Методы интеграции логического программирования и программирования в ограничениях
Диссертация
Разработана Интервальная библиотека для системы логического программирования ЕС1/РЗе. Библиотека предназначена для автоматического учета при логическом выводе неполной информации о вещественных решениях нелинейных ограничений. Библиотека включает средства для спецификации массовых ограничений, символьных преобразований, управления процессом вычислений. На основе Интервальной библиотеки… Читать ещё >
Список литературы
- Д. К. Фаддеев, В. Н. Фаддеева. Вычислительные методы линейной алгебры. М.: Физматгиз, 1963.
- В. В. Телерман, Д. М. Ушаков. Недоопределенные модели: формализация подхода и перспективы развития. Там же.
- Е. С. Петров. Сходимость метода недоопределенных вычислений при решении линейных уравнений. Там же.
- Т. М. Яхно, Е. С. Петров. 1^1са1с: интеграция программирования в ограничениях и недоопределенных моделей. Программирование, 3:70−78, 1996.
- А. И. Мальцев. Алгоритмы и рекурсивные функции. М.: Наука, 1965.
- Ю. И. Манин. Вычислимое и невычислимое. М.:Советское радио, 1980.
- А. С. Нариньяни. Недоопределенность в системе представления и обработки знаний. Известия АН СССР, Техническая кибернетика, 5:3−28, 1986.
- Е. С. Петров. Интервальная библиотека: опыт интеграции логического программирования и недоопределенных моделей. Программирование, 4:40−49, 1998.
- Ю. И. Журавлев. Об одном классе алгоритмов над конечными множествами. Доклады Академии наук СССР, 151(5):1025—1028, 1963.
- Ю. J1. Ершов. Е-определимость в допустимых множествах. Доклады Академии наук СССР, 285(4):792−793, 1985.
- С. С. Гончаров, Д. И. Свириденко. Математические основы семантического программирования. Доклады Академии наук СССР, 289(6): 1324—1328, 1986.
- А. В. Манцивода. Функционально-логический язык Флэнг. Кибернетика, 5:350−367, 1993.
- F. Benhamou and W. J. Older. Applying interval arithmetic to real, integer and boolean constraints. Journal of Logic Programming, 1995.
- N. Christofides. Graph theory: an Algorithmic Approach. Management Science. Academic Press, Imperial College, London, 1975.
- J. Cohen. Constraint logic programming languages. Communications of the ACM, 33(7):52—68, July 1990.
- E. Davis. Constraint propagation with interval labels. Artificial Intelligence, 32(3):281−331, 1987.
- J. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Computational Mathematics. Prentice-Hall, 1983.
- M. Dincbas, H. Simonis, P. Van Hentenryck, A. Aggoun, T. Graf, and E. Berthier. The constraint logic programming language CHIP. In FGCS'88, Tokyo, Japan, Nov. 1988. ICOT.
- A. Dovier and G. Rossi. Embedding extensional finite sets in CLP. In Proc. 3rd Int. logic Programming Symp., Vancouver, Canada, 1993.
- ECRC. ECU PS6 3.5: ECRC Common Logic Programming System. User’s Guide., 1995.
- E. J. Elton and M. J. Gruber. Modern Portfolio Theory and Investment Analysis. John Willey & Sons, Inc., New York, 1995.
- E. C. Freuder. Synthesizing constraint expressons. Communications of the ACM, 21(11):958—966, 1978.
- M. R. Garey and D. S. Johnson. Computers and Intractability. San Francisco: W. H. Freeman and Company, 1979.
- C. Gervet. Conjunto: Constraint logic programming with finite set domains. In M. Bruynooghe, editor, ILPS'94: Proc. 4th Int. Logic Programming Symp., pages 339−358, 1994.
- E. R. Hansen and R. I. Greenberg. An interval Newton method. Applied Mathematics and Computing, 12:89−98, 1983.
- E. R. Hansen and S. Segupta. Bounding solutions of systems of equations using interval analysis. BIT, 21:203−211, 1981.
- H. Hong and V. Stahl. Safe starting regions by fixed points and tightening. Computing, 53(3−4):323−335, 1994.
- E. Hvvonen. Constraint reasoning based on interval arithmetic: the tolerance propagation approach. Artificial Intelligence, 58:71−112, 1992.
- R. B. Kearfott, M. Dawande, K.-S. Du, and C.-Y. Hu. Algorithm 737: INTLIB: A portable FORTRAN-77 interval standard function library.
- ACM Transactions on Mathematical Software, 20(4):447−459, 1994.35. 0. Knuppel. PROFIL/BIAS — a fast interval library. Computing, 53(3−4):277−287, 1994.
- R. H. Koning. A Short Introduction to GAUSS, 1996.
- R. Kowalski. Predicate logic as a programming language. In Proc. IFIP Congress, Stockholm, North-Holland, 1974.
- B. Legeard and E. Legros. Short overview of the CLPS system. In Proc. PLILP'91, Passau, Germany, Aug. 1991.
- D. Levin and I. Shvetsov. A novel end user facilities based on Subdefinite Calculations. In I. E. Shvetsov, editor, Representation and Processing of Partially Defined Knowledge, number 4 in Russian Research Institute of Artificial Intelligence, 1996.
- A. K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8(1):99−118, 1977.
- K. Meintjes and A. P. Morgan. Chemical equlilibrium problems as numerical test problems. ACM Transactions on Mathematical Software, 16:143−151, 1990.
- R. E. Moore. Methods and Applications of Interval Analysis. SIAM Publ., 1979.
- J. J. More and M. Y. Conard. Numerical solution of nonlinear equations. ACM Transactions on Mathematcial Software, 5:64−85, 1979.
- A. P. Morgan. Solving polynomial systems using continuation for scientific and engineering problems. Englewood Cliffs: Prentice-Hall, NJ, 1987.
- A. Narinyani, A. Semenov, T. Kashevarova, and A. Babichev. A new approach to solving algebraic systems by means of subdefinite models. In Proc. 16th IFIP Conf. on System and Modeling and
- Optimization, volume 197 of Lecture Notes in Control and Computer Science, Compiegne, France, July 1993. Springer-Verlag.
- A. S. Narinyani. Subdefinite set — a formal model of incompletely specified aggregate. In Proc. Symp. on Fuzzy Sets and Possibity Theory, Acapulco, Mexico, 1980.
- A. S. Narinyani. Subdefiniteness and basic means of knowledge representation. Computers and Artificial Intelligence, 2(5):443−452, 1983.
- A. S. Narinyani. Intelligent software technology for the new decade. Communication of the ACM, 34(6):60−67, 1991.
- A. S. Narinyani, S. B. Borde, and D. A. Ivanov. Subdefinite mathematics and novel scheduling techniques. Artificial Intelligence in Enginieering, 11, 1997.
- S. Nash. Newton-like minimization via the Lanczos method. SI AM Journal on Numerical Analysis, 21:770−788, 1984.
- S. Nash and A. Sofer. BTN: Software for parallel unconstrained optimization. ACM Transactions on Mathematical Software, 18:414 448, 1992.
- W. J. Older and Vellino. Extending Prolog with constraint arithmetics on real intervals. In Proc. Canadian Conf. on Computer and Electrical Engineering, Ottawa, Canada, 1990.
- M. Pereira, F. Pereira, and D. H. D. Warren. User’s Guide to DECsystem-10 Prolog. University of Edingburgh: Department of Artificial Intelligence, 1978.
- J.-F. Puget. A C++ implementation of CLP. In Proc. SPICIS, Singapore, 1994.
- A. Schijver. Theory of Linear and Integer Programming. New York, John Willeyfe Sons, 1986.
- R. B. Schnabel, J. E. Kootz, and B. E. Weiss. A modular system of algorithms for unconstrained minimization. ACM Transactions on Mathematical Software, 11:419−440, 1985.
- J. Schwartz, R. Dewar, E. Dubinsky, and E. Schonberg. Programming with Sets. An Introduction to SETL. Texts and Monographs in Computer Science. Springer-Verlag, 1986.
- A. Semenov, A. Babichev, T. Kashevarova, and A. Leschenko. UniCalc: a novel approach to solving systems of algebraic equations. In Proc.Int.Conf. on Numerical Analysis with Automatic Result Verification, pages 29−47, Lafayette, La, USA, Feb. 1993.
- S. P. Shary. A new approach to the analysis of static systems under interval uncertainty. In G. Alefeld, A. Frommer, and B. Lang, editors, Scientific Computing and Validated Numerics, pages 118−132. Berlin: Akademic Verlag, 1996.
- P. Van Hentenryck. Constraint Satisfaction in Logic Programming. The MIT Press, Cambridge, MA, 1989.
- P. Van Hentenryck. Helios: A modeling language for global optimization. In Practical Application of Constraint Technology, pages 317 -335, 1996.
- P. Van Hentenryck, D. McAllester, and D. Kapur. Solving polynomial systems using a branch and prune approach. SI AM Journal on Numerical Anahsys, 34, Apr. 1997.
- P. Van Hentenryck, L. Michel, and Y. Deville. Numerica: a Modelling Language for Global Optimization. The MIT Press, Cambridge, MA, 1997.
- J. Verschelde, P. Verlinden, and R. Cools. Homotopies exploiting newton polytopes for solving sparse polynomial systems. SIAM Journal on Numerical Analysis, 31(3):915−930, 1994.
- C. Walinsky. CLP (E*): Constraint logic programming with regular sets. In G. Levi and M. Martelli, editors, Proc.6th Int.Conf. on Logic Programming, pages 181−196, Lisbon, Portugal, June 1989. The MIT Press.
- T. M. Yakhno and E. S. Petrov. LogiCalc: integrating constraint programming and subdefinite models. In Practical Application of Constraint Technology, pages 357−372, Westminster Central Hall, London, UK, Apr. 1996.
- T. M. Yakhno, V. Z. Zilberfaine, and E. S. Petrov. Applications of ECL’PS6: Interval Domain Library. In Practical Application of Constraint Technology, pages 339−357, Westminster Central Hall, London, UK, 1997.
- T. M. Yakhno, V. Z. Zilberfaine, and E. S. Petrov. Applications of ECLlPSe: Interval Domain library. The ICL Systems Journal, pages 35−50, Nov. 1997.