ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² написании студСнчСских Ρ€Π°Π±ΠΎΡ‚
АнтистрСссовый сСрвис

ΠšΠΎΠ½ΡΡ‚Ρ€ΡƒΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π½Π°Ρ†Π΅Π»Π΅Π½Π½Ρ‹Ρ… адСновирусных Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² посрСдством гСнСтичСской ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ вирусного капсида

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

Π“Π»Π°Π²Π½ΠΎΠΉ Ρ†Π΅Π»ΡŒΡŽ Π΄Π°Π½Π½ΠΎΠ³ΠΎ исслСдования являлась Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠ² ΠΊ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡŽ Π΄Π²ΡƒΡ… послСдних ΠΈΠ· ΠΏΠ΅Ρ€Π΅Ρ‡ΠΈΡΠ»Π΅Π½Π½Ρ‹Ρ… Π²Ρ‹ΡˆΠ΅ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹Ρ… для Ад Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ². ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ эти ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ ΡΠ²Π»ΡΡŽΡ‚ΡΡ прямым слСдствиСм ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ Ρ‚Ρ€ΠΎΠΏΠΈΠ·ΠΌΠ° Ад, наша стратСгия создания Ρ‚ΠΊΠ°Π½Π΅-спСцифичных, ΠΈΠ»ΠΈ «Π½Π°Ρ†Π΅Π»Π΅Π½Π½Ρ‹Ρ…» Ад Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², основана Π½Π° ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° взаимодСйствия вируса с ΠΊΠ»Π΅Ρ‚ΠΊΠΎΠΉ, с Ρ‚Π΅ΠΌ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΡ‚ΡŒ… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

ΠšΠΎΠ½ΡΡ‚Ρ€ΡƒΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π½Π°Ρ†Π΅Π»Π΅Π½Π½Ρ‹Ρ… адСновирусных Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² посрСдством гСнСтичСской ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ вирусного капсида (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • БПИБОК Π˜Π‘ΠŸΠžΠ›Π¬Π—ΠžΠ’ΠΠΠΠ«Π₯ Π‘ΠžΠšΠ ΠΠ©Π•ΠΠ˜Π™
  • Π“Π»Π°Π²Π° 1. ΠžΠ‘Π—ΠžΠ  Π›Π˜Π’Π•Π ΠΠ’Π£Π Π«
    • 1. 1. ΠžΠ±Ρ‰Π°Ρ характСристика адСновирусов
    • 1. 2. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π½Ρ‹Π΅ Π±Π΅Π»ΠΊΠΈ капсида Ад
      • 1. 2. 1. ГСксон
      • 1. 2. 2. ОснованиС ΠΏΠ΅Π½Ρ‚ΠΎΠ½Π°
      • 1. 2. 3. Π¨ΠΈΠΏ
      • 1. 2. 4. Π‘Π΅Π»ΠΎΠΊ pIX
    • 1. 3. Π˜Π½Ρ„Π΅ΠΊΡ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ Ρ†ΠΈΠΊΠ» Ад
      • 1. 3. 1. ΠŸΡ€ΠΎΠ½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΠ΅ Ад Π² ΠΊΠ»Π΅Ρ‚ΠΊΠΈ
      • 1. 3. 2. ДСзинтСграция Π²ΠΈΡ€ΠΈΠΎΠ½Π°
      • 1. 3. 3. ЭкспрСссия Π³Π΅Π½ΠΎΠ² ΠΈ Ρ€Π΅ΠΏΠ»ΠΈΠΊΠ°Ρ†ΠΈΡ Π”ΠΠš
      • 1. 3. 4. Π‘Π±ΠΎΡ€ΠΊΠ° вирусных частиц ΠΈ Π²Ρ‹Ρ…ΠΎΠ΄ ΠΈΡ… ΠΈΠ· ΠΊΠ»Π΅Ρ‚ΠΊΠΈ
    • 1. 4. Π Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Ρ‹, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Π΅ Ад Π΄Π»Ρ проникновСния Π² ΠΊΠ»Π΅Ρ‚ΠΊΠΈ
      • 1. 4. 1. ΠŸΠ΅Ρ€Π²ΠΈΡ‡Π½Ρ‹Π΅ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Ρ‹
      • 1. 4. 2. Π’Ρ‚ΠΎΡ€ΠΈΡ‡Π½Ρ‹Π΅ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Ρ‹
    • 1. 5. Π‘Ρ‚Ρ€Π°Ρ‚Π΅Π³ΠΈΠΈ Ρ‚Π°Ρ€Π³Π΅Ρ‚ΠΈΠ½Π³Π°
    • 1. 6. Врансдукционный Ρ‚Π°Ρ€Π³Π΅Ρ‚ΠΈΠ½Π³
      • 1. 6. 1. НацСливаниС Ад Ρ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ комплСксов «Π°Π΄Π°ΠΏΡ‚Π΅Ρ€-Π»ΠΈΠ³Π°Π½Π΄»
      • 1. 6. 2. ГСнСтичСская модификация Ρ‚Ρ€ΠΎΠΏΠΈΠ·ΠΌΠ° Ад
        • 1. 6. 2. 1. Π’Π°Ρ€Π³Π΅Ρ‚ΠΈΠ½Π³ Ад Ρ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ замСщСния шипов ΠΈΠ»ΠΈ Π“Π” шипов
        • 1. 6. 2. 2. Π’Π°Ρ€Π³Π΅Ρ‚ΠΈΠ½Π³ Ад Ρ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ гСнСтичСского Π²ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡ Π»ΠΈΠ³Π°Π½Π΄Π° Π² ΠΊΠ°ΠΏΡΠΈΠ΄Π½Ρ‹Π΅ Π±Π΅Π»ΠΊΠΈ
        • 1. 6. 2. 2. 1. ΠœΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ основания ΠΏΠ΅Π½Ρ‚ΠΎΠ½Π°
        • 1. 6. 2. 2. 2. ΠœΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ гСксона
        • 1. 6. 2. 2. 3. ΠœΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ Π±Π΅Π»ΠΊΠ° pIX
        • 1. 6. 2. 2. 4. ΠœΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ Π“Π” шипа
        • 1. 6. 2. 2. 4.1. ВстраиваниС Π»ΠΈΠ³Π°Π½Π΄ΠΎΠ² Π½Π° Π‘-ΠΊΠΎΠ½Π΅Ρ† Π“Π” шипа
        • 1. 6. 2. 2. 4.2. ВстраиваниС Π»ΠΈΠ³Π°Π½Π΄ΠΎΠ² Π² Π¨-ΠΏΠ΅Ρ‚Π»ΡŽ шипа
        • 1. 6. 2. 3. Π—Π°ΠΌΠ΅Π½Π° шипа Ρ…ΠΈΠΌΠ΅Ρ€Π½Ρ‹ΠΌ Π±Π΅Π»ΠΊΠΎΠΌ
      • 1. 6. 3. ΠšΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ Π»ΠΈΠ½ΠΈΠΈ для получСния Π½Π°Ρ†Π΅Π»Π΅Π½Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²
    • 1. 7. АдСновирусныС Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ ΠΊΠ°ΠΊ тСрапСвтичСскиС Π°Π³Π΅Π½Ρ‚Ρ‹

ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹.

ГСнная тСрапия ΡΡ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π»Π°ΡΡŒ Π½Π° Ρ€ΡƒΠ±Π΅ΠΆΠ΅ 1980;Ρ… ΠΈ 1990;Ρ… Π³ΠΎΠ΄ΠΎΠ² ΠΊΠ°ΠΊ Π°Π»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²Π½Ρ‹ΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ ΠΊ Π»Π΅Ρ‡Π΅Π½ΠΈΡŽ наслСдствСнных ΠΈ ΠΏΡ€ΠΈΠΎΠ±Ρ€Π΅Ρ‚Ρ‘Π½Π½Ρ‹Ρ… Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ. ΠŸΡ€ΠΎΠ²Π΅Π΄Ρ‘Π½Π½Ρ‹Π΅ Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ Π±ΠΎΠ»Π΅Π΅ Ρ‡Π΅ΠΌ дСсятилСтнСго ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π° исслСдования ΠΏΡ€ΠΈΠ²Π΅Π»ΠΈ ΠΊ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ ряда тСрапСвтичСских ΠΏΡ€ΠΎΡ‚ΠΎΠΊΠΎΠ»ΠΎΠ², Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ эффСктивныС ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… находятся сСйчас Π² ΡΡ‚Π°Π΄ΠΈΠΈ клиничСских испытаний. Π—Π°ΠΌΠ΅Ρ‚Π½Ρ‹Π΅ успСхи Π±Ρ‹Π»ΠΈ достигнуты ΠΏΡ€ΠΈ Π»Π΅Ρ‡Π΅Π½ΠΈΠΈ кистозного Ρ„ΠΈΠ±Ρ€ΠΎΠ·Π°, ΠΊΠΎΡ€ΠΎΠ½Π°Ρ€Π½ΠΎΠΉ Π±ΠΎΠ»Π΅Π·Π½ΠΈ сСрдца, Π° Ρ‚Π°ΠΊΠΆΠ΅ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ‚ΠΈΠΏΠΎΠ² Ρ€Π°ΠΊΠ° (Hamid et al., 2003, Kubo et al., 2003, Lamont et al., 2000, Makower et al., 2003, Nemunaitis et al., 2001, Rosengart et al., 1999, Schuler et al., 2001). Однако, наряду с Π΄ΠΎΡΡ‚ΠΈΠ³Π½ΡƒΡ‚Ρ‹ΠΌΠΈ Π²ΠΏΠ΅Ρ‡Π°Ρ‚Π»ΡΡŽΡ‰ΠΈΠΌΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌΠΈ, Π³Π΅Π½Π½ΠΎ-тСрапСвтичСскиС исслСдования выявили ряд Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ, ΠΏΡ€Π΅ΠΏΡΡ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… ΠΏΠΎΠ»Π½ΠΎΠΉ Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ этой ΠΌΠ΅Π΄ΠΈΠΊΠΎ-биологичСской ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ†ΠΈΠΈ. Π¦Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ ΠΈΠ· Π½ΠΈΡ… являСтся ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° эффСктивной ΠΈ ΡΠ΅Π»Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ экспрСссии тСрапСвтичСского Π³Π΅Π½Π° Π² ΠΏΠΎΡ€Π°ΠΆΡ‘Π½Π½ΠΎΠΉ болСзнью Ρ‚ΠΊΠ°Π½ΠΈ. РСшСниС этой ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΊΠ°ΠΊ Π½ΠΎΠ²Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ², Ρ‚Π°ΠΊ ΠΈ ΡΡ€Π΅Π΄ΡΡ‚Π² доставки Π³Π΅Π½ΠΎΠ² ΠΊ ΠΌΠ΅ΡΡ‚Ρƒ назначСния бСзопасным ΠΈ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΌ способом, ΠΏΡ€Π΅Π΄ΡŠΡΠ²Π»ΡΡ строгиС ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΈ ΠΊ ΡΠΈΡΡ‚Π΅ΠΌΠ°ΠΌ, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΠΌ доставку гСнСтичСского ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° — Ρ‚Π°ΠΊ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡ‹ΠΌ «Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌ». ΠŸΡ€Π΅ΠΆΠ΄Π΅ всСго, тСрапСвтичСский Π²Π΅ΠΊΡ‚ΠΎΡ€ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±Ρ‹Ρ‚ΡŒ стабилСн in vivo Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠ³ΠΎ для эффСктивной трансдукции ΠΏΠΎΡ€Π°ΠΆΡ‘Π½Π½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ. Π’ΠΎ-Π²Ρ‚ΠΎΡ€Ρ‹Ρ…, Π²Π΅ΠΊΡ‚ΠΎΡ€ Π½Π΅ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±Ρ‹Ρ‚ΡŒ токсичным, ΠΎΠ½ΠΊΠΎΠ³Π΅Π½Π½Ρ‹ΠΌ ΠΈ ΠΈΠΌΠΌΡƒΠ½Π½ΠΎΠ³Π΅Π½Π½Ρ‹ΠΌ. Π’ ΠΈΠ΄Π΅Π°Π»Π΅, доставка Π³Π΅Π½Π° Π΄ΠΎΠ»ΠΆΠ½Π° Π±Ρ‹Ρ‚ΡŒ тканСспСцифичной, с Ρ‚Π΅ΠΌ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ с ΠΎΠ΄Π½ΠΎΠΉ стороны, ΡƒΡΠΈΠ»ΠΈΡ‚ΡŒ тСрапСвтичСский эффСкт Π² ΠΎΠ±Π»Π°ΡΡ‚ΠΈ развития ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ, Π° Ρ Π΄Ρ€ΡƒΠ³ΠΎΠΉΠΌΠΈΠ½ΠΈΠΌΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎ Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΎΠ΅ воздСйствиС ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Π° тСрапСвтичСского Π³Π΅Π½Π° Π½Π° Π·Π΄ΠΎΡ€ΠΎΠ²Ρ‹Π΅ ΠΎΡ€Π³Π°Π½Ρ‹ ΠΈ Ρ‚ΠΊΠ°Π½ΠΈ. Помимо Π²Ρ‹ΡˆΠ΅ΡΠΊΠ°Π·Π°Π½Π½ΠΎΠ³ΠΎ, вслСдствиС разнообразия способов ΠΈ ΡΠ»ΡƒΡ‡Π°Π΅Π² примСнСния Π³Π΅Π½Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², ΠΎΠ½ΠΈ Π΄ΠΎΠ»ΠΆΠ½Ρ‹ Π±Ρ‹Ρ‚ΡŒ способны ΠΈΠ½Ρ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΊΠ°ΠΊ дСлящиСся, Ρ‚Π°ΠΊ ΠΈ Π½Π΅Π΄Π΅Π»ΡΡ‰ΠΈΠ΅ΡΡ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ.

Π₯отя критичСский Π°Π½Π°Π»ΠΈΠ· ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Π½Π° ΡΠ΅Π³ΠΎΠ΄Π½ΡΡˆΠ½ΠΈΠΉ дСнь вирусных ΠΈ Π½Π΅Π²ΠΈΡ€ΡƒΡΠ½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹Ρ… систСм ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΠ΅Ρ‚ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Π½ΠΈ ΠΎΠ΄Π½Π° ΠΈΠ· Π½ΠΈΡ… Π½Π΅ ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚воряСт Π²Ρ‹ΡˆΠ΅ΠΏΠ΅Ρ€Π΅Ρ‡ΠΈΡΠ»Π΅Π½Π½Ρ‹ΠΌ трСбованиям Π²ΠΎ Π²ΡΠ΅ΠΉ ΠΏΠΎΠ»Π½ΠΎΡ‚Π΅, ΠΎΠ±Ρ‰Π΅ΠΏΡ€ΠΈΠ·Π½Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ адСновирусы (Ад) Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π½Π°ΠΈΠ»ΡƒΡ‡ΡˆΠΈΠΌΠΈ ΠΊΠ°Π½Π΄ΠΈΠ΄Π°Ρ‚Π°ΠΌΠΈ Π² Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ для Π³Π΅Π½Π½ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ. Ад ΠΈΠΌΠ΅ΡŽΡ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ прСимущСства ΠΏΠ΅Ρ€Π΅Π΄ Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹ΠΌΠΈ систСмами: (1) ΠΎΠ½ΠΈ способны эффСктивно Ρ‚Ρ€Π°Π½ΡΠ΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΡˆΠΈΡ€ΠΎΠΊΠΈΠΉ спСктр Ρ€Π°Π·Π½Ρ‹Ρ… Ρ‚ΠΈΠΏΠΎΠ² ΠΊΠ»Π΅Ρ‚ΠΎΠΊ, ΠΊΠ°ΠΊ дСлящихся, Ρ‚Π°ΠΊ ΠΈ ΠΏΠΎΠΊΠΎΡΡ‰ΠΈΡ…ся- (2) Ад ΡΠΎΡ…Ρ€Π°Π½ΡΡŽΡ‚ Π²Ρ‹ΡΠΎΠΊΡƒΡŽ ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΡΡ‚ΡŒ in vivo- (3) Ад Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° Π½Π΅ ΡΠ²Π»ΡΡŽΡ‚ся ΠΎΠ½ΠΊΠΎΠ³Π΅Π½Π½Ρ‹ΠΌΠΈ- (4) разработанная мСтодология позволяСт ΠΏΠΎΠ»ΡƒΡ‡Π°Ρ‚ΡŒ Ρ€Π΅ΠΏΠ»ΠΈΠΊΠ°Ρ‚ΠΈΠ²Π½ΠΎ Π΄Π΅Ρ„Π΅ΠΊΡ‚Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ Ад, способныС Ρ€Π°Π·ΠΌΠ½ΠΎΠΆΠ°Ρ‚ΡŒΡΡ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π² ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎ сконструированных ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… линиях, Π° ΠΏΠΎΡ‚ΠΎΠΌΡƒ бСзопасныС ΠΏΡ€ΠΈ тСрапСвтичСском использовании- (5) Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΎΠ±ΡŠΡ‘ΠΌ гСнСтичСского ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° (Π΄ΠΎ 36 Ρ‚.ΠΏ.Π½.) ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ встроСн Π² ΠΠ΄ Π²Π΅ΠΊΡ‚ΠΎΡ€, Ρ‡Ρ‚ΠΎ, ΠΏΡ€ΠΈ условии замСщСния всСх Π³Π΅Π½ΠΎΠ² Ад, позволяСт ΠΊΠ»ΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π² Π½ΠΈΡ… ΠΏΠΎΠ»Π½Ρ‹Π΅ ΠΊΠΎΠΏΠΈΠΈ Π³Π΅Π½ΠΎΠ² ΠΌΠ»Π΅ΠΊΠΎΠΏΠΈΡ‚Π°ΡŽΡ‰ΠΈΡ…- (6) соврСмСнная тСхнология производства ΠΈ ΠΎΡ‡ΠΈΡΡ‚ΠΊΠΈ Ад Π΄Π°Ρ‘Ρ‚ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ получСния Π²Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹Ρ… ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ², ΠΏΡ€ΠΈΠ³ΠΎΠ΄Π½Ρ‹Ρ… для клиничСского примСнСния Π² ΠΌΠ°ΡΡˆΡ‚Π°Π±Π΅ ΡΠ²Ρ‹ΡˆΠ΅ 1014 Π²ΠΈΡ€ΠΈΠΎΠ½ΠΎΠ² ΠΈ Ρ Ρ‚ΠΈΡ‚Ρ€Π°ΠΌΠΈ Π΄ΠΎ 1013 частиц Π½Π° ΠΌΠ», Ρ‚Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ сниТая производствСнныС Π·Π°Ρ‚Ρ€Π°Ρ‚Ρ‹.

Π’ ΡΠΎΠ²ΠΎΠΊΡƒΠΏΠ½ΠΎΡΡ‚ΠΈ эти прСимущСства ΠΏΡ€ΠΈΠ²Π΅Π»ΠΈ ΠΊ ΡˆΠΈΡ€ΠΎΠΊΠΎΠΌΡƒ использованию Ад Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π² Π³Π΅Π½Π½ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ для доставки тСрапСвтичСских ΠΈ Ρ€Π΅ΠΏΠΎΡ€Ρ‚Ρ‘Ρ€Π½Ρ‹Ρ… Π³Π΅Π½ΠΎΠ², Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΊ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ Ρ‚Π°ΠΊ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡ‹Ρ… онколитичСских Ад, способных Ρ€Π°Π·Ρ€ΡƒΡˆΠ°Ρ‚ΡŒ злокачСствСнныС ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ Π·Π° ΡΡ‡Ρ‘Ρ‚ сСлСктивной Ρ€Π΅ΠΏΠ»ΠΈΠΊΠ°Ρ†ΠΈΠΈ Π² Ρ€Π°ΠΊΠΎΠ²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ….

НСсмотря Π½Π° ΡΡƒΡ‰Π΅ΡΡ‚Π²Π΅Π½Π½Ρ‹ΠΉ прогрСсс, достигнутый Π² Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ Ад Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² для Π³Π΅Π½Π½ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ, Π½Π° ΡΠ΅Π³ΠΎΠ΄Π½ΡΡˆΠ½ΠΈΠΉ дСнь сохраняСтся Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ прСодолСния Ρ‚Ρ€Ρ‘Ρ… основных нСдостатков этой систСмы Π³Π΅Π½Π½ΠΎΠΉ доставки: (1) Π²Ρ‹Π·Ρ‹Π²Π°Π΅ΠΌΡ‹ΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ ΠΈΠΌΠΌΡƒΠ½Π½Ρ‹ΠΉ ΠΎΡ‚Π²Π΅Ρ‚, (2) Π½Π΅ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ Ад Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² эффСктивно ΠΈΠ½Ρ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½Π½Ρ‹Π΅ Ρ‚ΠΈΠΏΡ‹ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ-мишСнСй ΠΈ (3) отсутствиС Ρ‚ΠΊΠ°Π½Π΅Π²ΠΎΠΉ сСлСктивности, которая ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Π½Π΅ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ трансдукции ΠΊΠ°ΠΊ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ-мишСнСй, Ρ‚Π°ΠΊ ΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π·Π΄ΠΎΡ€ΠΎΠ²Ρ‹Ρ… Ρ‚ΠΊΠ°Π½Π΅ΠΉ ΠΈ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ сниТаСт ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ.

ΠŸΠ΅Ρ€Π²Π°Ρ ΠΈΠ· ΠΏΠ΅Ρ€Π΅Ρ‡ΠΈΡΠ»Π΅Π½Π½Ρ‹Ρ… ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ Ρ€Π΅ΡˆΠ°Π΅Ρ‚ΡΡ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΎΠΉ ΠΊΠ°ΠΊ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² нСпосрСдствСнного сниТСния иммуногСнности ΠΈ ΠΈΠΌΠΌΡƒΠ½ΠΎΡ€Π΅Π°ΠΊΡ‚ивности Ад (конструирования Ρ‚Π°ΠΊ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡ‹Ρ… «Π²Ρ‹ΠΏΠΎΡ‚Ρ€ΠΎΡˆΠ΅Π½Π½Ρ‹Ρ…» Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², ΠΈΠ· Π³Π΅Π½ΠΎΠΌΠΎΠ² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΡƒΠ΄Π°Π»Π΅Π½Ρ‹ всС вирусныС гСныхимичСской «ΠΌΠ°ΡΠΊΠΈΡ€ΠΎΠ²ΠΊΠΈ» вирусного капсида ΠΈ Ρ‚. Π΄.) (Croyle et al., 2001, Fisher et al., 2001, Kochanek et al., 1996, O’Riordan et al., 1999, Pastore et al., 1999), Ρ‚Π°ΠΊ ΠΈ ΠΏΠΎΠΏΡ‹Ρ‚ΠΊΠ°ΠΌΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ΅ ΠΏΠΎΠ΄Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΈΠΌΠΌΡƒΠ½Π½ΠΎΠΉ систСмы ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π° ΠΈΠ»ΠΈ очистку ΠΊΡ€ΠΎΠ²ΠΈ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π° ΠΎΡ‚ Π°Π½Ρ‚ΠΈ-Ад Π°Π½Ρ‚ΠΈΡ‚Π΅Π» ΠΊΠ°ΠΊ срСдство сниТСния ΠΈΠΌΠΌΡƒΠ½Π½ΠΎΠ³ΠΎ прСсса Π½Π° ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹ΠΉ вирусный Π²Π΅ΠΊΡ‚ΠΎΡ€ (Chen et al., 2000, Fang et al., 1995, Han et al., 1997, Jooss et al., 1996, Lochmuller et al., 1996).

Π“Π»Π°Π²Π½ΠΎΠΉ Ρ†Π΅Π»ΡŒΡŽ Π΄Π°Π½Π½ΠΎΠ³ΠΎ исслСдования являлась Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠ² ΠΊ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡŽ Π΄Π²ΡƒΡ… послСдних ΠΈΠ· ΠΏΠ΅Ρ€Π΅Ρ‡ΠΈΡΠ»Π΅Π½Π½Ρ‹Ρ… Π²Ρ‹ΡˆΠ΅ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹Ρ… для Ад Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ². ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ эти ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ ΡΠ²Π»ΡΡŽΡ‚ΡΡ прямым слСдствиСм ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ Ρ‚Ρ€ΠΎΠΏΠΈΠ·ΠΌΠ° Ад, наша стратСгия создания Ρ‚ΠΊΠ°Π½Π΅-спСцифичных, ΠΈΠ»ΠΈ «Π½Π°Ρ†Π΅Π»Π΅Π½Π½Ρ‹Ρ…» Ад Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², основана Π½Π° ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° взаимодСйствия вируса с ΠΊΠ»Π΅Ρ‚ΠΊΠΎΠΉ, с Ρ‚Π΅ΠΌ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΡ‚ΡŒ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΡƒΡŽ ΠΈ ΡΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π½ΡƒΡŽ доставку тСрапСвтичСского Π³Π΅Π½Π° Π² ΠΊΠ»Π΅Ρ‚ΠΊΠΈ-мишСни (трансдукционный Ρ‚Π°Ρ€Π³Π΅Ρ‚ΠΈΠ½Π³). Π”Π²Π° ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π° для получСния Π½Π°Ρ†Π΅Π»Π΅Π½Π½Ρ‹Ρ… Ад, основанныС Π½Π° Π³Π΅Π½Π΅Ρ‚ичСском Π²ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠΈ Π² ΡΠΎΡΡ‚Π°Π² Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ Π²ΠΈΡ€ΠΈΠΎΠ½Π° ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» Π»ΠΈΠ³Π°Π½Π΄ΠΎΠ², Π±Ρ‹Π»ΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Ρ‹ Π² ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅.

ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹.

ЦСлью настоящСй Ρ€Π°Π±ΠΎΡ‚Ρ‹ являлась Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° Π½ΠΎΠ²Ρ‹Ρ… стратСгий получСния Π½Π°Ρ†Π΅Π»Π΅Π½Π½Ρ‹Ρ… Ад Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² для Π³Π΅Π½Π½ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ. Π’ ΠΊΠ°Ρ‡Π΅ΡΡ‚Π²Π΅ мСтодологичСской основы этих стратСгий Π±Ρ‹Π»ΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ (Π°) модификация глобулярного Π΄ΠΎΠΌΠ΅Π½Π° (Π“Π”) шипа Ад5 ΠΈ (Π±) Π·Π°ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ шипа Ρ…ΠΈΠΌΠ΅Ρ€Π½Ρ‹ΠΌΠΈ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Π°ΠΌΠΈ.

Для достиТСния ΡƒΠΊΠ°Π·Π°Π½Π½ΠΎΠΉ Ρ†Π΅Π»ΠΈ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Π±Ρ‹Π»ΠΎ Ρ€Π΅ΡˆΠΈΡ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ Π·Π°Π΄Π°Ρ‡ΠΈ:

1. ΠŸΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΡΠ΅Ρ€ΠΈΡŽ Ад Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², содСрТащих Π² Π¨-ΠΏΠ΅Ρ‚Π»Π΅ Π“Π” шипа ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ ΠΏΠΎ Ρ€Π°Π·ΠΌΠ΅Ρ€Ρƒ встройки Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ² Π³ΠΈΠΏΠ΅Ρ€Π²Π°Ρ€ΠΈΠ°Π±Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΏΠ΅Ρ‚Π»ΠΈ основания ΠΏΠ΅Π½Ρ‚ΠΎΠ½Π° (ОП) Ад5.

2. Π£ΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ продуктивности вирусной ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ, инфСкционности вирусов ΠΈ ΠΈΡ… Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π½ΠΎΠΉ спСцифичности ΠΎΡ‚ Ρ€Π°Π·ΠΌΠ΅Ρ€Π° встроСк Π² Π¨-ΠΏΠ΅Ρ‚Π»Π΅.

3. Π‘ΠΎΠ·Π΄Π°Ρ‚ΡŒ ΡΠ΅Ρ€ΠΈΡŽ ΡˆΠ°Ρ‚Ρ‚Π»-ΠΏΠ»Π°Π·ΠΌΠΈΠ΄, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΡ… быстро ΠΈ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎ Π²ΡΡ‚Ρ€Π°ΠΈΠ²Π°Ρ‚ΡŒ ΠΏΠΎΠ»ΠΈΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Π½Ρ‹Π΅ Π»ΠΈΠ³Π°Π½Π΄Ρ‹ Π² ΡƒΠ΄Π»ΠΈΠ½Ρ‘Π½Π½Ρ‹Π΅ Π¨-ΠΏΠ΅Ρ‚Π»ΠΈ всСх ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… конструкций.

4. Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ вновь сконструированныС ΡˆΠ°Ρ‚Π³Π»-ΠΏΠ»Π°Π·ΠΌΠΈΠ΄Ρ‹, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Ад Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹, содСрТащиС Π² ΡΠΎΡΡ‚Π°Π²Π΅ ΡƒΠ΄Π»ΠΈΠ½Ρ‘Π½Π½ΠΎΠΉ HI-ΠΏΠ΅Ρ‚Π»ΠΈ Π²Π°Π·ΠΎΠ°ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΉ ΠΏΠΎΠ»ΠΈΠΏΠ΅ΠΏΡ‚ΠΈΠ΄ Ρ‚ΠΎΠ½ΠΊΠΎΠ³ΠΎ ΠΊΠΈΡˆΠ΅Ρ‡Π½ΠΈΠΊΠ° (VIP), ΠΈ ΠΎΡ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΡ… ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ, ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΡΡ‚ΡŒ ΠΈ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΠΈΠ΅ с Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π°ΠΌΠΈ.

5. Π‘ΠΊΠΎΠ½ΡΡ‚Ρ€ΡƒΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Ρ…ΠΈΠΌΠ΅Ρ€Π½ΡƒΡŽ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Ρƒ-ΠΏΡ€ΠΎΡ‚ΠΎΡ‚ΠΈΠΏ шип-Ρ„ΠΈΠ±Ρ€ ΠΈΡ‚ΠΈΠ½-Π»ΠΈΠ³Π°Π½Π΄, ΠΏΡ€Π΅Π΄Π½Π°Π·Π½Π°Ρ‡Π΅Π½Π½ΡƒΡŽ для нацСливания Ад Π²Π΅ΠΊΡ‚ΠΎΡ€Π° посрСдством замСщСния шипа Π² ΠΊΠ°ΠΏΡΠΈΠ΄Π΅ Ад.

6. ΠŸΡ€ΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ Ρ„ΠΈΠ±Ρ€ΠΈΡ‚ΠΈΠ½Π° Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³Π° Π’4 Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡ‚ΡŒ Ρ‚Ρ€ΠΈΠΌΠ΅Ρ€ΠΈΠ·ΡƒΡŽΡ…Ρ†ΡƒΡŽ ΠΈ Π»ΠΈΠ³Π°Π½Π΄-ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² ΡΠΎΡΡ‚Π°Π²Π΅ Ρ…ΠΈΠΌΠ΅Ρ€Π½ΠΎΠΉ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Ρ‹.

7. ΠŸΡ€ΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ Ρ…ΠΈΠΌΠ΅Ρ€Ρ‹ Π²ΡΡ‚Ρ€Π°ΠΈΠ²Π°Ρ‚ΡŒΡΡ Π² ΠΠ΄ Π²ΠΈΡ€ ΠΈΠΎΠ½Ρ‹ ΠΈ ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°Ρ‚ΡŒ ΠΈΡ… ΡΠ²ΡΠ·Ρ‹Π²Π°Π½ΠΈΠ΅ с ΠΈΡΠΊΡƒΡΡΡ‚Π²Π΅Π½Π½Ρ‹ΠΌ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠΌ (ИР).

8. Π˜Π·ΡƒΡ‡ΠΈΡ‚ΡŒ влияниС Π΄Π΅Π»Π΅Ρ†ΠΈΠΈ большСй части ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ шипа Π² ΡΠΎΡΡ‚Π°Π²Π΅ Ρ…ΠΈΠΌΠ΅Ρ€Ρ‹ Π½Π° ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΡΡ‚ΡŒ вирусов, нСсущих Ρ…ΠΈΠΌΠ΅Ρ€Π½Ρ‹ΠΉ шип.

9. Π£ΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ, сохраняСт Π»ΠΈ TNF-ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹ΠΉ Π΄ΠΎΠΌΠ΅Π½ CD40L свою Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΡƒΡŽ структуру Π² ΠΎΡ‚сутствиС Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ΠΉ Π΄ΠΈΡΡƒΠ»ΡŒΡ„ΠΈΠ΄Π½ΠΎΠΉ связи, ΠΈ ΡΠΎΠ²ΠΌΠ΅ΡΡ‚ΠΈΠΌΠ° Π»ΠΈ Π΅Π³ΠΎ структура со ΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€ΠΎΠΉ Ρ…ΠΈΠΌΠ΅Ρ€Ρ‹ шип-Ρ„ΠΈΠ±Ρ€ΠΈΡ‚ΠΈΠ½.

10. Π‘ΠΊΠΎΠ½ΡΡ‚Ρ€ΡƒΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Ад Π²Π΅ΠΊΡ‚ΠΎΡ€, капсид ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ содСрТит Ρ…ΠΈΠΌΠ΅Ρ€Ρƒ шип-Ρ„ΠΈΠ±Ρ€ΠΈΡ‚ΠΈΠ½-Π‘040Π¬ вмСсто шипа Π΄ΠΈΠΊΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ°, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΌΠΎΠ·Π°ΠΈΡ‡Π½ΡƒΡŽ Π²Π΅Ρ€ΡΠΈΡŽ этого Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰ΡƒΡŽ ΠΏΠΎΠΌΠΈΠΌΠΎ Ρ…ΠΈΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ шипа, ΠΏΠΎΠ»Π½ΠΎΡ€Π°Π·ΠΌΠ΅Ρ€Π½Ρ‹ΠΉ шип Ад5 с ΠΌΡƒΡ‚Π°Ρ†ΠΈΠ΅ΠΉ Π² ΡΠ°ΠΉΡ‚Π΅ связывания с ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹ΠΌ Ад Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠΌ, КАР. 11. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ связывания этих вирусов с CD40 ΠΈ Ρ‚рансдукции ΠΈΠΌΠΈ Π‘Π‘40-ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ.

Научная Π½ΠΎΠ²ΠΈΠ·Π½Π° ΠΈ ΠΏΡ€Π°ΠΊΡ‚ичСская Ρ†Π΅Π½Π½ΠΎΡΡ‚ΡŒ.

Π’ΠΏΠ΅Ρ€Π²Ρ‹Π΅ продСмонстрирована Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ встраивания ΠΏΠΎΠ»ΠΈΠΏΠ΅ΠΏΡ‚ΠΈΠ΄ΠΎΠ² Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠΌ Π΄ΠΎ 111 Π°.ΠΎ. Π² HI-ΠΏΠ΅Ρ‚Π»ΡŽ Π“Π” шипа. Π­Ρ‚ΠΈ Π΄Π°Π½Π½Ρ‹Π΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΈ ΠΊΠΎΡ€Π΅Π½Π½Ρ‹ΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ ΠΏΠ΅Ρ€Π΅ΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ слоТившиСся Ρ€Π°Π½Π΅Π΅ прСдставлСния ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Π²Ρ‹Π±ΠΎΡ€ Π»ΠΈΠ³Π°Π½Π΄ΠΎΠ² для нацСливания Ад Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΈΠΌΠΈ ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Π½Ρ‹ΠΌΠΈ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Π°ΠΌΠΈ. На ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Π½Π°ΠΌΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² Π±Ρ‹Π» сдСлан Π²Ρ‹Π²ΠΎΠ΄ ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΠΈ нацСливания Ад Π·Π° ΡΡ‡Ρ‘Ρ‚ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ Π“Π” шипа ΠΏΠΎΠ»ΠΈΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Π½Ρ‹ΠΌΠΈ Π»ΠΈΠ³Π°Π½Π΄Π°ΠΌΠΈ, Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Ρ€Π°ΡΡˆΠΈΡ€ΡΠ΅Ρ‚ Ρ€Π΅ΠΏΠ΅Ρ€Ρ‚ΡƒΠ°Ρ€ ΠΊΠ°ΠΊ Π»ΠΈΠ³Π°Π½Π΄ΠΎΠ², Ρ‚Π°ΠΊ ΠΈ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠ²-мишСнСй ΠΏΡ€ΠΈΠ³ΠΎΠ΄Π½Ρ‹Ρ… для Ρ‚Π°Ρ€Π³Π΅Ρ‚ΠΈΠ½Π³Π° Ад.

Бконструирована сСрия ΡˆΠ°Ρ‚Ρ‚Π»-ΠΏΠ»Π°Π·ΠΌ ΠΈΠ΄, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰Π°Ρ эффСктивно ΠΈ Π±Ρ‹ΡΡ‚Ρ€ΠΎ ΠΊΠ»ΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΊΠΎΠ΄ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ Π»ΠΈΠ³Π°Π½Π΄ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π² Π¨-ΠΏΠ΅Ρ‚Π»ΠΈ Π“Π” шипа, ΡƒΠ΄Π»ΠΈΠ½Ρ‘Π½Π½Ρ‹Π΅ Ρ€Π°Π·Π½Ρ‹ΠΌΠΈ ΠΏΠΎ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Π°ΠΌΠΈ Π³ΠΈΠ±ΠΊΠΎΠΉ ΠΏΠ΅Ρ‚Π»ΠΈ ОП, для ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ прСдставлСния Π½Π°Ρ†Π΅Π»ΠΈΠ²Π°ΡŽΡ‰ΠΈΡ… Π»ΠΈΠ³Π°Π½Π΄ΠΎΠ² Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½Ρ‹ΠΌ шипом.

ΠŸΡ€ΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ VIP-содСрТащий Π²Π΅ΠΊΡ‚ΠΎΡ€, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΉ с ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ этих ΡˆΠ°Ρ‚Ρ‚Π»-ΠΏΠ»Π°Π·ΠΌΠΈΠ΄, ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½ΠΎΠΉ ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΡΡ‚ΡŒΡŽ Π½Π° ΠšΠΠ -нсгативных ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ…, Ρ‡Ρ‚ΠΎ Π΄Π΅Π»Π°Π΅Ρ‚ Π΅Π³ΠΎ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎ ΠΏΠΎΠ»Π΅Π·Π½Ρ‹ΠΌ для доставки Π³Π΅Π½ΠΎΠ² Π² Ρ‚Π°ΠΊΠΈΠ΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ.

Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠΈΠ°Π»ΡŒΠ½ΠΎ новая стратСгия Ρ‚Π°Ρ€Π³Π΅Ρ‚ΠΈΠ½Π³Π°, основанная Π½Π° Π·Π°ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠΈ шипа Ад Ρ…ΠΈΠΌΠ΅Ρ€Π½ΠΎΠΉ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»ΠΎΠΉ ΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰Π°Ρ Ρ€Π΅ΡˆΠΈΡ‚ΡŒ Π΄Π²Π΅ Π³Π»Π°Π²Π½Ρ‹Π΅ Π·Π°Π΄Π°Ρ‡ΠΈ, связанныС с Π½Π°Ρ†Π΅Π»ΠΈΠ²Π°Π½ΠΈΠ΅ΠΌ Ад Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²: Ρ€Π°Π·Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ структурной ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ нСсовмСстимости Π»ΠΈΠ³Π°Π½Π΄Π° ΠΈ ΡˆΠΈΠΏΠ°, Π° Ρ‚Π°ΠΊΠΆΠ΅ обСспСчСниС спСцифичного связывания с Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠΌ-мишСнью.

УстановлСно, Ρ‡Ρ‚ΠΎ созданная химСрная ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Π° эффСктивно тримСризуСтся ΠΏΡ€ΠΈ гСнСтичСском слиянии с Π½Π°Ρ†Π΅Π»ΠΈΠ²Π°ΡŽΡ‰ΠΈΠΌΠΈ Π±Π΅Π»ΠΊΠΎΠ²Ρ‹ΠΌΠΈ Π»ΠΈΠ³Π°Π½Π΄Π°ΠΌΠΈ, ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰ΠΈΠΌΠΈ слоТной Ρ‚Ρ€Π΅Ρ‚ΠΈΡ‡Π½ΠΎΠΉ ΠΊΠΎΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠ΅ΠΉ, ΠΈ ΡΠΎΡ…раняСт ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ Π²ΡΡ‚Ρ€Π°ΠΈΠ²Π°Ρ‚ΡŒΡΡ Π² ΠΠ΄ Π²ΠΈΡ€ΠΈΠΎΠ½Ρ‹.

Π’Ρ‹Π΄Π²ΠΈΠ½ΡƒΡ‚Π° ΠΈ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½Π° Π³ΠΈΠΏΠΎΡ‚Π΅Π·Π° ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ встраиваниС Π² ΠΊΠ°ΠΏΡΠΈΠ΄ Ад Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², нСсущих Ρ…ΠΈΠΌΠ΅Ρ€Π½Ρ‹ΠΉ шип, Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Π½ΠΎΡ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ шипа Ад5, 8 с ΠΌΡƒΡ‚Π°Ρ†ΠΈΠ΅ΠΉ Π² ΠšΠΠ -ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰Π΅ΠΌ сайтС, ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°Π΅Ρ‚ ΠΈΡ… ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΡΡ‚ΡŒ, Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΡΡ ΠΏΡ€ΠΈ этом ΡΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ связывания с Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠΌ-мишСнью.

Бконструированы Π½Π°Ρ†Π΅Π»Π΅Π½Π½Ρ‹Π΅ ΠΊ CD40 Ад Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹, эффСктивно ΠΈ ΡΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π½ΠΎ Ρ‚Ρ€Π°Π½ΡΠ΄ΡƒΡ†ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ Π΄Π΅Π½Π΄Ρ€ΠΈΡ‚Π½Ρ‹Π΅ ΠΈ ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ яичников ΠΈ ΠΌΠΎΡ‡Π΅Π²ΠΎΠ³ΠΎ пузыря Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°. Π­Ρ‚ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ эффСктивными ΠΈΠ· ΠΈΠ·Π²Π΅ΡΡ‚Π½Ρ‹Ρ… Π² Π½Π°ΡΡ‚оящСС врСмя срСдств доставки Π³Π΅Π½ΠΎΠ² Π² Π½Π°Π·Π²Π°Π½Π½Ρ‹Π΅ Ρ‚ΠΈΠΏΡ‹ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ-мишСнСй, Π° ΠΏΠΎΡ‚ΠΎΠΌΡƒ ΠΌΠΎΠ³ΡƒΡ‚ ΡΠ»ΡƒΠΆΠΈΡ‚ΡŒ ΠΏΡ€ΠΎΡ‚ΠΎΡ‚ΠΈΠΏΠ°ΠΌΠΈ тСрапСвтичСских Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² для гСнСтичСской ΠΈΠΌΠΌΡƒΠ½ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΡ€ΠΎΡ‚ΠΈΠ² Ρ€Π°ΠΊΠ° ΠΈ ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π°Π³Π΅Π½Ρ‚ΠΎΠ². ΠΠ»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²Π½ΠΎ, сконструированныС Π½Π° ΠΈΡ… ΠΎΡΠ½ΠΎΠ²Π΅ условно-Ρ€Π΅ΠΏΠ»ΠΈΠΊΠ°Ρ‚ΠΈΠ²Π½Ρ‹Π΅ вирусы ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ для уничтоТСния ΠΌΠ΅Ρ‚Π°ΡΡ‚Π°Π·ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… злокачСствСнных, CD40-ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ посрСдством ΠΈΡ… ΡΠ΅Π»Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ трансдукции.

ПолоТСния, выносимыС Π½Π° Π·Π°Ρ‰ΠΈΡ‚Ρƒ:

1. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ сСрии ΠΈΠ· Π²ΠΎΡΡŒΠΌΠΈ Ад Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², Ad5LucNNRGD, содСрТащих встройки Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠΌ ΠΎΡ‚ 13 Π΄ΠΎ 83 Π°.ΠΎ. Π² Π¨-ΠΏΠ΅Ρ‚Π»Π΅ Π“Π” шипа Ад5 ΠΈ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΈΡ… ΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Ρ‹.

2. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ влияния Ρ€Π°Π·ΠΌΠ΅Ρ€Π° встроСк Π² Π¨-ΠΏΠ΅Ρ‚Π»Π΅ Π½Π° ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ вирусной ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ, ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΡΡ‚ΡŒ вирусов ΠΈ ΠΈΡ… Ρ‚Ρ€ΠΎΠΏΠΈΠ·ΠΌ.

3. Π‘ΠΎΠ·Π΄Π°Π½ΠΈΠ΅ сСрии ΡˆΠ°Ρ‚Ρ‚Π»-ΠΏΠ»Π°Π·ΠΌΠΈΠ΄ pHI. PBNN, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΡ… быстро ΠΈ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎ Π²ΡΡ‚Ρ€Π°ΠΈΠ²Π°Ρ‚ΡŒ ΠΏΠΎΠ»ΠΈΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Π½Ρ‹Π΅ Π»ΠΈΠ³Π°Π½Π΄Ρ‹ Π² ΡƒΠ΄Π»ΠΈΠ½Ρ‘Π½Π½Ρ‹Π΅ Π¨-ΠΏΠ΅Ρ‚Π»ΠΈ всСх восьми конструкций.

4. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ вирусов Ad5LucNNVIP, со Π²ΡΡ‚Ρ€ΠΎΠΉΠΊΠΎΠΉ VIP Π² Π¨-пСтлях, содСрТащих Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ Π»ΠΈΠ½ΠΊΠ΅Ρ€Ρ‹ Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠΌ 5, 10, 35 ΠΈ 40 Π°.ΠΎ. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² проникновСния ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… вирусов Π² ΠΊΠ»Π΅Ρ‚ΠΊΠΈ.

5. Π‘ΠΎΠ·Π΄Π°Π½ΠΈΠ΅ Ρ…ΠΈΠΌΠ΅Ρ€Π½ΠΎΠΉ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Ρ‹ шип-Ρ„ΠΈΠ±Ρ€ΠΈΡ‚ΠΈΠ½-Π±Π˜Π‘-Ρ‚Π°Π³ (FF/6H), ΠΏΡ€Π΅Π΄Π½Π°Π·Π½Π°Ρ‡Π΅Π½Π½ΠΎΠΉ для замСщСния шипа Π² ΠΊΠ°ΠΏΡΠΈΠ΄Π΅ Ад. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ способности Ρ…ΠΈΠΌΠ΅Ρ€Ρ‹ Ρ‚Ρ€ΠΈΠΌΠ΅Ρ€ΠΈΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ, Π²ΡΡ‚Ρ€Π°ΠΈΠ²Π°Ρ‚ΡŒΡΡ Π² ΠΠ΄ Π²ΠΈΡ€ΠΈΠΎΠ½Ρ‹ ΠΈ ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°Ρ‚ΡŒ ΠΈΡ… ΡΠ²ΡΠ·Ρ‹Π²Π°Π½ΠΈΠ΅ с ΠΈΡΠΊΡƒΡΡΡ‚Π²Π΅Π½Π½Ρ‹ΠΌ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠΌ (ИР).

6. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅, насколько ΠΊΡ€ΠΈΡ‚ΠΈΡ‡Π½ΠΎΠΉ для ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΡƒΠΏΠ°ΠΊΠΎΠ²ΠΊΠΈ ΠΈ ΡΠ²ΡΠ·Ρ‹Π²Π°Π½ΠΈΡ с Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠΌ являСтся ΠΏΡ€ΠΈΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π°Ρ Π² CD40L Π΄ΠΈΡΡƒΠ»ΡŒΡ„ΠΈΠ΄Π½Π°Ρ связь.

7. Π‘ΠΎΠ·Π΄Π°Π½ΠΈΠ΅ Ρ…ΠΈΠΌΠ΅Ρ€Π½ΠΎΠΉ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Ρ‹ шип-Ρ„ΠΈΠ±Ρ€ΠΈΡ‚ΠΈΠ½, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰Π΅ΠΉ Π² ΠΊΠ°Ρ‡Π΅ΡΡ‚Π²Π΅ Π»ΠΈΠ³Π°Π½Π΄Π° TNF-ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹ΠΉ Π΄ΠΎΠΌΠ΅Π½ CD40L.

8. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, нСсущСго Ρ…ΠΈΠΌΠ΅Ρ€Π½Ρ‹ΠΉ Π‘040Π¬-содСрТащий шип. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π΅Π³ΠΎ ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠ΅&tradeΠΈ спСцифичности взаимодСйствия с CD40.

9. Π‘ΠΎΠ·Π΄Π°Π½ΠΈΠ΅ ΠΌΠΎΠ·Π°ΠΈΡ‡Π½ΠΎΠ³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, содСрТащСго ΠΏΠΎΠΌΠΈΠΌΠΎ Ρ…ΠΈΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ шипа, ΠΏΠΎΠ»Π½ΠΎΡ€Π°Π·ΠΌΠ΅Ρ€Π½Ρ‹ΠΉ шип Ад5 с ΠΌΡƒΡ‚Π°Ρ†ΠΈΠ΅ΠΉ Π² ΠšΠΠ  ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰Π΅ΠΌ сайтС. Π‘Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π΅Π³ΠΎ инфСкционности с ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΡΡ‚ΡŒΡŽ вируса содСрТащСго Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ…ΠΈΠΌΠ΅Ρ€Π½Ρ‹ΠΉ шип.

10. Π‘Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ эффСктивности Ρ‚Ρ€Π°Π½Π΅Π΄ΡƒΠΊΡ†ΠΈΠΈ Π΄Π΅Π½Π΄Ρ€ΠΈΡ‚Π½Ρ‹Ρ… ΠΈ ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° Π‘040Π¬-содСрТащими вирусами с Ρ‚Π°ΠΊΠΎΠ²ΠΎΠΉ Π½Π΅ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ вируса, содСрТащСго шип Π΄ΠΈΠΊΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ°.

Апробация ΠΈ ΠΏΡƒΠ±Π»ΠΈΠΊΠ°Ρ†ΠΈΠΈ.

Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π±Ρ‹Π»ΠΈ прСдставлСны Π½Π° ΠœΠ΅ΠΆΠ΄ΡƒΠ½Π°Ρ€ΠΎΠ΄Π½ΠΎΠΌ ΠšΠΎΠ½Π³Ρ€Π΅ΡΡΠ΅ ΠΏΠΎ Π‘ΠΈΠΎΡ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ «Biotechnology 2000» (Π‘Π΅Ρ€Π»ΠΈΠ½, ГСрмания, 2000), Π½Π° ΠœΠ΅ΠΆΠ΄ΡƒΠ½Π°Ρ€ΠΎΠ΄Π½ΠΎΠΌ Π‘ΠΈΠΌΠΏΠΎΠ·ΠΈΡƒΠΌΠ΅ «Genetic Anticancer Agents» (ВалСнсия, Испания,.

2001), Π½Π° ΠœΠ΅ΠΆΠ΄ΡƒΠ½Π°Ρ€ΠΎΠ΄Π½ΠΎΠΌ ВирусологичСском ΠšΠΎΠ½Π³Ρ€Π΅ΡΡΠ΅ (ΠŸΠ°Ρ€ΠΈΠΆ, Ѐранция, 2002), Π½Π° ΠœΠ΅ΠΆΠ΄ΡƒΠ½Π°Ρ€ΠΎΠ΄Π½ΠΎΠΌ ΠšΠΎΠ½Π³Ρ€Π΅ΡΡΠ΅ «New Trends in Cancer Therapy» (Π ΠΎΠ²ΠΈΠ³ΠΎ, Π˜Ρ‚Π°Π»ΠΈΡ,.

2002), Π½Π° Π’Ρ€Π΅Ρ‚ΡŒΠ΅ΠΉ, Π§Π΅Ρ‚Π²Ρ‘Ρ€Ρ‚ΠΎΠΉ ΠΈ ΠŸΡΡ‚ΠΎΠΉ Π•ΠΆΠ΅Π³ΠΎΠ΄Π½ΠΎΠΉ ΠšΠΎΠ½Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠΈ American Society of Gene Therapy (Π”Π΅Π½Π²Π΅Ρ€, ΠšΠΎΠ»ΠΎΡ€Π°Π΄ΠΎ, 2000; Биэттл, Π’Π°ΡˆΠΈΠ½Π³Ρ‚ΠΎΠ½, 2001; Бостон, ΠœΠ°ΡΡΠ°Ρ‡ΡƒΡΠ΅Ρ‚Ρ, 2002), Π½Π° ΠΊΠΎΠ½Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠΈ 'Targeting Strategies for Therapeutic Gene Delivery" Π² Cold Spring Harbor (Cold Spring Harbor, 2001), Π½Π° Π•ΠΆΠ΅Π³ΠΎΠ΄Π½ΠΎΠΌ ΠœΠ΅Π΄ΠΈΡ†ΠΈΠ½ΡΠΊΠΎΠΌ Π€ΠΎΡ€ΡƒΠΌΠ΅ Π² University of Alabama at Birmingham, UAB (Π‘ΠΈΡ€ΠΌΠΈΠ½Π³Π΅ΠΌ, Алабама, 2001 ΠΈ 2002). Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΎΠ±ΡΡƒΠΆΠ΄Π°Π»ΠΈΡΡŒ Π½Π° ΡΠ΅ΠΌΠΈΠ½Π°Ρ€Π΅ Π² Gene Therapy Center, UAB (Π‘ΠΈΡ€ΠΌΠΈΠ½Π³Π΅ΠΌ, Алабама, июль 2003).

По ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°ΠΌ Ρ€Π°Π±ΠΎΡ‚Ρ‹ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½Ρ‹ 4 ΡΡ‚Π°Ρ‚ΡŒΠΈ ΠΈ Ρ‚Сзисы 9 ΠΊΠΎΠ½Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠΉ:

1. Krasnykh V., Dmitriev I., Navarro J.G., Belousova N., Kashentseva E., Xiang J., Douglas J.T., Curiel D.T. Advanced generation adenoviral vectors possess augmented gene transfer efficiency based upon coxsackie adenovirus receptor-independent cellular entry capacity.// Cancer Research. — 2000. — Vol.60. β„–.24. P.6784−87.

2. Krasnykh V., Belousova N., Korokhov N., Mikheeva G., Curiel D.T. Genetic targeting of adenovirus vector via replacement of the fiber protein with the phage T4 fibritin.// Journal of Virology. — 2001. — Vol.75. β„–.9. P.4176−83.

3. Belousova N., Krendelchtchikova V., Curiel D.T. and Krasnykh V. Modulation of Adenovirus Vector Tropism via Incorporation of Polypeptide Ligands into the Fiber Protein.//Journal of Virology. — 2002. — Vol.76. β„–.17. P.8621−31.

4. Belousova N., Korokhov N., Krendelchtchikova V., Simonenko V., Mikheeva G., Aldrich W., Triozzi P., Curiel D.T., and Krasnykh V. Genetically targeted adenovirus vector directed to CD40-expressing cells.// Journal of Virology, (Π² ΠΏΠ΅Ρ‡Π°Ρ‚ΠΈ).

5. Krasnykh V., Mikheeva G., Belousova N., Korokhov N., and Curiel D. T. Genetic replacement of the adenovirus fiber protein as a strategy to develop targeted vectors for cell-specific gene delivery.// Molecular Therapy. — 2000. — Vol.1. β„–.5. P.176.

6. Krasnykh V., Belousova N., Korokhov N., Mikheeva G., and Curiel D. T. Genetic replacement of the adenovirus fiber protein as a strategy to develop targeted vectors for cell-specific gene delivery.// The World Congress on Biotechnology. Berlin, Germany, September 3−8, 2000. Abstr. Book. P.65−66.

7. Belousova N., Mikheeva G., Korokhov N., Curiel D.T., Krasnykh V. Derivation of targeted adenovirus vectors for cell-specific gene delivery via genetic replacement of the fiber protein.// Targeting Strategies for Therapeutic Gene Delivery. Cold Spring Harbor, New York, March 15−18, 2001. Abstr. Book. P.14.

8. Belousova N., Curiel D.T., Krasnykh V. Generation of recombinant adenoviral vectors containing fiber proteins with extended HI-loops.// Molecular Therapy. — β€’ 2001.-Vol. 3(5), P. 168.

9. Belousova N., Krendelshchikova V., Curiel D.T. and Krasnykh V. Generation of targeting adenoviral vectors containing fibers with extended HI-loops.// 2001 Annual Research Retreat. The Medical Forum, Birmingham, Alabama, October 22, 2001. Abstr. Book. P.77.

10. Krasnykh, V., Korokhov, N., Belousova, N., Simonenko, V., Krendelchtchikova, V., Mikheeva, G., and Curiel, DT. Derivation of truly targeted adenovirus vectors by the fiber replacement technology.// Xllth International Congress of Virology. Paris, France, July 27-August 1, 2002. Abstr. Book.

11. Belousova N., Korokhov N., Krendelchtchikova V., Simonenko V., Curiel D.T., and Krasnykh V. Novel genetically targeted adenovirus vector directed to CD40-expressing cells.// Molecular Therapy. — 2002. — Vol. 5(5). P. 201.

12. Krasnykh V., Belousova N., Korokhov N., Krendelchtchikova V., Simonenko V., Curiel D.T. Targeted Adenovirus Vectors For Gene Therapy of Cancer.// The 3rd International Cancer Congress «New Trends in Cancer Therapy». Rovigo, Italy, December 5, 2002. Abstr. Book.

13. Belousova N., Korokhov N., Krendelchtchikova V., Simonenko V., Aldrich W., Triozzi P., Curiel D.T. and Krasnykh V. Novel Genetically Targeted Adenovirus Vector Directed to Dendritic Cells.// 2002 Annual Research Retreat. The Medical Forum, Birmingham, Alabama, October 28, 2002. Abstr. Book. P.92.

Благодарности.

Автор Π²Ρ‹Ρ€Π°ΠΆΠ°Π΅Ρ‚ Π³Π»ΡƒΠ±ΠΎΠΊΡƒΡŽ Π±Π»Π°Π³ΠΎΠ΄Π°Ρ€Π½ΠΎΡΡ‚ΡŒ Π’. Н. ΠšΡ€Π°ΡΠ½Ρ‹Ρ… Π·Π° ΠΏΠΎΠΌΠΎΡ‰ΡŒ ΠΈ Ρ€ΡƒΠΊΠΎΠ²ΠΎΠ΄ΡΡ‚Π²ΠΎ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ, Н. П. ΠšΠΎΡ€ΠΎΡ…ΠΎΠ²Ρƒ Π·Π° ΠΎΠ±ΡΡƒΠΆΠ΄Π΅Π½ΠΈΠ΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² ΠΏΠΎ Ρ…ΠΎΠ΄Ρƒ выполнСния Ρ€Π°Π±ΠΎΡ‚Ρ‹, Π’. Π“. ΠšΡ€Π΅Π½Π΄Π΅Π»Ρ‹Ρ†ΠΈΠΊΠΎΠ²ΠΎΠΉ Π·Π° ΡƒΡ‡Π°ΡΡ‚ΠΈΠ΅ ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΡŒ Π² Ρ€Π°Π±ΠΎΡ‚Π΅, А. Π’. ΠŸΠ΅Ρ€Π΅Π±ΠΎΠ΅Π²Ρƒ, Π’. Π’. Π’Π΅Ρ€Π½ΠΎΠ²ΠΎΠΌΡƒ ΠΈ Π‘. А Π¨Π΅ΡΡ‚ΠΎΠΏΠ°Π» Π·Π° ΠΊΡ€ΠΈΡ‚ичСскиС замСчания ΠΏΡ€ΠΈ ΠΏΡ€ΠΎΡ‡Ρ‚Π΅Π½ΠΈΠΈ рукописи.

Π²Ρ‹Π²ΠΎΠ΄Ρ‹.

1. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π° сСрия Ад Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², содСрТащих Π² HI-ΠΏΠ΅Ρ‚Π»Π΅ глобулярного Π΄ΠΎΠΌΠ΅Π½Π° шипа встройки ΠΏΠΎΠ»ΠΈΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Π½Ρ‹Ρ… ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ длиною ΠΎΡ‚ 13 Π΄ΠΎ 111 Π°.ΠΎ. ВыявлСно, Ρ‡Ρ‚ΠΎ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ Ρ€Π°Π·ΠΌΠ΅Ρ€Π° глобулярного Π΄ΠΎΠΌΠ΅Π½Π° Π½Π΅ ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ сущСствСнного влияния Π½Π° ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ, ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΡΡ‚ΡŒ ΠΈΠ»ΠΈ связываниС вируса с ΠšΠΠ , хотя, Π² Ρ†Π΅Π»ΠΎΠΌ, Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ обратная коррСляция ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠΌ встройки ΠΈ ΡΡ‚ΠΈΠΌΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ.

2. УстановлСно, Ρ‡Ρ‚ΠΎ RGD-Ρ‚Ρ€ΠΈΠΏΠ΅ΠΏΡ‚ΠΈΠ΄ Π² ΡΠΎΡΡ‚Π°Π²Π΅ ΡƒΠ΄Π»ΠΈΠ½Ρ‘Π½Π½Ρ‹Ρ… Π¨-ΠΏΠ΅Ρ‚Π΅Π»ΡŒ способСн эффСктивно Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ с ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΠ½Π°ΠΌΠΈ ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΊΠ°ΠΊ Π½Π°Ρ†Π΅Π»ΠΈΠ²Π°ΡŽΡ‰ΠΈΠΉ вирус Π»ΠΈΠ³Π°Π½Π΄.

3. ВыявлСно, Ρ‡Ρ‚ΠΎ Π²Π°Π·ΠΎΠ°ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΉ ΠΏΠΎΠ»ΠΈΠΏΠ΅ΠΏΡ‚ΠΈΠ΄ Ρ‚ΠΎΠ½ΠΊΠΎΠ³ΠΎ ΠΊΠΈΡˆΠ΅Ρ‡Π½ΠΈΠΊΠ°, Π±ΡƒΠ΄ΡƒΡ‡ΠΈ встроСнным Π² ΡƒΠ΄Π»ΠΈΠ½Ρ‘Π½Π½Ρ‹Π΅ HI-ΠΏΠ΅Ρ‚Π»ΠΈ шипа Ад5, Π½Π΅ ΡΠ²ΡΠ·Ρ‹Π²Π°Π΅Ρ‚ся со ΡΠ²ΠΎΠΈΠΌΠΈ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹ΠΌΠΈ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π°ΠΌΠΈ, Π½ΠΎ ΡΠΏΠΎΡΠΎΠ±Π΅Π½ Π²ΡΡ‚ΡƒΠΏΠ°Ρ‚ΡŒ Π² Π·Π°Ρ€ΡΠ΄-обусловлСнноС взаимодСйствиС с Π½Π΅ ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌΠΈ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Π°ΠΌΠΈ Π½Π° ΠΏΠΎΠ²Π΅Ρ€Ρ…ности ΠΊΠ»Π΅Ρ‚ΠΎΠΊ.

4. Π‘ Ρ†Π΅Π»ΡŒΡŽ замСщСния шипа Π² ΠΠ΄ ΠΊΠ°ΠΏΡΠΈΠ΄Π΅, сконструирована химСрная ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Π°, состоящая ΠΈΠ· Π°ΠΌΠΈΠ½ΠΎ-ΠΊΠΎΠ½Ρ†Π΅Π²ΠΎΠ³ΠΎ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Π° шипа Ад5, Ρ„ΠΈΠ±Ρ€ΠΈΡ‚ΠΈΠ½Π° Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³Π° Π’4 ΠΈ Π»ΠΈΠ³Π°Π½Π΄Π°. УстановлСно, Ρ‡Ρ‚ΠΎ Ρ„ΠΈΠ±Ρ€ΠΈΡ‚ΠΈΠ½ способСн ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΈΠ²Π°Ρ‚ΡŒ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΡƒΡŽ Ρ‚Ρ€ΠΈΠΌΠ΅Ρ€Π½ΡƒΡŽ ΠΊΠΎΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡŽ всСго Ρ…ΠΈΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ° ΠΈ, Ρ‡Ρ‚ΠΎ Ρ…ΠΈΠΌΠ΅Ρ€Π° эффСктивно встраиваСтся Π² ΠΠ΄ Π²ΠΈΡ€ΠΈΠΎΠ½Ρ‹.

5. ΠŸΡ€ΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ Ρ…ΠΈΠΌΠ΅Ρ€Π½Ρ‹Π΅ ΡˆΠΈΠΏΡ‹ Π² ΡΠΎΡΡ‚Π°Π²Π΅ Ад ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‚ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΡƒΡŽ КАР-Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΡƒΡŽ, ΠΎΠΏΠΎΡΡ€Π΅Π΄ΠΎΠ²Π°Π½Π½ΡƒΡŽ Π»ΠΈΠ³Π°Π½Π΄ΠΎΠΌ Ρ‚Ρ€Π°Π½ΡΠ΄ΡƒΠΊΡ†ΠΈΡŽ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ.

6. УстановлСно, Ρ‡Ρ‚ΠΎ Π·Π°ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Π΄ΠΈΠΊΠΎΠ³ΠΎ шипа Π½Π° Ρ…ΠΈΠΌΠ΅Ρ€Π½Ρ‹ΠΉ Π½Π΅ Π²Π»ΠΈΡΠ΅Ρ‚ Π½Π° ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ вирусной ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ ΠΈ ΠΏΡ€ΠΎΡ‚СолитичСский процСссинг капсид Π½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ².

7. ВыявлСно, Ρ‡Ρ‚ΠΎ ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΡΡ‚ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, нСсущСго Ρ…ΠΈΠΌΠ΅Ρ€Π½Ρ‹ΠΉ шип, ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½Π° Π·Π° ΡΡ‡Ρ‘Ρ‚ Π²ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡ Π² Π΅Π³ΠΎ капсид Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Π½ΠΎΡ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ шипа Ад5, нСспособного ΡΠ²ΡΠ·Ρ‹Π²Π°Ρ‚ΡŒΡΡ с ΠšΠΠ .

8. ΠŸΡ€ΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ вирус с Ρ…ΠΈΠΌΠ΅Ρ€Π½Ρ‹ΠΌ шипом, содСрТащим Π² ΠΊΠ°Ρ‡Π΅ΡΡ‚Π²Π΅ Π½Π°Ρ†Π΅Π»ΠΈΠ²Π°ΡŽΡ‰Π΅Π³ΠΎ Π»ΠΈΠ³Π°Π½Π΄Π° TNF-ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹ΠΉ Π΄ΠΎΠΌΠ΅Π½ CD40L Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°, Π² 4−1000 Ρ€Π°Π· Π±ΠΎΠ»Π΅Π΅ эффСктивно, Ρ‡Π΅ΠΌ вирус с Π΄ΠΈΠΊΠΈΠΌ шипом, трансдуцируСт CD40-ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ Π΄Π΅Π½Π΄Ρ€ΠΈΡ‚Π½Ρ‹Π΅ ΠΈ Ρ€Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°.

Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅

.

Подводя ΠΈΡ‚ΠΎΠ³ Π²Ρ‹ΡˆΠ΅ΡΠΊΠ°Π·Π°Π½Π½ΠΎΠΌΡƒ, слСдуСт ΡΠΊΠ°Π·Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ сущСствСнный прогрСсс Π² ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠΈ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ², ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΡ… Ад ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΡŽ, явился Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ основой для гСнСтичСской ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ Ρ‚Ρ€ΠΎΠΏΠΈΠ·ΠΌΠ° Ад ΠΊΠ°ΠΊ стратСгии получСния Π±ΠΎΠ»Π΅Π΅ ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½Π½Ρ‹Ρ… тСрапСвтичСских Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ².

Настоящая диссСртационная Ρ€Π°Π±ΠΎΡ‚Π° суммируСт Π²ΠΊΠ»Π°Π΄, внСсённый соискатСлСм Π² Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ†ΠΈΠΈ Π½Π°Ρ†Π΅Π»Π΅Π½Π½Ρ‹Ρ… Ад Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² для Π³Π΅Π½Π½ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°. ΠŸΡ€ΠΈΠ²Π΅Π΄Ρ‘Π½Π½Ρ‹Π΅ Π½ΠΈΠΆΠ΅ исслСдования ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈΡΡŒ соискатСлСм с 1997 ΠΏΠΎ 2003 Π³ΠΎΠ΄ Π² Π¦Π΅Π½Ρ‚Ρ€Π΅ Π“Π΅Π½Π½ΠΎΠΉ Π’Π΅Ρ€Π°ΠΏΠΈΠΈ УнивСрситСта Алабамы Π² Π‘ΠΈΡ€ΠΌΠΈΠ½Π³Π΅ΠΌΠ΅ (Gene Therapy Center, University of Alabama at Birmingham, USA).

Π“Π»Π°Π²Π° 2. ΠœΠΠ’Π•Π Π˜ΠΠ›Π« И ΠœΠ•Π’ΠžΠ”Π«.

2.1. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹.

2.1.1. Π‘Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ ΡˆΡ‚Π°ΠΌΠΌΡ‹.

Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ использовали ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ ΡˆΡ‚Π°ΠΌΠΌΡ‹ E. coli: XLl-Blue MRF (Stratagen, La Jolla, CA, USA), STBL2 (Invitrogen, Carlsbad, CA, USA), BJ5183 (Quantum, Montreal, Quebec, Canada), M15[pREP4] (Qiagen, Valencia, CA, USA), BL21(DE3)pLysS (Novagen, Madison, WI, USA).

2.1.2. ЭукариотичСскиС ΠΊΠ»Π΅Ρ‚ΠΊΠΈ.

Π­ΠΌΠ±Ρ€ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ ΠΏΠΎΡ‡ΠΊΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° 293, трансформированныС Π”ΠΠš Ад5 (Graham et al., 1977), ΠΈΡ… ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ 293Π’/17, ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ большой Π’ Π°Π½Ρ‚ΠΈΠ³Π΅Π½ обСзьяньСго вируса 40, Π³Π»ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ U118MG ΠΈ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ ΠΊΠ°Ρ€Ρ†ΠΈΠ½ΠΎΠΌΡ‹ ΠΌΠΎΡ‡Π΅Π²ΠΎΠ³ΠΎ пузыря Π’24 Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ ΠΈΠ· American Type Culture Collection (АВББ, Manassas, VA, USA). ΠšΠ»Π΅Ρ‚ΠΊΠΈ 211, ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ 293, конститутивно ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ шип Ад5, Π±Ρ‹Π»ΠΈ любСзно прСдоставлСны Von Seggem (The Scrips Research Institute, La Jolla, CA, USA). ΠšΠ»Π΅Ρ‚ΠΊΠΈ ΠΊΠ°Ρ€Ρ†ΠΈΠ½ΠΎΠΌΡ‹ яичников Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° SKOV3. ipl ΠΈ OV-4 Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ ΠΎΡ‚ Janet Price (M.D. Anderson Cancer Center, Houston, TX, USA) ΠΈ Timothy Eberlein (Brigham and Women’s Hospital, Harvard Medical School, Boston, MS, USA), соотвСтствСнно. ΠšΠ»Π΅Ρ‚ΠΊΠΈ яичников китайского хомячка БНО, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ этих ΠΊΠ»Π΅Ρ‚ΠΎΠΊ CHO/VPAC1 ΠΈ CHO/VPAC2, ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ VPAC1 ΠΈ VPAC2 Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Ρ‹, Π±Ρ‹Π»ΠΈ прСдоставлСны Marie Laburthe (Institut National de la Sante et de la Recherche M6dicale, Paris, France). ΠšΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ Π»ΠΈΠ½ΠΈΠΈ 293−6H, 293. CD40, 293F28 ΠΈ 293ATAYT, ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ искусствСнный Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€, ΡƒΠ·Π½Π°ΡŽΡ‰ΠΈΠΉ 6His-Tar, CD40, шип Ad5 Π΄ΠΈΠΊΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ° ΠΈΠ»ΠΈ ΠΌΡƒΡ‚Π°Π½Ρ‚Π½Ρ‹ΠΉ шип Ад5 с Π΄Π΅Π»Π΅Ρ†ΠΈΠ΅ΠΉ аминокислот 489−492, соотвСтствСнно, Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ послС трансфСкции ΠΊΠ»Π΅Ρ‚ΠΎΠΊ 293 ΠΏΠ»Π°Π·ΠΌΠΈΠ΄Π°ΠΌΠΈ, ΠΊΠΎΠ΄ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌΠΈ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΉ Π±Π΅Π»ΠΎΠΊ, с ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΡ‚Π±ΠΎΡ€ΠΎΠΌ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½Ρ‹Ρ… ΠΊΠ»ΠΎΠ½ΠΎΠ² Π½Π° ΡΠ΅Π»Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ срСдС. Для получСния пСрСчислСнных Π»ΠΈΠ½ΠΈΠΉ-ΠΏΡ€ΠΎΠ΄ΡƒΡ†Π΅Π½Ρ‚ΠΎΠ² Π±Ρ‹Π»ΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ ΠΏΠ»Π°Π·ΠΌΠΈΠ΄Π½Ρ‹Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ pD. H2 (Douglas et al., 1999), pcDNA. CD40, pVS2 ΠΈ pVSATAYT. ΠžΡ‚Π±ΠΎΡ€ ΠΊΠ»ΠΎΠ½ΠΎΠ², ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎ ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ ΠΊ 6His-Tary ΠΈ CD40, Π²Π΅Π»ΠΈ Π² ΠΏΡ€ΠΈΡΡƒΡ‚ствии 1 ΠΌΠ³/ΠΌΠ» Π³Π΅Π½Π΅Ρ‚ΠΈΡ†ΠΈΠ½Π° (G418) (Mediatech, Herndon, Va, USA). Π£Ρ€ΠΎΠ²Π΅Π½ΡŒ экспрСссии Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠ² Π² ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡƒΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ»ΠΎΠ½Π°Ρ… опрСдСляли ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ ВСстСрн Π±Π»ΠΎΡ‚Ρ‚ΠΈΠ½Π³Π° с Π°Π½Ρ‚ΠΈΡ‚Π΅Π»Π°ΠΌΠΈ, ΡƒΠ·Π½Π°ΡŽΡ‰ΠΈΠΌΠΈ НА-эшггоп (Roche, Indianapolis, IN, USA) ΠΈΠ»ΠΈ CD40 (Santa Cruz Biotechnology, Santa Cruz, CA, USA). ΠšΠ»ΠΎΠ½Ρ‹, ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ шип Π΄ΠΈΠΊΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ° ΠΈ ΠΌΡƒΡ‚Π°Π½Ρ‚Π½Ρ‹ΠΉ, ΠΎΡ‚Π±ΠΈΡ€Π°Π»ΠΈ Π½Π° ΡΡ€Π΅Π΄Π΅, содСрТащСй 600 ΠΌΠΊΠ³/ΠΌΠ» Π·Π΅ΠΎΡ†ΠΈΠ½Π° (Invitrogen), ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†ΠΈΡŽ Π±Π΅Π»ΠΊΠΎΠ² Π·Π°Ρ‚Π΅ΠΌ ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π»ΠΈ ВСстСрн Π±Π»ΠΎΡ‚Ρ‚ΠΈΠ½Π³ΠΎΠΌ с ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΌΠΎΠ½ΠΎΠΊΠ»ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Π°Π½Ρ‚ΠΈΡ‚Π΅Π» 4D2 ΠΊ ΡˆΠΈΠΏΡƒ Ад5 (Hong and Engler, 1991), прСдоставлСнных Jeffrey Engler (University of Alabama at Birmingham, Alabama, USA).

ΠšΠ»Π΅Ρ‚ΠΊΠΈ CHO ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π»ΠΈΡΡŒ Π½Π° ΡΡ€Π΅Π΄Π΅ Ham’s-F12, ΠΈΡ… ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅, ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ VPAC Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Ρ‹, ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΈΠ²Π°Π»ΠΈΡΡŒ Π² Ρ‚ΠΎΠΉ ΠΆΠ΅ самой срСдС, содСрТащСй 100 ΠΌΠΊΠ³/ΠΌΠ» G418. ВсС ΠΎΡΡ‚Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ Π»ΠΈΠ½ΠΈΠΈ вСлись Π½Π° ΡΡ€Π΅Π΄Π΅ DMEM-F12.

Для размноТСния всСх ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π² ΡΡ€Π΅Π΄Ρ‹ добавляли ΡΠΌΠ±Ρ€ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΡƒΡŽ сыворотку Ρ‚Π΅Π»Ρ‘Π½ΠΊΠ° Π΄ΠΎ 10%, Π³Π»ΡŽΡ‚Π°ΠΌΠΈΠ½ Π΄ΠΎ 2 ΠΌΠœ, ΠΏΠ΅Π½ΠΈΡ†ΠΈΠ»Π»ΠΈΠ½ Π΄ΠΎ 100 Π΅Π΄/ΠΌΠ» ΠΈ ΡΡ‚Ρ€Π΅ΠΏΡ‚ΠΎΠΌΠΈΡ†ΠΈΠ½ Π΄ΠΎ 100 ΠΌΠΊΠ³/ΠΌΠ». ВсС ΠΊΠ»Π΅Ρ‚ΠΊΠΈ ΠΈΠ½ΠΊΡƒΠ±ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ ΠΏΡ€ΠΈ 37 Β°C Π² Π°Ρ‚мосфСрС с 5% БОг.

Π”Π΅Π½Π΄Ρ€ΠΈΡ‚Π½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ ΠΈΠ· Π”Π΅ΠΏΠ°Ρ€Ρ‚Π°ΠΌΠ΅Π½Ρ‚Π° Π“Π΅ΠΌΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈ ΠžΠ½ΠΊΠΎΠ»ΠΎΠ³ΠΈΠΈ University of Alabama at Birmingham ΠΈΠ· CD 14-ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠΎΠ½ΠΎΡ†ΠΈΡ‚ΠΎΠ², ΠΈΠ·ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΈΠ· ΠΏΠ΅Ρ€ΠΈΡ„СричСской ΠΊΡ€ΠΎΠ²ΠΈ Π°Π½ΠΎΠ½ΠΈΠΌΠ½Ρ‹Ρ… Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ². ΠšΠ»Π΅Ρ‚ΠΊΠΈ ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΈΠ²Π°Π»ΠΈ Π² ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π΅ Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… Π΄Π½Π΅ΠΉ Π½Π° ΡΡ€Π΅Π΄Π΅ RPMI-1640, содСрТащСй сыворотку, Π³Π»ΡŽΡ‚Π°ΠΌΠΈΠ½, ΠΏΠ΅Π½ΠΈΡ†ΠΈΠ»Π»ΠΈΠ½ ΠΈ ΡΡ‚Ρ€Π΅ΠΏΡ‚ΠΎΠΌΠΈΡ†ΠΈΠ½, Π² ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚рациях, ΡƒΠΊΠ°Π·Π°Π½Π½Ρ‹Ρ… Π²Ρ‹ΡˆΠ΅, Π° Ρ‚Π°ΠΊΠΆΠ΅ Ρ„Π°ΠΊΡ‚ΠΎΡ€, ΡΡ‚ΠΈΠΌΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΉ рост Π³Ρ€Π°Π½ΡƒΠ»ΠΎΡ†ΠΈΡ‚ΠΎΠ² ΠΈ ΠΌΠ°ΠΊΡ€ΠΎΡ„Π°Π³ΠΎΠ² (GM-CSF), Π² ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ 100 Π½Π³/ΠΌΠ» ΠΈ ΠΈΠ½Ρ‚Π΅Ρ€Π»Π΅ΠΊΠΈΠ½ 4 (IL-4), Π² ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ 1000 Π΅Π΄/ΠΌΠ». 2.1.3. АнтитСла ΠΈ Π±Π΅Π»ΠΊΠΈ.

АнтитСла, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Π΅ Π² Ρ€Π°Π±ΠΎΡ‚Π΅, ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Π² Π’Π°Π±Π»ΠΈΡ†Π΅ 2.1.3.

Π¨ΠΈΠΏ Ад5 (Dmitriev et al., 1998) ΠΈ Ρ€ΠšΠΠ  (Dmitriev et al., 2000) Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ Π² Π½Π°ΡˆΠ΅ΠΉ Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€ΠΈΠΈ ΠΈ Π»ΡŽΠ±Π΅Π·Π½ΠΎ прСдоставлСны Π˜Π³ΠΎΡ€Π΅ΠΌ Π”ΠΌΠΈΡ‚Ρ€ΠΈΠ΅Π²Ρ‹ΠΌ. Π‘Π΅Π»ΠΎΠΊ FF/6H ΠΈ ΡƒΠΊΠΎΡ€ΠΎΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ„ΠΎΡ€ΠΌΡ‹ Ρ„ΠΈΠ±Ρ€ΠΈΡ‚ΠΈΠ½Π° — Ρ„ΠΈΠ±Ρ€ΠΈΡ‚ΠΈΠ½ ΠΈ Ρ„ΠΈΠ±Ρ€ΠΈΡ‚ΠΈΠ½-бН Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ ΠΈ ΠΏΡ€Π΅Π΄ΠΎΡΡ‚Π°Π²Π»Π΅Π½Ρ‹ для Π΄Π°Π½Π½ΠΎΠ³ΠΎ исслСдования НиколаСм ΠšΠΎΡ€ΠΎΡ…ΠΎΠ²Ρ‹ΠΌ (University of Alabama at Birmingham, Birmingham, Alabama, USA). Ρ„.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст

Бписок Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹

  1. Albinsson Π’ and Kidd ΠΠ (1999). Adenovirus type 41 lacks an RGD alpha (v)-integrin binding motif on the penton base and undergoes delayed uptake in A549 cells. Virus Res. 64: 125−36.
  2. Alemany R, Balague Π‘ and Curiel DT (2000). Replicative adenoviruses for cancer therapy. Nat Biotechnol. 18: 723−7.
  3. Alemany R and Curiel DT (2001). CAR-binding ablation does not change biodistribution and toxicity of adenoviral vectors. Gene Ther. 8: 1347−53.
  4. Anderson CW, Young ME and Flint SJ (1989). Characterization of the adenovirus 2 virion protein, mu. Virology. 172: 506−12.
  5. Anderson CW (1990). The proteinase polypeptide of adenovirus serotype 2 virions. Virology. 177: 259−72.
  6. Arnberg N, Mei Y and Wade 11 G (1997). Fiber genes of adenoviruses with tropism for the eye and the genital tract. Virology. 227: 239−44.
  7. Arnberg N, Kidd AH, Edlund K, Olfat F and Wadell G (2000). Initial interactions of subgenus D adenoviruses with A549 cellular receptors: sialic acid versus alpha (v) integrins. J Virol. 74: 7691−3.
  8. Asada-Mikami R, Heike Y, Kanai S, Azuma M, Shirakawa K, Takaue Y, Krasnykh V, Curiel DT, Terada M, Abe T and Wakasugi H (2001). Efficient gene transduction by RGD-fiber modified recombinant adenovirus into dendritic cells. Jpn J Cancer Res. 92: 321−7.
  9. Babiss LE and Ginsberg HS (1984). Adenovirus type 5 early region lb gene product is required for efficient shutoff of host protein synthesis. J Virol. 50: 202−12.
  10. Bai M, Harfe Π’ and Freimuth P (1993). Mutations that alter an Arg-Gly-Asp (RGD) sequence in the adenovirus type 2 penton base protein abolish its cell-rounding activity and delay virus reproduction in flat cells. J Virol. 67: 5198−205.
  11. Batra RK, Olsen JC, Pickles RJ, Hoganson DK and Boucher RC (1998). Transduction of non-small cell lung cancer cells by adenoviral and retroviral vectors. Am J Respir Cell Mol Biol. 18: 402−10.
  12. Beltz GA and Hint SJ (1979). Inhibition of HeLa cell protein synthesis during adenovirus infection. Restriction of cellular messenger RNA sequences to the nucleus. J Mol Biol. 131: 353−73.
  13. Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS, Horwitz MS, Crowell RL and Finberg RW (1997). Isolation of a common receptor for Coxsackie Π’ viruses and adenoviruses 2 and 5. Science. 275: 1320−3.
  14. Bergelson JM, Krithivas A, Celi L, Droguett G, Horwitz MS, Wickham T, Crowell RL and Finberg RW (1998). The murine CAR homolog is a receptor for coxsackie Π’ viruses and adenoviruses. J Virol. 72: 415−9.
  15. Bemal RM, Sharma S, Gardner BK, Douglas JT, Bergelson JM, Dubinett SM and Batra RK (2002). Soluble coxsackievirus adenovirus receptor is a putative inhibitor of adenoviral gene transfer in the tumor milieu. Clin Cancer Res. 8: 1915−23.
  16. Bewig Π’ and Schmidt WE (2000). Accelerated titering of adenoviruses. Biotechniques. 28: 870−3.
  17. Bewley MC, Springer K, Zhang YB, Freimuth P and Flanagan JM (1999). Structural analysis of the mechanism of adenovirus binding to its human cellular receptor, CAR. Science. 286: 1579−83.
  18. Blackwell JL, Miller CR, Douglas JT, Li H, Reynolds PN, Carroll WR, Peters GE, Strong TV and Curiel DT (1999). Retargeting to EGFR enhances adenovirus infection efficiency of squamous cell carcinoma. Arch Otolaryngol Head Neck1. A Surg. 125: 856−63.
  19. Blackwell JL, Li H, Gomez-Navarro J, Dmitriev I, Krasnykh V, Richter CA, Shaw DR, Alvarez RD, Curiel DT and Strong TV (2000). Using a tropism-modified adenoviral vector to circumvent inhibitory factors in ascites fluid. Hum Gene Ther. 11: 1657−69.
  20. Bouri K, Feero WG, Myerburg MM, Wickham TJ, Kovesdi I, Hoffman EP and Clemens PR (1999). Polylysine modification of adenoviral fiber protein enhances muscle cell transduction. Hum Gene Ther. 10: 1633−40.
  21. Bridge E, Medghalchi S, Ubol S, Leesong M and Ketner G (1993). Adenovirus early region 4 and viral DNA synthesis. Virology. 193: 794−801.
  22. Caillet-Boudin ML, Strecker G and Michalski JC (1989). O-linked GlcNAc inserotype-2 adenovirus fibre. Eur J Biochem. 184: 205−11.
  23. Carson SD, Hobbs JT, Tracy SM and Chapman NM (1999). Expression of the coxsackievirus and adenovirus receptor in cultured human umbilical vein endothelial cells: regulation in response to cell density. J Virol. 73: 7077−9.
  24. Π‘Π΅Ρ€ΠΊΠΎ CL and Sharp PA (1982). Assembly of adenovirus major capsid protein is mediated by anonvirion protein. Cell. 31: 407−15.
  25. Challberg MD and Kelly TJ (1989). Animal virus DNA replication. Annu Rev Biochem. 58: 671−717.
  26. Chardonnet Y and Dales S (1970). Early events in the interaction of adenoviruses with HeLa cells. I. Penetration of type 5 and intracellular release of the DNA genome. Virology. 40: 462−77.
  27. Chartier C, Degryse E, Gantzer M, Dieterle A, Pavirani A and Mehtali M (1996). Efficient generation of recombinant adenovirus vectors by homologous recombination in Escherichia coli. J Virol. 70: 4805−10.
  28. Chatteijee PK, Vayda ME and Flint SJ (1986). Adenoviral protein VII packages intracellular viral DNA throughout the early phase of infection. Embo J. 5: 1633−44.
  29. Chen P, Kovesdi I and Bruder JT (2000). Effective repeat administration with adenovirus vectors to the muscle. Gene Ther. 7: 587−95.
  30. Chen PH, Omelles DA and Shenk T (1993). The adenovirus L3 23-kilodalton proteinase cleaves the amino-terminal head domain from cytokeratin 18 and disrupts the cytokeratin network of HeLa cells. J Virol. 67: 3507−14.
  31. Chillon M, Bosch A, Zabner J, Law L, Armentano D, Welsh MJ and Davidson BL (1999). Group D adenoviruses infect primary central nervous system cells more efficiently than those from group C. J Virol. 73: 2537−40.
  32. Chiu CY, Mathias P, Nemerow GR and Stewart PL (1999). Structure of adenovirus complexed with its internalization receptor, alphavbeta5 integrin. J Virol. 73: 675 968.
  33. Chiu CY, Wu E, Brown SL, Von Seggern DJ, Nemerow GR and Stewart PL (2001). Structural analysis of a fiber-pseudotyped adenovirus with ocular tropism suggests differential modes of cell receptor interactions. J Virol. 75: 5375−80.
  34. Chroboczek J, Ruigrok RW and Cusack S (1995). Adenovirus fiber. Curr Top Microbiol Immunol. 199: 163−200.
  35. Cleat PH and Hay RT (1989). Co-operative interactions between NFI and the adenovirus DNA binding protein at the adenovirus origin of replication. Embo J. 8: 1841−8.
  36. Cohen CJ, Shieh JT, Pickles RJ, Okegawa T, Hsieh JT and Bergelson JM (2001). The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proc Natl Acad Sci USA. 98: 15 191−6.
  37. Crawford-Miksza L and Schnurr DP (1996). Analysis of 15 adenovirus hexon proteins reveals the location and structure of seven hypervariable regions containing serotype-specific residues. J Virol. 70: 1836−44.
  38. Crompton J, Toogood CI, Wallis N and Hay RT (1994). Expression of a foreign epitope on the surface of the adenovirus hexon. J Gen Virol. 75: 133−9.
  39. Croyle MA, Cheng X, Sandhu A and Wilson JM (2001). Development of novel formulations that enhance adenoviral-mediated gene expression in the lung in vitro and in vivo. Mol Ther. 4: 22−8.
  40. Cuesta R, Xi Q and Schneider RJ (2001). Preferential translation of adenovirus mRNAs in infected cells. Cold Spring Harb Svmp Quant Biol. 66: 259−67.
  41. Cuzange A, Chroboczek J and Jacrot Π’ (1994). The penton base of human adenovirus type 3 has the RGD motif. Gene. 146: 257−9.
  42. Davison AJ, Telford EA, Watson MS, McBride К and Mautner V (1993). The DNA sequence of adenovirus type 40. J Mol Biol. 234: 1308−16.
  43. Davison E, Diaz RM, Hart IR, Santis G and Marshall JF (1997). Integrin alpha5betal-mediated adenovirus infection is enhanced by the integrin-activating antibody TS2/16. J Virol. 71: 6204−7.
  44. Davison E, Kirby I, Elliott T and Santis G (1999). The human HLA-A*0201 allele, expressed in hamster cells, is not a high-affinity receptor for adenovirus type 5 fiber. J Virol .73: 4513−7.
  45. Davison E, Kirby I, Elliott T and Santis G (1999). The Human HLA-A*0201 Allele, Expressed in Hamster Cells, Is Not a High- Affinity Receptor for Adenovirus Type 5 Fiber. J Virol. 73: 4513−4517.
  46. Dechecchi MC, Tamanini A, Bonizzato A and Cabrini G (2000). Heparan sulfate glycosaminoglycans are involved in adenovirus type 5 and 2-host cell interactions. Virology. 268: 382−90.
  47. Dechecchi MC, Melotti P, Bonizzato A, Santacatterina M, Chilosi M and Cabrini G (2001). Heparan sulfate glycosaminoglycans are receptors sufficient to mediate the initial binding of adenovirus types 2 and 5. J Virol. 75: 8772−80.
  48. Defer C, Belin MT, Caillet-Boudin ML and Boulanger P (1990). Human adenovirus-host cell interactions: comparative study with members of subgroups Π’ and C. J Virol. 64:3661−73.
  49. Dietz AB and Vuk-Pavlovic S (1998). High efficiency adenovirus-mediated gene transfer to human dendritic cells. Blood. 91: 392−8.
  50. Dmitriev IP, Kashentseva EA and Curiel DT (2002). Engineering of adenovirus vectors containing heterologous peptide sequences in the Π‘ terminus of capsid protein IX. J Virol. 76: 6893−9.
  51. Douglas JT, Rogers BE, Rosenfeld ME, Michael SI, Feng M and Curiel DT (1996). Targeted gene delivery by tropism-modified adenoviral vectors. Nat Biotechnol. 14: 1574−8.
  52. Douglas JT, Miller CR, Kim M, Dmitriev I, Mikheeva G, Krasnykh V and Curiel DT (1999). A system for the propagation of adenoviral vectors with genetically modified receptor specificities. Nat Biotechnol. 17: 470−5.
  53. Durmort C, Stehlin C, Schoehn G, Mitraki A, Drouet E, Cusack S and Burmeister WP (2001). Structure of the fiber head of Ad3, a non-CAR-binding serotype of adenovirus. Virology. 285: 302−12.
  54. Ebbinghaus C, Al-Jaibaji A, Operschall E, Schoffel A, Peter I, Greber UF and Hemmi S (2001). Functional and selective targeting of adenovirus to high-affinity Fcgamma receptor I-positive cells by using a bispecific hybrid adapter. J Virol. 75: 480−9.
  55. Efimov VP, Nepluev IV and Mesyanzhinov W (1995). Bacteriophage T4 as a surface display vector. Virus Genes. 10: 173−7.
  56. Einfeld DA, Brough DE, Roelvink PW, Kovesdi I and Wickham TJ (1999). Construction of a pseudoreceptor that mediates transduction by adenoviruses expressing a ligand in fiber or penton base. J Virol. 73: 9130−6.
  57. Einfeld DA, Schroeder R, Roelvink PW, Lizonova A, King CR, Kovesdi I and Wickham TJ (2001). Reducing the native tropism of adenovirus vectors requires removal of both CAR and integrin interactions. J Virol. 75: 11 284−91.
  58. Everitt E, Sundquist B, Pettersson U and Philipson L (1973). Structural proteins of adenoviruses. X. Isolation and topography of low molecular weight antigens from the virion of adenovirus type 2. Virology. 52: 130−47.
  59. Falgout Π’ and Ketner G (1988). Characterization of adenovirus particles made by deletion mutants lacking the fiber gene. J Virol. 62: 622−5.
  60. Fender P, Ruigrok RW, Gout E, Buffet S and Chroboczek J (1997). Adenovirus dodecahedron, a new vector for human gene transfer. Nat Biotechnol. 15: 52−6.
  61. Field J, Gronostajski RM and Hurwitz J (1984). Properties of the adenovirus DNA polymerase. J Biol Chem. 259: 9487−95.
  62. Fisher KD, Stallwood Y, Green NK, Ulbrich K, Mautner V and Seymour LW (2001). Polymer-coated adenovirus permits efficient retargeting and evades neutralising antibodies. Gene Ther. 8: 341−8.
  63. Freimuth P, Springer K, Berard C, Hainfeld J, Bewley M and Flanagan J (1999). Coxsackievirus and adenovirus receptor amino-terminal immunoglobulin V-related domain binds adenovirus type 2 and fiber knob from adenovirus type 12. J Virol. 73: 1392−8.
  64. Furcinitti PS, van Oostrum J and Burnett RM (1989). Adenovirus polypeptide IX revealed as capsid cement by difference images from electron microscopy and crystallography. Embo J. 8: 3563−70.
  65. Gafvelin G, Andersson M, Dimaline R, Jornvall H and Mutt V (1988). Isolation and characterization of a variant form of vasoactive intestinal polypeptide. Peptides. 9: 469−74.
  66. Gall J, Kass-Eisler A, Leinwand L and Falck-Pedersen E (1996). Adenovirus type 5 and 7 capsid chimera: fiber replacement alters receptor tropism without affecting primary immune neutralization epitopes. J Virol. 70: 2116−23.
  67. Garcia-Castro J, Segovia JC, Garcia-Sanchez F, Lillo R, Gomez-Navarro J, Curiel DT and Bueren JA (2001). Selective transduction of murine myelomonocytic leukemia cells (WEHI-3B) with regular and RGD-adenoviral vectors. Mol Ther. 3: 70−7.
  68. Ghosh-Choudhuiy G, Haj-Ahmad Y and Graham FL (1987). Protein IX, a minor component of the human adenovirus capsid, is essential for the packaging of full length genomes. Embo J. 6: 1733−9.
  69. Ginsberg HS, Pereira HG, Valentine RC and Wilcox WC (1966). A proposed terminology for the adenovirus antigens and virion morphological subunits. Virology. 28: 782−3.
  70. Ginsberg HS, Lundholm-Beauchamp U, Horswood RL, Pernis B, Wold WS, Chanock RM and Prince GA (1989). Role of early region 3 (E3) in pathogenesis of adenovirus disease. Proc Natl Acad Sci USA. 86: 3823−7.
  71. Goldman CK, Rogers BE, Douglas JT, Sosnowski BA, Ying W, Siegal GP, Baird A, Campain JA and Curiel DT (1997). Targeted gene delivery to Kaposi’s sarcoma cells via the fibroblast growth factor receptor. Cancer Res. 57: 1447−51.
  72. Gonzalez R, Vereecque R, Wickham TJ, Vanrumbeke M, Kovesdi I, Bauters F, Fenaux P and Quesnel Π’ (1999). Increased gene transfer in acute myeloid leukemic cells by an adenovirus vector containing a modified fiber protein. Gene Ther. 6: 314−20.
  73. Goossens PH, Havenga MJ, Pieterman E, Lemckert AA, Breedveld FC, Bout A and Huizinga TW (2001). Infection efficiency of type 5 adenoviral vectors in synovial tissue can be enhanced with a type 16 fiber. Arthritis Rheum. 44: 570−7.
  74. Grable M and Hearing P (1992). cis and trans requirements for the selective packaging of adenovirus type 5 DNA. J Virol. 66: 723−31.
  75. Graham FL, Smiley J, Russell WC and Nairn R (1977). Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol. 36: 5974.
  76. Grand RJ (1987). The structure and functions of the adenovirus early region 1 proteins. BiochenvJ. 241: 25−38.
  77. Greber UF, Willetts M, Webster P and Helenius A (1993). Stepwise dismantling of adenovirus 2 during entry into cells. Cell. 75: 477−86.
  78. Greber UF and Fassati A (2003). Nuclear import of viral DNA genomes. Traffic. 4: 136−43.
  79. Green NM, Wrigley NG, Russell WC, Martin SR and McLachlan AD (1983). Evidence for a repeating cross-beta sheet structure in the adenovirus fibre. Embo J. 2: 1357−65.
  80. Haisma HJ, Grill J, Curiel DT, Hoogeland S, van Beusechem VW, Pinedo HM and Gerritsen WR (2000). Targeting of adenoviral vectors through a bispecific single-chain antibody. Cancer Gene Ther. 7: 901−4.
  81. Hakkarainen T, Hemminki A, Pereboev AV, Barker SD, Asiedu CK, Strong TV, Kanerva A, Wahlfors J and Curiel DT (2003). CD40 is expressed on ovarian cancer cells and can be utilized for targeting adenoviruses. Clin Cancer Res. 9: 619−24.
  82. Halbert DN, Cutt JR and Shenk T (1985). Adenovirus early region 4 encodes functions required for efficient DNA replication, late gene expression, and host cell shutofF. J Virol. 56: 250−7.
  83. Hamid O, Varterasian ML, Wadler S, Hecht JR, Benson A, 3rd, Galanis E, Uprichard M, Omer C, Bycott P, Hackman RC and Shields AF (2003). Phase II trialof intravenous CI-1042 in patients with metastatic colorectal cancer. J Clin Oncol.21: 1498−504.
  84. Hammarskjold ML and Winberg G (1980). Encapsidation of adenovirus 16 DNA is directed by a small DNA sequence at the left end of the genome. Cell. 20: 787−95.
  85. Harari OA, Wickham TJ, Stocker CJ, Kovesdi I, Segal DM, Huehns Π’Π£, Sarraf Π‘ and Haskard DO (1999). Targeting an adenoviral gene vector to cytokine-activated vascular endothelium via E-selectin. Gene Ther. 6: 801−7.
  86. Hasson Π’Π’, Soloway PD, Ornelles DA, Doerfler W and Shenk T (1989). Adenovirus LI 52- and 55-kilodalton proteins are required for assembly of virions. J4 Virol. 63: 3612−21.
  87. Hasson Π’Π’, Ornelles DA and Shenk T (1992). Adenovirus LI 52- and 55-kilodalton proteins are present within assembling virions and colocalize with nuclear structures distinct from replication centers. J Virol. 66: 6133−42.
  88. Havenga MJ, Vogels R, Bout A and Mehtali M (2002). Pseudotyping of adenoviral vectors. Vector Targeting for Therapeutic Gene Delivery. Edited by Curiel D.T. and Douglas J.T.: 89−121.
  89. Hayashi K, Hayashi M, Jalkanen M, Firestone JH, Trelstad RL and Bernfield M (1987). Immunocytochemistry of cell surface heparan sulfate proteoglycan in mouse tissues. A light and electron microscopic study. J Histochem Cvtochem. 35: 107 988.
  90. Hayes BW, Telling GC, Myat MM, Williams JF and Flint SJ (1990). The adenovirus L4 100-kilodalton protein is necessary for efficient translation of viral late mRNA species. J Virol. 64: 2732−42.
  91. Hearing P, Samulski RJ, Wishart WL and Shenk T (1987). Identification of a repeated sequence element required for efficient encapsidation of the adenovirus type 5 chromosome. J Virol. 61: 2555−8.
  92. Hemminki A, Dmitriev I, Liu B, Desmond RA, Alemany R and Curiel DT (2001). Targeting oncolytic adenoviral agents to the epidermal growth factor pathway with a secretory fusion molecule. Cancer Res. 61: 6377−81.
  93. Hennache Π’ and Boulanger P (1977). Biochemical study of KB-cell receptor for adenovirus. Biochem J. 166: 237−47.
  94. Henry LJ, Xia D, Wilke ME, Deisenhofer J and Gerard RD (1994). Characterization of the knob domain of the adenovirus type 5 fiber protein expressed in Escherichia coli. J Virol. 68: 5239−46.
  95. Herz J and Gerard RD (1993). Adenovirus-mediated transfer of low density lipoprotein receptor gene acutely accelerates cholesterol clearance in normal mice. Proc Natl Acad Sci USA. 90: 2812−6.
  96. Hirano A, Longo DL, Taub DD, Ferris DK, Young LS, Eliopoulos AG, Agathanggelou A, Cullen N, Macartney J, Fanslow WC and Murphy WJ (1999). Inhibition of human breast carcinoma growth by a soluble recombinant human CD40 ligand. Blood. 93: 2999−3007.
  97. Hong JS and Engler JA (1991). The amino terminus of the adenovirus fiber protein encodes the nuclear localization signal. Virology. 185: 758−67.
  98. Hong JS and Engler JA (1996). Domains required for assembly of adenovirus type 2 fiber trimers. J Virol. 70: 7071−8.
  99. Hong SS and Boulanger P (1995). Protein ligands of the human adenovirus type 2 outer capsid identified by biopanning of a phage-displayed peptide library on separate domains of wild-type and mutant penton capsomers. Embo J. 14: 4714−27.
  100. Hong SS, Karayan L, Tournier J, Curiel DT and Boulanger PA (1997). Adenovirus type 5 fiber knob binds to MHC class I alpha2 domain at the surface of human epithelial and Π’ lymphoblastoid cells. Embo J. 16: 2294−306.
  101. Hong SS, Galaup A, Peytavi R, Chazal N and Boulanger P (1999). Enhancement of adenovirus-mediated gene delivery by use of an oligopeptide with dual binding specificity. Hum Gene Ther. 10: 2577−86.
  102. Home RW (1979). The formation of virus crystalline and paracrystalline arrays for electron microscopy and image analysis. Adv Virus Res. 24: 173−221.
  103. Howe JA, Mymryk JS, Egan C, Branton PE and Bayley ST (1990). Retinoblastoma growth suppressor and a 300-kDa protein appear to regulate cellular DNA synthesis. Proc Natl Acad Sci USA. 87: 5883−7.
  104. Huang S, Endo RI and Nemerow GR (1995). Upregulation of integrins alpha v beta 3 and alpha v beta 5 on human monocytes and T lymphocytes facilitates adenovirus-mediated gene delivery. J Virol. 69: 2257−63.
  105. Huang S, Kamata T, Takada Y, Ruggeri ZM and Nemerow GR (1996). Adenovirus interaction with distinct integrins mediates separate events in cell entry and gene delivery to hematopoietic cells. J Virol. 70: 4502−8.
  106. Huang S, Reddy V, Dasgupta N and Nemerow GR (1999). A single amino acid in the adenovirus type 37 fiber confers binding to human conjunctival cells. J Virol. 73: 2798−802.
  107. Huard J, Lochmuller H, Acsadi G, Jani A, Massie Π’ and Karpati G (1995). The route of administration is a major determinant of the transduction efficiency of rat tissues by adenoviral recombinants. Gene Ther. 2: 107−15.
  108. Hynes RO (1992). Integrins: versatility, modulation, and signaling in cell adhesion. БСП. 69: 11−25.
  109. Israel BF, Pickles RJ, Segal DM, Gerard RD and Kenney SC (2001). Enhancement of adenovirus vector entry into CD70-positive B-cell Lines by using a bispecific CD70-adenovirus fiber antibody. J Virol. 75: 5215−21.
  110. Jakobson E, Jonsson G, Bjorck P and Paulie S (1998). Stimulation of CD40 in human bladder carcinoma cells inhibits anti-Fas/APO-1 (CD95)-induced apoptosis. Int J Cancer. 77: 849−53.
  111. Jones N and Shenk T (1979). An adenovirus type 5 early gene function regulates expression of other early viral genes. Proc Natl Acad Sci U S A. 76: 3665−9.
  112. Jooss K, Yang Y and Wilson JM (1996). Cyclophosphamide diminishes inflammation and prolongs transgene expression following delivery of adenoviral vectors to mouse liver and lung. Hum Gene Ther. 7: 1555−66.
  113. Kaplan JM, Yu Q, Piraino ST, Pennington SE, Shankara S, Woodworth LA and Roberts BL (1999). Induction of antitumor immunity with dendritic cells transducedwith adenovirus vector-encoding endogenous tumor-associated antigens. I Immunol. 163: 699−707.
  114. Karpusas M, Hsu YM, Wang JH, Thompson J, Lederman S, Chess L and Thomas D (1995). 2 A crystal structure of an extracellular fragment of human CD40 ligand. Structure. 3: 1426.
  115. Kass-Eisler A, Falck-Pedersen E, Elfenbein DH, Alvira M, Buttrick PM and Leinwand LA (1994). The impact of developmental stage, route of administration and the immune system on adenovirus-mediated gene transfer. Gene Ther. 1: 395 402.
  116. Kim M, Sumerel LA, Belousova N, Lyons GR, Carey DE, Krasnykh V and Douglas JT (2003). The coxsackievirus and adenovirus receptor acts as a tumour suppressor in malignant glioma cells. Br J Cancer. 88: 1411−6.
  117. Kleeff J, Fukahi K, Lopez ME, Friess H, Buchler MW, Sosnowski BA and Korc M (2002). Targeting of suicide gene delivery in pancreatic cancer cells via FGF receptors. Cancer Gene Ther. 9: 522−32.
  118. Korokhov N, Mikheeva G, Krendelshchikov A, Belousova N, Simonenko V, Krendelshchikova V, Pereboev A, Kotov A, Kotova O, Triozzi PL, Aldrich WA, Curiel DT and Krasnykh V (2003). Ad vectors modified with domain Π‘ of Staphylococcus Protein A. J Virol.
  119. Krasnykh V, Dmitriev I, Mikheeva G, Miller CR, Belousova N and Curiel DT1998). Characterization of an adenovirus vector containing a heterologous peptide epitope in the HI loop of the fiber knob. J Virol. 72: 1844−52.
  120. Krasnykh VN, Mikheeva GV, Douglas JT and Curiel DT (1996). Generation of recombinant adenovirus vectors with modified fibers for altering viral tropism. J Virol. 70: 6839−46.
  121. Kreda SM, Pickles RJ, Lazarowski ER and Boucher RC (2000). G-protein-coupled receptors as targets for gene transfer vectors using natural small-molecule ligands. Nat Biotechnol. 18: 635−40.
  122. Laemmli UK (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227: 680−5.
  123. Lamont JP, Nemunaitis J, Kuhn JA, Landers SA and McCarty TM (2000). A prospective phase II trial of ONYX-O15 adenovirus and chemotherapy in recurrent squamous cell carcinoma of the head and neck (the Baylor experience). Ann Surg Oncol. 7: 588−92.
  124. Lanuti M, Kouri CE, Force S, Chang M, Amin K, Xu K, Blair I, Kaiser L and Albelda S (1999). Use of protamine to augment adenovirus-mediated cancer gene therapy. Gene Ther. 6: 1600−10.
  125. Law LK and Davidson BL (2002). Adenovirus serotype 30 fiber does not mediate transduction via the coxsackie-adenovirus receptor. J Virol. 76: 656−61.
  126. Legrand V, Spehner D, Schlesinger Y, Settelen N, Pavirani A and Mehtali M1999). Fiberless recombinant adenoviruses: virus maturation and infectivity in the absence of fiber. J Virol. 73: 907−19.
  127. Legrand V, Leissner P, Winter A, Mehtali M and Lusky M (2002). Transductional targeting with recombinant adenovirus vectors. Curr Gene Ther. 2: 323−39.
  128. Leissner P, Legrand V, Schlesinger Y, Hadji DA, van Raaij M, Cusack S, Pavirani A and Mehtali M (2001). Influence of adenoviral fiber mutations on viral encapsidation, infectivity and in vivo tropism. Gene Ther. 8: 49−57.
  129. Leon RP, Hedlund T, Meech SJ, Li S, Schaack J, Hunger SP, Duke RC and DeGregori J (1998). Adenoviral-mediated gene transfer in lymphocytes. Proc Natl Acad Sci USA. 95: 13 159−64.
  130. Leopold PL, Ferris B, Grinberg I, Worgall S, Hackett NR and Crystal RG (1998). Fluorescent virions: dynamic tracking of the pathway of adenoviral gene transfer vectors in living cells. Hum Gene Ther. 9: 367−78.
  131. Letarov AV, Londer YY, Boudko SP and Mesyanzhinov W (1999). The carboxy-terminal domain initiates trimerization of bacteriophage T4 fibritin. Biochemistry (Mosc). 64: 817−23.
  132. Li E, Stupack D, Bokoch GM and Nemerow GR (1998). Adenovirus endocytosis requires actin cytoskeleton reorganization mediated by Rho family GTPases. J Virol. 72: 8806−12.
  133. Li E, Stupack D, Klemke R, Cheresh DA and Nemerow GR (1998). Adenovirus endocytosis via alpha (v) integrins requires phosphoinositide-3-ОН kinase. J Virol. 72: 2055−61.
  134. Li E, Brown SL, Von Seggern DJ, Brown GB and Nemerow GR (2000). Signaling antibodies complexed with adenovirus circumvent CAR and integrin interactions and improve gene delivery. Gene Ther. 7: 1593−9.
  135. Li Y, Pong RC, Bergelson JM, Hall MC, Sagalowsky Al, Tseng CP, Wang Z and Hsieh JT (1999). Loss of adenoviral receptor expression in human bladder cancer cells: a potential impact on the efficacy of gene therapy. Cancer Res. 59: 325−30.
  136. Lieber A, He CY, Meuse L, Schowalter D, Kirillova I, Winther Π’ and Kay MA (1997). The role of Kupffer cell activation and viral gene expression in early liver toxicity after infusion of recombinant adenovirus vectors. J Virol. 71: 8798−807.
  137. Louis N, Fender P, Barge A, Kitts P and Chroboczek J (1994). Cell-binding domain of adenovirus serotype 2 fiber. J Virol. 68: 4104−6.
  138. Lozier JN, Metzger ME, Donahue RE and Morgan RA (1999). Adenovirus-mediated expression of human coagulation factor IX in the rhesus macaque is associated with dose-limiting toxicity. Blood. 94: 3968−75.
  139. Lutz P, Rosa-Calatrava M and Kedinger Π‘ (1997). The product of the adenovirus intermediate gene IX is a transcriptional activator. J Virol. 71: 5102−9.
  140. Magnusson MK, Hong SS, Boulanger P and Lindholm L (2001). Genetic retargeting of adenovirus: novel strategy employing «deknobbing» of the fiber. J Virol. 75: 7280−9.
  141. Maizel JV, Jr., White DO and Scharff MD (1968). The polypeptides of adenovirus. II. Soluble proteins, cores, top components and the structure of the virion. Virology. 36: 126−36.
  142. Maizel JV, Jr., White DO and Scharff MD (1968). The polypeptides of adenovirus. I. Evidence for multiple protein components in the virion and a comparison of types 2, 7A, and 12. Virology. 36: 115−25.
  143. Mangel WF, McGrath WJ, Toledo DL and Anderson CW (1993). Viral DNA and a viral peptide can act as cofactors of adenovirus virion proteinase activity. Nature. 361: 274−5.
  144. Maran A and Mathews MB (1988). Characterization of the double-stranded RNA implicated in the inhibition of protein synthesis in cells infected with a mutant adenovirus defective for VA RNA. Virology. 164: 106−13.
  145. Mathias P, Wickham T, Moore M and Nemerow G (1994). Multiple adenovirus serotypes use alpha v integrins for infection. J Virol. 68: 6811−4.
  146. Mathias P, Galleno M and Nemerow GR (1998). Interactions of soluble recombinant integrin alphav beta5 with human adenoviruses. J Virol. 72: 8669−75.
  147. McDonald D, Stockwin L, Matzow T, Blair Zajdel ME and Blair GE (1999).
  148. Coxsackie and adenovirus receptor (CAR)-dependent and major histocompatibility complex (MHC) class I-independent uptake of recombinant adenoviruses into human tumour cells. Gene Ther. 6: 1512−9.
  149. McDonald GA, Zhu G, Li Y, Kovesdi I, Wickham TJ and Sukhatme VP (1999). Efficient adenoviral gene transfer to kidney cortical vasculature utilizing a fiber modified vector. J Gene Med. 1: 103−10.
  150. Michael SI, Hong JS, Curiel DT and Engler JA (1995). Addition of a short peptide ligand to the adenovirus fiber protein. Gene Ther. 2: 660−8.
  151. Miroshnikov KA, Marusich EI, Cerritelli ME, Cheng N, Hyde CC, Steven AC and Mesyanzhinov W (1998). Engineering trimeric fibrous proteins based on bacteriophage T4 adhesins. Protein Eng. 11: 329−32.
  152. Mitraki A, Barge A, Chroboczek J, Andrieu JP, Gagnon J and Ruigrok RW1999). Unfolding studies of human adenovirus type 2 fibre trimers. Evidence for a stable domain. Eur J Biochem. 264: 599−606.
  153. Mittal SK, McDermott MR, Johnson DC, Prevec L and Graham FL (1993). Monitoring foreign gene expression by a human adenovirus-based vector using the firefly luciferase gene as a reporter. Virus Res. 28: 67−90.
  154. Miyazawa N, Leopold PL, Hackett NR, Ferris B, Woigall S, Falck-Pedersen E and Crystal RG (1999). Fiber swap between adenovirus subgroups Π’ and Π‘ alters intracellular trafficking of adenovirus gene transfer vectors. J Virol. 73: 6056−65.
  155. Miyazawa N, Crystal RG and Leopold PL (2001). Adenovirus serotype 7 retention in a late endosomal compartment prior to cytosol escape is modulated by fiber protein. J Virol. 75: 1387−400.
  156. Mizuguchi H, Koizumi N, Hosono T, Utoguchi N, Watanabe Y, Kay MA and Hayakawa T (2001). A simplified system for constructing recombinant adenoviral vectors containing heterologous peptides in the HI loop of their fiber knob. Gene Ther. 8: 730−5.
  157. Morris AE, Remmele RL, Jr., Klinke R, Macduff BM, Fanslow WC and Armitage RJ (1999). Incorporation of an isoleucine zipper motif enhances the biological activity of soluble CD40L (CD154). J Biol Chem. 274: 418−23.
  158. Mullis KG, Haltiwanger RS, Hart GW, Marchase RB and Engler JA (1990). Relative accessibility of N-acetylglucosamine in trimers of the adenovirus types 2 and 5 fiber proteins. J Virol. 64: 5317−23.
  159. Nagata K, Guggenheimer RA and Hurwitz J (1983). Adenovirus DNA replication in vitro: synthesis of full-length DNA with purified proteins. Proc Natl Acad Sci U S A. 80: 4266−70.
  160. Neill SD, Hemstrom C, Virtanen A and Nevins JR (1990). An adenovirus E4 gene product trans-activates E2 transcription and stimulates stable E2 °F binding through a direct association with E2 °F. Proc Natl Acad Sci USA. 87: 2008−12.
  161. Nemerow GR and Stewart PL (1999). Role of alpha (v) integrins in adenovirus cell entry and gene delivery. Microbiol Mol Biol Rev. 63: 725−34.
  162. Nemerow GR (2000). Cell receptors involved in adenovirus entry. Virology. 274: 1−4.
  163. Neumann R, Chroboczek J and Jacrot Π’ (1988). Determination of the nucleotide sequence for the penton-base gene of human adenovirus type 5. Gene. 69: 153−7.
  164. Nicklin SA, White SJ, Watkins SJ, Hawkins RE and Baker AH (2000). Selectivetargeting of gene transfer to vascular endothelial cells by use of peptides isolated by phage display. Circulation. 102: 231−7.
  165. Norrby E, Bartha A, Boulanger P, Dreizin RS, Ginsberg HS, Kalter SS, Kawamura H, Rowe WP, Russell WC, Schlesinger W and Wigand R (1976). Adenoviridae. Intervirology. 7: 117−25.
  166. Novelli A and Boulanger PA (1991). Deletion analysis of functional domains in baculovirus-expressed adenovirus type 2 fiber. Virology. 185: 365−76.
  167. Novelli A and Boulanger PA (1991). Assembly of adenovirus type 2 fibersynthesized in cell-free translation system. J Biol Chem. 266: 9299−303.
  168. O’Riordan CR, Lachapelle A, Delgado C, Parkes V, Wadsworth SC, Smith AE and Francis GE (1999). PEGylation of adenovirus with retention of infectivity and protection from neutralizing antibody in vitro and in vivo. Hum Gene Ther. 10: 1349−58.
  169. Pasqualini R, Koivunen E and Ruoslahti E (1995). A peptide isolated from phage display libraries is a structural and functional mimic of an RGD-binding site on integrins. J Cell Biol. 130: 1189−96.
  170. Pasqualini R, Koivunen E, Kain R, Lahdenranta J, Sakamoto M, Stryhn A, Ashmun RA, Shapiro LH, Arap W and Ruoslahti E (2000). Aminopeptidase N is areceptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res. 60: 722−7.
  171. Pastore L, Morral N, Zhou H, Garcia R, Parks RJ, Kochanek S, Graham FL, Lee Π’ and Beaudet AL (1999). Use of a liver-specific promoter reduces immune response to the transgene in adenoviral vectors. Hum Gene Ther. 10: 1773−81.
  172. Philipson L, Lonberg-Holm К and Pettersson U (1968). Virus-receptor interaction in an adenovirus system. J Virol. 2: 1064−75.A
  173. Philipson L (1984). Structure and assembly of adenoviruses. Curr Top Microbiol Immunol. 109: 1−52.
  174. Rea D, Schagen FH, Hoeben RC, Mehtali M, Havenga MJ, Toes RE, Melief CJ and Offringa R (1999). Adenoviruses activate human dendritic cells without polarization toward aT-helpertype 1-inducing subset. J Virol. 73: 10 245−53.
  175. Rea D, Havenga MJ, van Den Assem M, Sutmuller RP, Lemckert A, Hoeben RC,
  176. Rekosh DM, Russell WC, Bellet AJ and Robinson AJ (1977). Identification of a protein linked to the ends of adenovirus DNA. Cell. 11: 283−95.
  177. Reubi JC, Laderach U, Waser B, Gebbers JO, Robberecht P and Laissue JA (2000). Vasoactive intestinal peptide/pituitary adenylate cyclase-activating peptide receptor subtypes in human tumors and their tissues of origin. Cancer Res. 60: 3105−12.
  178. Reynolds PN and Curiel DT (1998). Viral vectors show promise in Colorado. Nat Biotechnol. 16: 422−3.
  179. Richards JL, Abend JR, Miller ML, Chakraborty-Sett S, Dewhurst S and Whetter LE (2003). A peptide containing a novel FPGN CD40-binding sequence enhances adenoviral infection of murine and human dendritic cells. Eur J Biochem. 270: 2287−94.
  180. Rodriguez-Viciana P, Warne PH, Khwaja A, Marte BM, Pappin D, Das P, Waterfield MD, Ridley A and Downward J (1997). Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell. 89: 457−67.
  181. Roelvink PW, Kovesdi I and Wickham TJ (1996). Comparative analysis of adenovirus fiber-cell interaction: adenovirus type 2 (Ad2) and Ad9 utilize the same cellular fiber receptor but use different binding strategies for attachment. J Virol. 70:7614−21.
  182. Roelvink PW, Mi Lee G, Einfeld DA, Kovesdi I and Wickham TJ (1999). Identification of a conserved receptor-binding site on the fiber proteins of CAR-recognizing adenoviridae. Science. 286: 1568−71.
  183. Rogers BE, Douglas JT, Ahlem C, Buchsbaum DJ, Frincke J and Curiel DT (1997). Use of a novel cross-linking method to modify adenovirus tropism. Gene Ther. 4: 1387−92.
  184. Romanczuk H, Galer CE, Zabner J, Barsomian G, Wadsworth SC and O’Riordan CR (1999). Modification of an adenoviral vector with biologically selected peptides: a novel strategy for gene delivery to cells of choice. Hum Gene Ther. 10: 2615−26.
  185. Rosa-Calatrava M, Grave L, Puvion-Dutilleul F, Chatton Π’ and Kedinger Π‘ (2001). Functional analysis of adenovirus protein IX identifies domains involved in capsid stability, transcriptional activity, and nuclear reorganization. J Virol. 75: 7131−41.
  186. Ruigrok RW, Barge A, Albiges-Rizo Π‘ and Dayan S (1990). Structure of adenovirus fibre. II. Morphology of single fibres. J Mol Biol. 215: 589−96.
  187. Ruoslahti E and Pierschbacher MD (1987). New perspectives in cell adhesion: RGD and integrins. Science. 238: 491−7.
  188. Rux JJ and Burnett RM (2000). Type-specific epitope locations revealed by X-ray crystallographic study of adenovirus type 5 hexon. Mol Ther. 1: 18−30.
  189. Santis G, Legrand V, Hong SS, Davison E, Kirby I, Imler JL, Finberg RW, Bergelson JM, Mehtali M and Boulanger P (1999). Molecular determinants of adenovirus serotype 5 fibre binding to its cellular receptor CAR. J Gen Virol. 80: 1519−27.
  190. Saphire AC, Guan T, Schirmer EC, Nemerow GR and Gerace L (2000). Nuclear import of adenovirus DNA in vitro involves the nuclear protein import pathway and hsc70. J Biol Chem. 275: 4298−304.
  191. Sarnow P, Ho YS, Williams J and Levine AJ (1982). Adenovirus Elb-58kd tumor antigen and SV40 large tumor antigen are physically associated with the same 54 kd cellular protein in transformed cells. Cell. 28: 387−94.
  192. Savill J, Dransfield I, Hogg N and Haslett Π‘ (1990). Vitronectin receptor-mediated phagocytosis of cells undergoing apoptosis. Nature. 343: 170−3.
  193. Scaria A, Tollefson AE, Saha SK and Wold WS (1992). The Π•Π—-11.6K protein of adenovirus is an Asn-glycosylated integral membrane protein that localizes to the nuclear membrane. Virology. 191: 743−53.
  194. Schmidt MR, Piekos B, Cabatingan MS and Woodland RT (2000). Expression of a human coxsackie/adenovirus receptor transgene permits adenovirus infection of primary lymphocytes. J Immunol. 165: 4112−9.
  195. Schoehn G, Fender P, Chroboczek J and Hewat EA (1996). Adenovirus 3 penton dodecahedron exhibits structural changes of the base on fibre binding. Embo J. 15: 6841−6.
  196. Segerman A, Mei YF and Wadell G (2000). Adenovirus types 1 lp and 35p show high binding efficiencies for committed hematopoietic cell lines and are infective to these cell lines. J Virol. 74: 1457−67.
  197. Shayakhmetov DM and Lieber A (2000). Dependence of adenovirus infectivity on length of the fiber shaft domain. J Virol. 74: 10 274−86.
  198. Shayakhmetov DM, Papayannopoulou T, Stamatoyannopoulos G and Lieber A (2000). Efficient gene transfer into human CD34(+) cells by a retargeted adenovirus vector. J Virol. 74: 2567−83.
  199. Shayakhmetov DM, Carlson CA, Stecher H, Li Q, Stamatoyannopoulos G and Lieber A (2002). A high-capacity, capsid-modified hybrid adenovirus/adeno-associated virus vector for stable transduction of human hematopoietic cells. J Virol. 76:1135−43.
  200. Shayakhmetov DM, Ni S, Gaggar A, Belousova N, Krasnykh V, Lieber A (2003). Binding of adenovirus fiber knob to blood coagulation factors mediates CAR-independent liver tropism. Nat Biotechnol.
  201. Shenk T and Flint J (1991). Transcriptional and transforming activities of the adenovirus E1A proteins. Adv Cancer Res. 57: 47−85.
  202. Shimizu H, Mitomo K, Watanabe T, Okamoto S and Yamamoto К (1990). Involvement of a NF-kappa B-like transcription factor in the activation of the interleukin-6 gene by inflammatory lymphokines. Mol Cell Biol. 10: 561−8.
  203. Shinoura N, Yoshida Y, Tsunoda R, Ohashi M, Zhang W, Asai A, Kirino T and Hamada H (1999). Highly augmented cytopathic effect of a fiber-mutant EIB-defective adenovirus for gene therapy of gliomas. Cancer Res. 59: 3411−6.
  204. Shinoura N, Sakurai S, Asai A, Kirino T and Hamada H (2000). Transduction of a fiber-mutant adenovirus for the HSVtk gene highly augments the cytopathic effect towards gliomas. Jpn J Cancer Res. 91: 1028−34.
  205. Signas C, Akusjarvi G and Pettersson U (1985). Adenovirus 3 fiber polypeptide gene: implications for the structure of the fiber protein. J Virol. 53: 672−8.
  206. Skog J, Mei YF and Wadell G (2002). Human adenovirus serotypes 4p and 1 lp are efficiently expressed in cell lines of neural tumour origin. J Gen Virol. 83: 1 299 309.
  207. Smith JS, Keller JR, Lohrey NC, McCauslin CS, Ortiz M, Cowan К and Spence SE (1999). Redirected infection of directly biotinylated recombinant adenovirus vectors through cell surface receptors and antigens. Proc Natl Acad Sci USA. 96: 8855−60.
  208. Smith ВА, Idamakanti N, Rollence ML, Marshall-Neff J, Kim J, Mulgrew K, Nemerow GR, Kaleko M and Stevenson SC (2003). Adenovirus serotype 5 fiber shaft influences in vivo gene transfer in mice. Hum Gene Ther. 14: 777−87.
  209. Stephenson J (2001). Studies illuminate cause of fatal reaction in gene-therapy trial. Jama. 285: 2570.
  210. Stevenson SC, Rollence M, White B, Weaver L and McClelland A (1995). Human adenovirus serotypes 3 and 5 bind to two different cellular receptors via the fiber head domain. J Virol. 69: 2850−7.
  211. Stevenson SC, Rollence M, Marshall-Neff J and McClelland A (1997). Selective targeting of human cells by a chimeric adenovirus vector containing a modified fiber protein. J Virol. 71: 4782−90.
  212. Stewart PL, Burnett RM, Cyrklaff M and Fuller SD (1991). Image reconstruction reveals the complex molecular organization of adenovirus. Cell. 67: 145−54.
  213. Stewart PL and Burnett RM (1995). Adenovirus structure by X-ray crystallography and electron microscopy. CurrTop Microbiol Immunol. 199: 25−38.
  214. Stewart PL, Chiu CY, Huang S, Muir T, Zhao Y, Chait B, Mathias P and Nemerow GR (1997). Cryo-EM visualization of an exposed RGD epitope on adenovirus that escapes antibody neutralization. Embo J. 16: 1189−98.
  215. Stillman BW, Lewis JB, Chow LT, Mathews MB and Smart JE (1981). Identification of the gene and mRNA for the adenovirus terminal protein precursor. Cell. 23: 497−508.
  216. Su L, Garber EA and Hsu YM (2001). CD 154 variant lacking tumor necrosis factor homologous domain inhibits cell surface expression of wild-type protein. J Biol Chem. 276: 1673−6.
  217. Svensson U, Persson R and Everitt E (1981). Virus-receptor interaction in the adenovirus system I. Identification of virion attachment proteins of the HeLa cell plasma membrane. J Virol. 38: 70−81.
  218. Tao N, Gao GP, Parr M, Johnston J, Baradet T, Wilson JM, Barsoum J and Fawell SE (2001). Sequestration of adenoviral vector by Kupffer cells leads to a nonlinear dose response of transduction in liver. Mol Ther. 3: 28−35.
  219. Tao Y, Strelkov SV, Mesyanzhinov W and Rossmann MG (1997). Structure of bacteriophage T4 fibritin: a segmented coiled coil and the role of the C-terminal domain. Structure. 5: 789−98.
  220. Thoelen I, Keyaerts E, Lindberg M and Van Ranst M (2001). Characterization of a cDNA encoding the bovine coxsackie and adenovirus receptor. Biochem Biophvs Res Commun. 288: 805−8.
  221. Tibbetts Π‘ (1977). Viral DNA sequences from incomplete particles of human adenovirus type 7. Cell. 12: 243−9.
  222. Tillman BW, de Gruijl TD, Luykx-de Bakker SA, Scheper RJ, Pinedo HM, Curiel TJ, Gerritsen WR and Curiel DT (1999). Maturation of dendritic cells accompanieshigh-efficiency gene transfer by a CD40-targeted adenoviral vector. J Immunol. 162: 6378−83.
  223. Tollefson AE, Hermiston TW, Lichtenstein DL, Colle CF, Tripp RA, Dimitrov T, Toth K, Wells CE, Doherty PC and Wold WS (1998). Forced degradation of Fas inhibits apoptosis in adenovirus-infected cells. Nature. 392: 726−30.
  224. Tomko RP, Xu R and Philipson L (1997). HCAR and MCAR: the human and mouse cellular receptors for subgroup Π‘ adenoviruses and group Π’ coxsackieviruses. Proc Natl Acad Sci USA. 94: 3352−6.
  225. Trepel M, Grifman M, Weitzman MD and Pasqualini R (2000). Molecular adaptors for vascular-targeted adenoviral gene delivery. Hum Gene Ther. 11: 197 181.
  226. Vigne E, Mahfouz I, Dedieu JF, Brie A, Perricaudet M and Yeh P (1999). RGD inclusion in the hexon monomer provides adenovirus type 5-based vectors with a fiber knob-independent pathway for infection. J Virol. 73: 5156−61.
  227. Von Seggern DJ, Kehler J, Endo RI and Nemerow GR (1998). Complementation of a fibre mutant adenovirus by packaging cell lines stably expressing the adenovirus type 5 fibre protein. J Gen Virol. 79: 1461−8.
  228. Von Seggern DJ, Chiu CY, Fleck SK, Stewart PL and Nemerow GR (1999). A helper-independent adenovirus vector with El, E3, and fiber deleted: structure and infectivity of fiberless particles. J Virol. 73: 1601−8.
  229. Von Seggern DJ, Huang S, Fleck SK, Stevenson SC and Nemerow GR (2000). Adenovirus vector pseudotyping in fiber-expressing cell lines: improved transduction of Epstein-Barr virus-transformed Π’ cells. J Virol. 74: 354−62.
  230. Walters RW, Grunst T, Bergelson JM, Finberg RW, Welsh MJ and Zabner J (1999). Basolateral localization of fiber receptors limits adenovirus infection from the apical surface of airway epithelia. J Biol Chem. 274: 10 219−26.
  231. Walters RW, Freimuth P, Moninger TO, Ganske I, Zabner J and Welsh MJ (2002). Adenovirus fiber disrupts CAR-mediated intercellular adhesion allowing virus escape. Π‘Π΅Π¦. 110: 789−99.
  232. Wang К, Guan T, Cheresh DA and Nemerow GR (2000). Regulation of adenovirus membrane penetration by the cytoplasmic tail of integrin beta5. J Virol. 74: 2731−9.
  233. Wang X and Bergelson JM (1999). Coxsackievirus and adenovirus receptor cytoplasmic and transmembrane domains are not essential for coxsackievirus and adenovirus infection. JVirol. 73: 2559−62.
  234. Watkins SJ, Mesyanzhinov W, Kurochkina LP and Hawkins RE (1997). The 'adenobody' approach to viral targeting: specific and enhanced adenoviral gene delivery. Gene Ther. 4: 1004−12.
  235. Weber JM, Dery CV, Mirza MA and Horvath J (1985). Adenovirus DNA synthesis is coupled to virus assembly. Virology. 140: 351−9.
  236. Weber JM, Talbot BG and Delorme L (1989). The orientation of the adenovirus fiber and its anchor domain identified through molecular mimicry. Viroloev. 168: 180−2.
  237. Webster A, Hay RT and Kemp G (1993). The adenovirus protease is activated by a virus-coded disulphide-linked peptide. Cell. 72: 97−104.
  238. White E and Cipriani R (1989). Specific disruption of intermediate filaments and the nuclear lamina by the 19-kDa product of the adenovirus E1B oncogene. Proc Natl Acad Sci USA. 86: 9886−90.
  239. Whyte P, Williamson NM and Harlow E (1989). Cellular targets for transformation by the adenovirus El A proteins. Cell. 56: 67−75.
  240. Wickham TJ, Mathias P, Cheresh DA and Nemerow GR (1993). Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell. 73: 309−19.
  241. Wickham TJ, Filardo EJ, Cheresh DA and Nemerow GR (1994). Integrin alpha v beta 5 selectively promotes adenovirus mediated cell membrane permeabilization. J Cell Biol. 127: 257−64.
  242. Wickham TJ, Carrion ME and Kovesdi I (1995). Targeting of adenovirus penton base to new receptors through replacement of its RGD motif with other receptor-specific peptide motifs. Gene Ther. 2: 750−6.
  243. Wickham TJ, Roelvink PW, Brough DE and Kovesdi I (1996). Adenovirus targeted to heparan-containing receptors increases its gene delivery efficiency to multiple cell types. Nat Biotechnol. 14: 1570−3.
  244. Wickham TJ, Segal DM, Roelvink PW, Carrion ME, Lizonova A, Lee GM and Kovesdi I (1996). Targeted adenovirus gene transfer to endothelial and smooth muscle cells by using bispecific antibodies. J Virol. 70: 6831−8.
  245. Wickham TJ, Haskard D, Segal D and Kovesdi I (1997). Targeting endothelium for gene therapy via receptors up-regulated during angiogenesis and inflammation. Cancer Immunol Immunother. 45: 149−51.
  246. Wickham TJ, Lee GM, Titus JA, Sconocchia G, Bakacs T, Kovesdi I and Segal DM (1997). Targeted adenovirus-mediated gene delivery to T cells via CD3. J Virol. 71: 7663−9.
  247. Wickham TJ, Tzeng E, Shears LL, 2nd, Roelvink PW, Li Y, Lee GM, Brough DE, Lizonova A and Kovesdi I (1997). Increased in vitro and in vivo gene transfer by adenovirus vectors containing chimeric fiber proteins. J Virol. 71: 8221−9.
  248. Wingett DG, Vestal RE, Forcier K, Hadjokas N and Nielson CP (1998). CD40 is functionally expressed on human breast carcinomas: variable inducibility by cytokines and enhancement of Fas-mediated apoptosis. Breast Cancer Res Treat. 50: 27−36.
  249. Worgall S, Leopold PL, Wolff G, Ferris B, Van Roijen N and Crystal RG (1997). Role of alveolar macrophages in rapid elimination of adenovirus vectors administered to the epithelial surface of the respiratory tract. Hum Gene Ther. 8: 1675−84.
  250. Worn A and Pluckthun A (1998). An intrinsically stable antibody scFv fragment can tolerate the loss of both disulfide bonds and fold correctly. FEBS Lett. 427: 357−61.
  251. Wu E, Fernandez J, Fleck SK, Von Seggern DJ, Huang S and Nemerow GR (2001). A 50-kDa membrane protein mediates sialic acid-independent binding and infection of conjunctival cells by adenovirus type 37. Virology. 279: 78−89.
  252. Xia D, Henry LJ, Gerard RD and Deisenhofer J (1994). Crystal structure of the receptor-binding domain of adenovirus type 5 fiber protein at 1.7 A resolution. Structure. 2: 1259−70.
  253. Xia H, Anderson Π’, Mao Q and Davidson BL (2000). Recombinant human adenovirus: targeting to the human transferrin receptor improves gene transfer to brain microcapillary endothelium. J Virol. 74: 11 359−66.
  254. Yeh HY, Pieniazek N, Pieniazek D, Gelderblom H and Lufiig RB T1994). Human adenovirus type 41 contains two fibers. Virus Res. 33: 179−98.
  255. Yoon SK, Mohr L, O’Riordan CR, Lachapelle A, Armentano D and Wands JR (2000). Targeting a recombinant adenovirus vector to HCC cells using a bifunctional Fab-antibody conjugate. Biochem Biophvs Res Commun. 272: 497 504.
  256. Yoshida Y, Sadata A, Zhang W, Saito K, Shinoura N and Hamada H (1998). Generation of fiber-mutant recombinant adenoviruses for gene therapy of malignant glioma. Hum Gene Ther. 9: 2503−15.
  257. Zabner J, Chillon M, Grunst T, Moninger TO, Davidson BL, Gregory R and Armentano D (1999). A chimeric type 2 adenovirus vector with a type 17 fiber enhances gene transfer to human airway epithelia. J Virol. 73: 8689−95.
  258. Zeng G (1998). Sticky-end PCR: new method for subcloning. Biotechniques. 25: 206−8.
  259. Zhang LQ, Mei YF and Wadell G (2003). Human adenovirus serotypes 4 and 11 show higher binding affinity and infectivity for endothelial and carcinoma cell lines than serotype 5. J Gen Virol. 84: 687−95.
  260. Zhang Y and Schneider RJ (1994). Adenovirus inhibition of cell translation facilitates release of virus particles and enhances degradation of the cytokeratin network. J Virol. 68: 2544−55.
  261. Zinn KR, Douglas JT, Smyth CA, Liu HG, Wu Q, Krasnykh VN, Mountz JD, Curiel DT and Mountz JM (1998). Imaging and tissue biodistribution of 99mTc-labeled adenovirus knob (serotype 5). Gene Ther. 5: 798−808.
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ