushnirov V.V. Yeast PS/1″. prion aggregates are formed by small Sup35 polymers fragmented by Hspl04 // J Biol Chem. 2003. V.278. P. 49 636−49 643.
  109. Kushnirov V.V., Ter-Avanesyan M.D., Telckov M.V., Surguchov A.P., Smirnov V.N., Inge-Vechtomov S.G. Nucleotide sequence of the SUP2 (SUP35) gene of Saccharomyces cerevisiae II Gene. 1988. V.66. P. 45−54.
  110. Kushnirov V.V., Ter-Avanesyan M.D. Structure and replication of yeast prions //Cell. 1998. V.94. P. 13−16.
  111. Kushnirov V.V., Kryndushkin D.S., Boguta M., Smirnov V.N., Ter-Avanesyan M.D. Chaperones that cure yeast artificial PS1/. and their prion-spe'cific effects // Curr Biol. 2000. V.10. P. 1443−1446.
  112. Lewis B.P., Burge C.B., Bartel D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets // Cell. 2005. V.120. P. 15−20.
  113. Liang H., Wong J.Y., Bao Q., Cavalcanti A.R., Landweber L.F. Decoding the decoding region: analysis of eukaryotic release factor (eRFl) stop codon-binding residues // J Mol Evol. 2005. V.60. P. 337−344.
  114. Liebman S.W., Sherman F. Inhibition of growth by amber suppressors in yeast // Genetics. 1976. V.82. P. 233−249.
  115. Liu J.J., Lindquist S. Oligopeptide-repeat expansions modulate 'protein-only' inheritance in yeast // Nature. 1999. V.400. P. 573−576.
  116. Liu R., Liebman S.W. A translational fidelity mutation in the universally conserved sarcin/ricin domain of 25S yeast ribosomal RNA // Rna. 1996. V.2. P. 254−263.
  117. Maderazo A.B., He F., Mangus D.A., Jacobson A. Upflp control of nonsense mRNA translation is regulated by Nmd2p and Upf3p // Mol Cell Biol. 2000. V.20.P. 4591−4603.
  118. Madrid R., Gomez M.J., Ramos J., Rodriguez-Navarro A. Ectopic potassium uptake in trkl trk2 mutants of Saccharomyces cerevisiae correlates with a highly hyperpolarized membrane potential // J Biol Chem. 1998. V.273. P. 14 838−14 844.
  119. Marintchev A., Wagner G. Translation initiation: structures, mechanisms and evolution // Q Rev Biophys. 2004. V.37. P. 197−284.
  120. Matsumoto S., Mizoguchi Т., Oizumi N., Tsuruga M., Shinozaki K., Taira H., Ejiri S. Analysis of phosphorylation of wheat elongation factor 1 p and P' by casein kinase II // Biosci Biotechnol Biochem. 1993. V.57. P. 1740−1742.
  121. McReady S.J., Cox B.S. Antisuppressors in yeast // Mol.Gen.Genet. 1973 V.124. P.305−320.
  122. Merkulova T.I., Frolova L.Y., Lazar M., Camonis J., Kisselev L.L. C-terminal domains of human translation termination factors eRF 1 and eRF3 mediate their in vivo interaction // FEBS Lett. 1999. V.443. P. 41−47.
  123. Michelitsch M.D., Weissman J.S. A census of glutamine/asparagine-rich regions: implications for their conserved function and the prediction of novel prions // Proc Natl Acad Sci USA. 2000. V.97. P. 11 910−11 915.
  124. Mironova L.N., Provorov N.A., Ter-Avanesyan M.D., Inge-Vechtomov S.G., Smirnov V.N., Surguchov A.P. The effect of paromomycin on the expression of ribosomal suppressors in yeast // Curr. Genet. 1982 V. 5. P. 149−152.
  125. Mironova L.N., Samsonova M.G., Zhouravleva G.A., Kulikov V.N., Soom M.J. Reversions to respiratory competence of omnipotent sup45 suppressor mutants may be caused by secondary sup45 mutations. // Curr Genet. 1995. V. 27, P. 195−200.
  126. Moffat J.G., Tate W.P. A single proteolytic cleavage in release factor 2 stabilizes ribosome binding and abolishes peptidyl-tRNA hydrolysis activity // J Biol Chem. 1994. V.269. P. 18 899−18 903.
  127. Munoz I., Ruiz A., Marquina M., Barcelo A., Albert A., Arino J. Functional characterization of the yeast Ppzl phosphatase inhibitory subunit Hal3: a mutagenesis study //J Biol Chem. 2004. V.279. P. 42 619−42 627.
  128. Murgola E.J. tRNA, suppression, and the code // Annu Rev Genet. 1985. V.19. P. 57−80.
  129. Na S., Perlin D.S., Seto-Young D., Wang G., Haber J.E. Characterization of yeast plasma membrane H (+)-ATPase mutant pmal-A135V and its revertants //J Biol Chem. 1993. V.268. P. 11 792−11 797.
  130. Namy O., Hatin I., Rousset J.P. Impact of the six nucleotides downstream of the stop codon on translation termination // EMBO Rep. 2001. V.2. P. 787−793.
  131. Namy O., Hatin I., Stahl G., Liu H., Barnay S., Bidou L., Rousset J.P. Gene overexpression as a tool for identifying new trans-acting factors involved in translation termination in Saccharomyces cerevisiae II Genetics. 2002. V.161. P. 585−594.
  132. Newnam G.P., Wegrzyn R.D., Lindquist S.L., Chernoff Y.O. Antagonistic interactions between yeast chaperones Hspl04 and Hsp70 in prion curing // Mol Cell Biol. 1999. V.19. P. 1325−1333.
  133. Nilsson J., Nissen P. Elongation factors on the ribosome // Curr Opin Struct Biol. 2005. V.15.P. 349−354.
  134. Nissen P., Kjeldgaard M., Thirup S., Polekhina G., Reshetnikova L., Clark B.F., Nyborg J. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog // Science. 1995. V.270. P. 1464−1472.
  135. Nissen P., Hansen J., Ban N., Moore P.B., Steitz T.A. The structural basis of ribosome activity in peptide bond synthesis // Science. 2000. V.289. P. 920 930.
  136. Osherovich L.Z., Weissman J.S. Multiple Gln/Asn-rich prion domains confer susceptibility to induction of the yeast PS/. prion // Cell. 2001. V.106. P. 183−194.
  137. Panopoulos P., Dresios J., Synetos D. Biochemical evidence of translational infidelity and decreased peptidyltransferase activity by a sarcin/ricin domain mutation of yeast 25S rRNA // Nucleic Acids Res. 2004. V.32. P. 5398−5408.
  138. Pape Т., Wintermeyer W., Rodnina M. Induced fit in initial selection and proofreading of aminoacyl-tRNA on the ribosome // Embo J. 1999. V.18. P. 3800−3807.
  139. Parent S.A., Fenimore C.M., Bostian K.A. Vector systems for the expression, analysis and cloning of DNA sequences in S. cerevisiae II Yeast. 1985. V.l. P. 83−138.
  140. Patino M.M., Liu J.J., Glover J.R., Lindquist S. Support for the prion hypothesis for inheritance of a phenotypic trait in yeast // Science. 1996. V.273. P. 622−626.
  141. Paushkin S.V., Kushnirov V.V., Smirnov V.N., Ter-Avanesyan M.D. Propagation of the yeast prion-like PS/. determinant is mediated by oligomerization of the St/P^-encoded polypeptide chain release factor // Embo J. 1996. V.15. P. 3127−3134.
  142. Paushkin S.V., Kushnirov V.V., Smirnov V.N., Ter-Avanesyan M.D. Interaction between yeast Sup45p (eRFl) and Sup35p (eRF3) polypeptide chain release factors: implications for prion-dependent regulation // Mol Cell Biol. 1997a. V.17. P. 2798−2805.
  143. Paushkin S.V., Kushnirov V.V., Smirnov V.N., Ter-Avanesyan M.D. In vitro propagation of the prion-like state of yeast Sup35 protein // Science. 1997b. V.277. P. 381−383.
  144. Peltz S.W., Brown A.H., Jacobson A. mRNA destabilization triggered by premature translational termination depends on at least three cis-acting sequence elements and one trans-acting factor // Genes Dev. 1993. V.7. P. 1737−1754.
  145. Perlin D.S., Brown C.L., Haber J.E. Membrane potential defect in hygromycin B-resistant pmal mutants of Saccharomyces cerevisiae II J Biol Chem. 1988. V.263.P. 18 118−18 122.
  146. Peters H.I., Chang Y.W., Traugh J.A. Phosphorylation of elongation factor 1 (EF-1) by protein kinase С stimulates GDP/GTP-exchange activity // Eur J Biochem. 1995. V.234. P. 550−556.
  147. Petersen C.P., Bordeleau M.E., Pelletier J., Sharp P.A. Short RNAs repress translation after initiation in mammalian cells // Mol Cell. 2006. V.21. P. 533 542.
  148. Phillips-Jones M.K., Hill L.S., Atkinson J., Martin R. Context effects on misreading and suppression at UAG codons in human cells // Mol Cell Biol. 1995. V.15.P. 6593−6600.
  149. Posas F., Camps M., Arino J. The Ppz protein phosphatases are important determinants of salt tolerance in yeast cells // J Biol Chem. 1995. V.270. P. 13 036−13 041.
  150. Rajkowitsch L., Vilela C., Berthelot K., Ramirez C.V., Mccarthy J.E. Reinitiation and recycling are distinct processes occurring downstream of translation termination in yeast // J Mol Biol. 2004. V.335. P. 71−85.
  151. Rakwalska M., Rospert S. The ribosome-bound chaperones RAC and Ssbl/2p are required for accurate translation in Saccharomyces cerevisiae // Mol Cell Biol. 2004. V.24. P. 9186−9197.
  152. Ramakrishnan V. Ribosome structure and the mechanism of translation // Cell. 2002. V.108.P. 557−572.
  153. Roberts B.T., Wickner R.B. Heritable activity: a prion that propagates by covalent autoactivation // Genes Dev. 2003. V.17. P. 2083−2087.
  154. Roberts B.T., Wickner R.B. A new kind of prion: a modified protein necessary for its own modification // Cell Cycle. 2004. V.3. P. 100−103.
  155. Rosche W.A., Foster P.L. Determining mutation rates in bacterial populations //Methods. 2000. V.20. P. 4−17.
  156. Rose M.D., Novick P., Thomas J.H., Botstein D., Fink G.R. A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector//Gene. 1987. V.60. P. 237−243.
  157. Rospert S. Ribosome function: governing the fate of a nascent polypeptide // Curr Biol. 2004. V.14. P. R386−388.
  158. Rospert S., Rakwalska M., Dubaquie Y. Polypeptide chain termination and stop codon readthrough on eukaryotic ribosomes // Rev Physiol Biochem Pharmacol. 2005. P.
  159. Salas-Marco J., Bedwell D.M. GTP hydrolysis by eRF3 facilitates stop codon decoding during eukaryotic translation termination // Mol Cell Biol. 2004. V.24. P. 7769−7778.
  160. Salnikova A.B., Kryndushkin D.S., Smirnov V.N., Kushnirov V.V., Ter-Avanesyan M.D. Nonsense suppression in yeast cells overproducing Sup35 (eRF3) is caused by its non-heritable amyloids // J Biol Chem. 2005. V.280. P. 8808−8812.
  161. Sambrook J., Fritsch E.F., Maniatis Т., Molecular cloning: a laboratory manual. New York: Cold Spring Harbor Laboratory Press, 1989. 723 p.
  162. Sandbaken M.G., Culbertson M.R. Mutations in elongation factor EF-1 alpha affect the frequency of frameshifting and amino acid misincorporation in Saccharomyces cerevisiae II Genetics. 1988. V.120. P. 923−934.
  163. Sherman F., Fink, G.R. Hincks, J.B. Methods in yeast genetics. New York: Cold Spring Harbor Laboratory Press., 1986. 367p.
  164. Shkundina I.S., Kushnirov V.V., Tuite M.F., Ter-Avanesyan M.D. The role of the N-terminal oligopeptide repeats of the yeast Sup35 prion protein in propagation and transmission of prion variants // Genetics. 2006. V.172. P. 827−835.
  165. Sikorski R.S., Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae II Genetics. 1989. V.122. P. 19−27.
  166. Smith M.W., Meskauskas A., Wang P., Sergiev P.V., Dinman J.D. Saturation mutagenesis of 5S rRNA in Saccharomyces cerevisiae II Mol Cell Biol. 2001. V.21.P. 8264−8275.
  167. Song J.M., Liebman S.W. Allosuppressors that enhance the efficiency of omnipotent suppressors in Saccharomyces cerevisiae I I Genetics. 1987. V. l 15. P. 451−460.
  168. Spahn C.M., Beckmann R., Eswar N., Penczek P.A., Sali A., Blobel G., Frank J. Structure of the 80S ribosome from Saccharomyces cerevisiae—iRNA-ribosome and subunit-subunit interactions // Cell. 2001. V. l07. P. 373−386.
  169. Storici F., Lewis L.K., Resnick M.A. In vivo site-directed mutagenesis using oligonucleotides//Nat Biotechnol. 2001. V.19. P. 773−776.
  170. Tanaka M., Chien P., Naber N., Cooke R., Weissman J.S. Conformational variations in an infectious protein determine prion strain differences // Nature. 2004. V.428. P. 323−328.
  171. Tapio S., Kurland C.G. Mutant EF-Tu increases missense error in vitro // Mol Gen Genet. 1986. V.205. P. 186−188.
  172. Ter-Avanesyan M.D., Zimmermann J., Inge-Vechtomov S.G., Sudarikov A.B., Smirnov V.N., Surguchov A.P. Ribosomal recessive suppressors cause a respiratory deficiency in yeast Saccharomyces cerevisiae II Mol. Gen. Genet. 1982. V.185. P. 319−323.
  173. Tuite M.F., Mundy C.R., Cox B.S. Agents that cause a high frequency of genetic change from PiST*. to psi] in Saccharomyces cerevisiae II Genetics. 1981. V.98. P.691−711.
  174. Uchida N., Hoshino S., Imataka H., Sonenberg N., Katada T. A novel role of the mammalian GSPT/eRF3 associating with poly (A)-binding protein in Cap/Poly (A)-dependent translation // J Biol Chem. 2002. V.277. P. 5 028 650 292.
  175. Uptain S.M., Lindquist S. Prions as protein-based genetic elements // Annu Rev Microbiol. 2002. V.56. P. 703−741.
  176. Urakov V.N., Valouev I.A., Lewitin E.I., Paushkin S.V., Kosorukov V.S., Kushnirov V.V., Smirnov V.N., Ter-Avanesyan M.D. Ittlp, a novel protein inhibiting translation termination in Saccharomyces cerevisiae II BMC Mol Biol. 2001. V.2. P. 9.
  177. Uritani M., Miyazaki M. Role of yeast peptide elongation factor 3 (EF-3) at the AA-tRNA binding step //J Biochem (Tokyo). 1988. V.104. P. 118−126.
  178. Valencia-Sanchez M.A., Liu J., Hannon G.J., Parker R. Control of translation and mRNA degradation by miRNAs and siRNAs // Genes Dev. 2006. V.20. P. 515−524.
  179. Valente L., Kinzy T.G. Yeast as a sensor of factors affecting the accuracy of protein synthesis // Cell Mol Life Sci. 2003. V.60. P. 2115−2130.
  180. Valouev I.A., Kushnirov V.V., Ter-Avanesyan M.D. Yeast polypeptide chain release factors eRFl and eRF3 are involved in cytoskeleton organization and cell cycle regulation // Cell Motil Cytoskeleton. 2002. V.52. P. 161−173.
  181. Velichutina I.V., Dresios J., Hong J.Y., Li C., Mankin A., Synetos D., Liebman S.W. Mutations in helix 27 of the yeast Saccharomyces cerevisiae 18S rRNA affect the function of the decoding center of the ribosome // Rna. 2000. V.6. P. 1174−1184.
  182. Velichutina I.V., Hong J.Y., Mesecar A.D., Chernoff Y.O., Liebman S.W. Genetic interaction between yeast Saccharomyces cerevisiae release factors and the decoding region of 18 S rRNA // J Mol Biol. 2001. V.305. P. 715−727.
  183. Venturi G.M., Bloecher A., Williams-Hart Т., Tatchell K. Genetic interactions between GLC7, PPZ1 and PPZ2 in Saccharomyces cerevisiae II Genetics. 2000. V.155.P. 69−83.
  184. Vijgenboom E., Vink Т., Kraal В., Bosch L. Mutants of the elongation factor EF-Tu, a new class of nonsense suppressors // Embo J. 1985. V.4. P. 10 491 052.
  185. Vincent A., Newnam G., Liebman S.W. The yeast translational allosuppressor, SAL6: a new member of the PPl-like phosphatase family with a long serine-rich N-terminal extension // Genetics. 1994. V.138. P. 597−608.
  186. Wach A., Brachat A., Pohlmann R., Philippsen P. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae II Yeast. 1994. V.10. P. 1793−1808.
  187. Wakem L.P., Sherman F. Isolation and characterization of omnipotent suppressors in the yeast Saccharomyces cerevisiae. II Genetics. 1990. V. 124, P. 515−522.
  188. Wang W., Czaplinski K., Rao Y., Peltz S.W. The role of Upf proteins in modulating the translation read-through of nonsense-containing transcripts // Embo J. 2001. V.20. P. 880−890.
  189. Wegrzyn R.D., Bapat K., Newnam G.P., Zink A.D., Chernoff Y.O. Mechanism of prion loss after Hspl04 inactivation in yeast // Mol Cell Biol. 2001. V.21. P. 4656−4669.
  190. Wells S.E., Hillner P.E., Vale R.D., Sachs A.B. Circularization of mRNA by eukaryotic translation initiation factors // Mol Cell. 1998. V.2. P. 135−140.
  191. Wickner R.B. URE3. as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae // Science. 1994. V.264. P. 566−569.
  192. Wickner R.B., Taylor K.L., Edskes H.K., Maddelein M.L., Moriyama H., Roberts B.T. Prions in Saccharomyces and Podospora spp:. protein-based inheritance // Microbiol Mol Biol Rev. 1999. V.63. P. 844−861, table of contents.
  193. Wickner R.B., Edskes H.K., Roberts B.T., Pierce M., Baxa U. Prions of yeast as epigenetic phenomena: high protein «copy number» inducing protein «silencing» //Adv Genet. 2002. V.46. P. 485−525.
  194. Wintermeyer W., Peske F., Beringer M., Gromadski K.B., Savelsbergh A., Rodnina M.V. Mechanisms of elongation on the ribosome: dynamics of a macromolecular machine // Biochem Soc Trans. 2004. V.32. P. 733−737.
  195. Xie X., Lu J., Kulbokas E.J., Golub T.R., Mootha V., Lindblad-Toh K., Lander E.S., Kellis M. Systematic discovery of regulatory motifs in human promoters and 31 UTRs by comparison of several mammals // Nature. 2005. V.434. P. 338−345.
  196. Yenush L., Mulet J.M., Arino J., Serrano R. The Ppz protein phosphatases are key regulators of K+ and pH homeostasis: implications for salt tolerance, cell wall integrity and cell cycle progression // Embo J. 2002. V.21. P. 920−929.
  197. Yenush L., Merchan S., Holmes J., Serrano R. pH-Responsive, posttranslational regulation of the Trkl potassium transporter by the type 1-related Ppzl phosphatase // Mol Cell Biol. 2005. V.25. P. 8683−8692.
  198. Young C.S., Cox B.S. Extrachromosomal elements in a super-suppression system of yeast. II. Relations with other extrachromosomal elements // Heredity. 1972. V.28. P.189−199.
  199. Zerfass K., Beier H. Pseudouridine in the anticodon G psi A of plant cytoplasmic tRNATyr is required for UAG and UAA suppression in the TMV-specific context //Nucleic Acids Res. 1992a. V.20. P. 5911−5918.
  200. Zerfass K., Beier H. The leaky UGA termination codon of tobacco rattle virus RNA is suppressed by tobacco chloroplast and cytoplasmic tRNAsTrp with CmCA anticodon//Embo J. 1992b. V.ll. P. 4167−4173.
  201. Zuk D., Belk J.P., Jacobson A. Temperature-sensitive mutations in the Saccharomyces cerevisiae MRT4, GRC5, SLA2 and THS1 genes result in defects in mRNA turnover // Genetics. 1999. V.153. P. 35−47.1. БЛАГОДАРНОСТИ
Заполнить форму текущей работой