ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² написании студСнчСских Ρ€Π°Π±ΠΎΡ‚
АнтистрСссовый сСрвис

ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½ΠΎΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈ структурно-динамичСскиС особСнности эукариотичСских ΠΊΠ°Ρ‚ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΊΠ°Π½Π°Π»ΠΎΠ²

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

Π˜Π·Π²Π΅ΡΡ‚Π½ΠΎ, Ρ‡Ρ‚ΠΎ трансмСмбранная Ρ‡Π°ΡΡ‚ΡŒ Π³ΠΎΠΌΠΎΠ»ΠΎΠ³ΠΈΡ‡Π½Π° Ρƒ ΠΌΠ½ΠΎΠ³ΠΈΡ… эукариотичСских ΠΊΠ°Π½Π°Π»ΠΎΠ² (Π±ΠΎΠ»Π΅Π΅ 20% Π³ΠΎΠΌΠΎΠ»ΠΎΠ³ΠΈΠΈ). Π’ ΡΠ²ΡΠ·ΠΈ с ΡΡ‚ΠΈΠΌ, Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ Π·Π°Π΄Π°Ρ‡Π΅ΠΉ являСтся ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ нСизвСстной структуры ΠΊΠ°Π½Π°Π»ΠΎΠ² согласно ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½Π½Ρ‹ΠΌ Π΄Π°Π½Π½Ρ‹ΠΌ ΠΎ Π³ΠΎΠΌΠΎΠ»ΠΎΠ³Π°Ρ… ΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠΎΡ€ΠΎΠ²Ρ‹Ρ… ΠΈΠ½Ρ‚Π΅Ρ€ΡŒΠ΅Ρ€ΠΎΠ² ΠΈ ΡΠΏΠ΅Ρ†ΠΈΡ„ичСских участков для выявлСния ΡƒΠ½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½Ρ‹Ρ… молСкулярных ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² активности ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΊΠ°Π½Π°Π»ΠΎΠ². 5. Π‘Ρ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· ΠœΠ”… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½ΠΎΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈ структурно-динамичСскиС особСнности эукариотичСских ΠΊΠ°Ρ‚ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΊΠ°Π½Π°Π»ΠΎΠ² (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • Бписок сокращСний
  • Π“Π»Π°Π²Π° I. ΠžΠ‘Π—ΠžΠ  Π›Π˜Π’Π•Π ΠΠ’Π£Π Π«
    • 1. 1. ΠšΠΎΠ½Ρ†Π΅ΠΏΡ†ΠΈΡ ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΊΠ°Π½Π°Π»ΠΎΠ²
      • 1. 1. 1. ΠžΠ±Ρ‰Π΅Π΅ строСниС ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΊΠ°Π½Π°Π»ΠΎΠ²
      • 1. 1. 2. ΠŸΡ€ΠΈΠ½Ρ†ΠΈΠΏΡ‹ наимСнования ΠΈ ΠΊΠ»Π°ΡΡΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΊΠ°Π½Π°Π»ΠΎΠ²
      • 1. 1. 3. Π­Π²ΠΎΠ»ΡŽΡ†ΠΈΡ ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΊΠ°Π½Π°Π»ΠΎΠ²
    • 1. 2. Π’Π΅Ρ‚Ρ€Π°ΠΌΠ΅Ρ€Π½Ρ‹Π΅ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»-зависимыС ΠΊΠ°Π»ΠΈΠ΅Π²Ρ‹Π΅ ΠΊΠ°Π½Π°Π»Ρ‹: особСнности строСния ΠΈ Ρ„ункционирования
      • 1. 2. 1. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° ΠΈ ΠΊΠΎΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Π΅ пСрСстройки ΠΏΡ€ΠΈ Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ ΠŸΠ— ΠΊΠ°Π»ΠΈΠ΅Π²Ρ‹Ρ… ΠΊΠ°Π½Π°Π»ΠΎΠ²
      • 1. 2. 2. ΠšΠ°Π½Π°Π»Ρ‹ Kv2.1,Kv
    • 1. 3. ΠŸΠ΅Π½Ρ‚Π°ΠΌΠ΅Ρ€Π½Ρ‹Π΅ Π»ΠΈΠ³Π°Π½Π΄-зависимыС ΠΊΠ°Π½Π°Π»Ρ‹: особСнности строСния ΠΈ Ρ„ункционирования
      • 1. 3. 1. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° ΠΈ ΠΊΠΎΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Π΅ пСрСстройки ΠΏΡ€ΠΈ Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ ΠΏΠ΅Π½Ρ‚Π°ΠΌΠ΅Ρ€Π½Ρ‹Ρ… J13 ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΊΠ°Π½Π°Π»ΠΎΠ²
      • 1. 3. 2. Π‘Π΅Ρ€ΠΎΡ‚ΠΎΠ½ΠΈΠ½ΠΎΠ²Ρ‹ΠΉ 5-НВЗ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€
  • Π“Π»Π°Π²Π° II. ΠœΠΠ’Π•Π Π˜ΠΠ›Π« И ΠœΠ•Π’ΠžΠ”Π«
    • 2. 1. ΠšΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ модСлирования Π°Ρ‚ΠΎΠΌΠ½ΠΎΠΉ структуры ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΊΠ°Π½Π°Π»ΠΎΠ²
      • 2. 1. 1. ΠœΠ΅Ρ‚ΠΎΠ΄ модСлирования ΠΏΠΎ Π³ΠΎΠΌΠΎΠ»ΠΎΠ³ΠΈΠΈ
      • 2. 1. 2. Π€ΠΈΡ‚Ρ‚ΠΈΠ½Π³
    • 2. 2. ΠœΠ΅Ρ‚ΠΎΠ΄ молСкулярной Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ
    • 2. 2. ¡-.ЀизичСскиС основы ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠœΠ”
      • 2. 2. 2. Π’Π°Π»Π΅Π½Ρ‚Π½Ρ‹Π΅ взаимодСйствия
      • 2. 2. 3. НСвалСнтныС взаимодСйствия
      • 2. 2. 4. ЧислСнноС ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅
      • 2. 2. 5. ΠŸΠΎΠ΄Π΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅ постоянной Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹
      • 2. 2. 6. ΠŸΠΎΠ΄Π΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅ постоянного давлСния
      • 2. 2. 7. НСравновСсная молСкулярная Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ°
      • 2. 2. 8. ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ свободной энСргии ΠΊΠ°ΠΊ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Π° срСднСй силы. ΠœΠ΅Ρ‚ΠΎΠ΄ Constraint force
    • 2. 3. Анализ Π·Π°ΠΊΡ€Ρ‹Ρ‚ΠΎΠΉ ΠΈ ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΠΉ структуры ΠΊΠ°Π½Π°Π»Π°. ΠŸΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ° HOLE
  • ГЛАВА III. РЕЗУЛЬВАВЫ Π˜Π‘Π‘Π›Π•Π”ΠžΠ’ΠΠΠ˜Π― И Π˜Π₯ ΠžΠ‘Π‘Π£Π–Π”Π•ΠΠ˜Π•
    • 3. 1. ΠœΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ структуры ΠΏΠ΅Π½Ρ‚Π°ΠΌΠ΅Ρ€Π½Ρ‹Ρ… ΠΈ Ρ‚Π΅Ρ‚Ρ€Π°ΠΌΠ΅Ρ€Π½Ρ‹Ρ… ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΊΠ°Π½Π°Π»ΠΎΠ² Π² ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΠΉ ΠΈ Π·Π°ΠΊΡ€Ρ‹Ρ‚ΠΎΠΉ конформациях
      • 3. 1. 1. ΠœΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ структуры ΠΏΠ΅Π½Ρ‚Π°ΠΌΠ΅Ρ€Π½Ρ‹Ρ… ΠΈ Ρ‚Π΅Ρ‚Ρ€Π°ΠΌΠ΅Ρ€Π½Ρ‹Ρ… ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΊΠ°Π½Π°Π»ΠΎΠ² Π² ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΠΉ ΠΈ Π·Π°ΠΊΡ€Ρ‹Ρ‚ΠΎΠΉ конформациях
      • 3. 1. 2. ΠžΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡ модСлирования
      • 3. 1. 3. Π‘Ρ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΊΠ°Π½Π°Π»ΠΎΠ² с Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ симмСтриСй
      • 3. 1. 4. ΠžΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΠΈ строСния ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΠΊΠ°Π½Π°Π»ΠΎΠ² Кл/
      • 3. 1. 5. ΠžΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΠΈ строСния ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ 5-НВЗ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π°
    • 3. 2. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π½Ρ‹Π΅ ΠΈ Π΄ΠΈΠ½Π°ΠΌΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ свойства Ρ‚Π΅Ρ‚Ρ€Π°ΠΌΠ΅Ρ€Π½Ρ‹Ρ… ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΊΠ°Π½Π°Π»ΠΎΠ² Π² Ρ€Π°Π·Π½Ρ‹Ρ… конформациях Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ ΠΊΠ°Π½Π°Π»Π° ΠšΡƒ
    • 3. 3. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π½Ρ‹Π΅ ΠΈ Π΄ΠΈΠ½Π°ΠΌΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ свойства ΠΏΠ΅Π½Ρ‚Π°ΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΊΠ°Π½Π°Π»Π° Π² Ρ€Π°Π·Π½Ρ‹Ρ… конформациях Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ 5-НВЗ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π°
    • 3. 4. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π½ΠΎ-динамичСскиС особСнности сСлСктивности ΠΊΠ°Ρ‚ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΊΠ°Π½Π°Π»ΠΎΠ² с Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ симмСтриСй
    • 3. 5. ΠŸΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π» срСднСй силы для ΠΊΠ°Π½Π°Π»Π° ΠšΡƒ2.1 ΠΈ ΡΠ΅Ρ€ΠΎΡ‚ΠΎΠ½ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ 5-НВЗ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π°: Π°Π½Π°Π»ΠΈΠ· энСргСтичСских Π±Π°Ρ€ΡŒΠ΅Ρ€ΠΎΠ²

Π˜ΠΎΠ½Π½Ρ‹Π΅ ΠΊΠ°Π½Π°Π»Ρ‹ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΡŽΡ‚ большой Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΉ класс ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… трансмСмбранных Π±Π΅Π»ΠΊΠΎΠ² ΠΈ ΡƒΡ‡Π°ΡΡ‚Π²ΡƒΡŽΡ‚ Π² Ρ€Π΅Π³ΡƒΠ»ΡΡ†ΠΈΠΈ Ρ€Π°Π·Π½ΠΎΠΎΠ±Ρ€Π°Π·Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… процСссов (Jegla et al., 2009). Основной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΊΠ°Π½Π°Π»ΠΎΠ² являСтся сСлСктивноС ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ ΠΈΠΎΠ½ΠΎΠ² Ρ‡Π΅Ρ€Π΅Π· ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Ρƒ. НаиболСС распространСнныС ΠΈ ΠΌΠ½ΠΎΠ³ΠΎΡ‡ΠΈΡΠ»Π΅Π½Π½Ρ‹Π΅ сСмСйства ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΊΠ°Π½Π°Π»ΠΎΠ² прСдставлСны Π³Ρ€ΡƒΠΏΠΏΠ°ΠΌΠΈ Π»ΠΈΠ³Π°Π½Π΄-зависимых (JI3) ΠΈ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»-зависимых (ΠŸΠ—) (Yu et al., 2004; Minor 2009) ΠΊΠ°Π½Π°Π»ΠΎΠ², ΡƒΡ‡Π°ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Π² ΠΌΠ΅ΠΆΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ сигнализации. JI3 ΠΊΠ°Π½Π°Π»Ρ‹ Π³Π΅Π½Π΅Ρ€ΠΈΡ€ΡƒΡŽΡ‚ элСктричСский ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π», прСвращая химичСскиС сигналы, приходящиС ΠΊ ΠΊΠ»Π΅Ρ‚ΠΊΠ΅, Π² ΡΠ»Π΅ΠΊΡ‚ричСскиС, Π° ΠŸΠ— ΠΊΠ°Π½Π°Π»Ρ‹ ΡƒΡ‡Π°ΡΡ‚Π²ΡƒΡŽΡ‚ Π² Ρ€Π°ΡΠΏΡ€ΠΎΡΡ‚Ρ€Π°Π½Π΅Π½ΠΈΠΈ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Π° дСйствия.

Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π½ΠΎΠ΅ ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ Ρ€Π°Π·Π½ΠΎΠΎΠ±Ρ€Π°Π·ΠΈΠ΅ ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΊΠ°Π½Π°Π»ΠΎΠ², Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΈΡ… ΡƒΡ‡Π°ΡΡ‚ΠΈΠ΅ Π² Ρ€Π°Π±ΠΎΡ‚Π΅ ΠΆΠΈΠ·Π½Π΅Π½Π½ΠΎ Π²Π°ΠΆΠ½Ρ‹Ρ… систСм ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ° обуславливаСт ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½Ρ‹ΠΉ интСрСс ΠΊ ΠΈΡ… ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡŽ. На ΡΠ΅Π³ΠΎΠ΄Π½ΡΡˆΠ½ΠΈΠΉ дСнь ΠΊΠ»ΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΎ Π±ΠΎΠ»Π΅Π΅ 500 Π³Π΅Π½ΠΎΠ², ΠΊΠΎΠ΄ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΊΠ°Π½Π°Π»ΠΎΠ² ΠΊΠ°ΠΊ эукариотичСского происхоТдСния, Ρ‚Π°ΠΊ ΠΈ ΠΈΡ… Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… Π°Π½Π°Π»ΠΎΠ³ΠΎΠ² (Jegla et al., 2009). Однако слоТная молСкулярная Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€Π° эукариотичСских ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΊΠ°Π½Π°Π»ΠΎΠ², Π² ΡΠΎΡΡ‚Π°Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… входят ΠΊΡ€ΡƒΠΏΠ½Ρ‹Π΅ Π²Π½Π΅ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½Ρ‹Π΅ Π΄ΠΎΠΌΠ΅Π½Ρ‹, часто являСтся прСпятствиСм для структурных исслСдований ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ (Bill et al., 2011). Π’Π°ΠΊ, Π½Π° ΡΠ΅Π³ΠΎΠ΄Π½ΡΡˆΠ½ΠΈΠΉ дСнь извСстна лишь ΠΎΠ΄Π½Π° атомарная структура ΠŸΠ— ΠΊΠ°Π»ΠΈΠ΅Π²ΠΎΠ³ΠΎ ΠΊΠ°Π½Π°Π»Π° (Kv) ΠΌΠ»Π΅ΠΊΠΎΠΏΠΈΡ‚Π°ΡŽΡ‰ΠΈΡ… Kvl.2 (Long et al., 2005), ΠΈ ΠΏΠΎΠ»Π½ΠΎΡ€Π°Π·ΠΌΠ΅Ρ€Π½Π°Ρ структура JI3 ΠΊΠ°Π½Π°Π»Π°, получСнная ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΊΡ€ΠΈΠΎ-элСктронной микроскопии (Miyazawa et al, 2003; Unwin 2005).

ΠΠ°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ JI3 ΠΈ ΠŸΠ— ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΊΠ°Π½Π°Π»ΠΎΠ² ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΊ Ρ‚яТСлым нСврологичСским ΠΈ Π½Π°ΡΠ»Π΅Π΄ΡΡ‚Π²Π΅Π½Π½Ρ‹ΠΌ заболСваниям (Bernard, Shevell, 2008; Kullmann, 2002; Kullmann, Hanna, 2002). ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½Ρ‹Π΅ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ дисфункции ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΊΠ°Π½Π°Π»ΠΎΠ² ΠΊ Π½Π°ΡΡ‚оящСму Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΎΡΡ‚Π°ΡŽΡ‚ΡΡ Π½Π΅ Π΄ΠΎ ΠΊΠΎΠ½Ρ†Π° ΠΈΠ·ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΌΠΈ, Ρ‡Ρ‚ΠΎ обусловлСно, Π² Ρ‡Π°ΡΡ‚ности, нСдостатком Π΄Π°Π½Π½Ρ‹Ρ… ΠΎΠ± ΠΈΡ… ΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π΅ (Dabrowski et al., 2008, Terstappen, Reggiani, 2001). Π˜ΠΎΠ½Π½Ρ‹Π΅ ΠΊΠ°Π½Π°Π»Ρ‹ ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‚ Ρ‚Ρ€Π΅Ρ‚ΡŒΡŽ ΠΏΠΎ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅ Π³Ρ€ΡƒΠΏΠΏΡƒ мишСнСй для фармацСвтичСских ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² (Overington 2006; Hopkins, Groom, 2002), Ρ‡Ρ‚ΠΎ Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΠΌ Ρ‚Π°ΠΊΠΆΠ΅ обусловлСно ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½Ρ‹ΠΌΠΈ структурными Π΄Π°Π½Π½Ρ‹ΠΌΠΈ (Wickenden et al., 2012).

Π˜Π·Π²Π΅ΡΡ‚Π½ΠΎ, Ρ‡Ρ‚ΠΎ трансмСмбранная Ρ‡Π°ΡΡ‚ΡŒ Π³ΠΎΠΌΠΎΠ»ΠΎΠ³ΠΈΡ‡Π½Π° Ρƒ ΠΌΠ½ΠΎΠ³ΠΈΡ… эукариотичСских ΠΊΠ°Π½Π°Π»ΠΎΠ² (Π±ΠΎΠ»Π΅Π΅ 20% Π³ΠΎΠΌΠΎΠ»ΠΎΠ³ΠΈΠΈ). Π’ ΡΠ²ΡΠ·ΠΈ с ΡΡ‚ΠΈΠΌ, Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ Π·Π°Π΄Π°Ρ‡Π΅ΠΉ являСтся ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ нСизвСстной структуры ΠΊΠ°Π½Π°Π»ΠΎΠ² согласно ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½Π½Ρ‹ΠΌ Π΄Π°Π½Π½Ρ‹ΠΌ ΠΎ Π³ΠΎΠΌΠΎΠ»ΠΎΠ³Π°Ρ… ΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠΎΡ€ΠΎΠ²Ρ‹Ρ… ΠΈΠ½Ρ‚Π΅Ρ€ΡŒΠ΅Ρ€ΠΎΠ² ΠΈ ΡΠΏΠ΅Ρ†ΠΈΡ„ичСских участков для выявлСния ΡƒΠ½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½Ρ‹Ρ… молСкулярных ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² активности ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΊΠ°Π½Π°Π»ΠΎΠ². 5.

ЦСлью Π΄Π°Π½Π½ΠΎΠΉ диссСртационной Ρ€Π°Π±ΠΎΡ‚Ρ‹ явилось исслСдованиС структурных ΠΈ Π΄ΠΈΠ½Π°ΠΌΠΈΡ‡Π΅ΡΠΊΠΈΡ… свойств Π›Π— ΠΈ ΠŸΠ— ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΊΠ°Π½Π°Π»ΠΎΠ² Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ сСротонинового 5-НВЗ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π° Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° ΠΈ ΠΊΠ°Π»ΠΈΠ΅Π²Ρ‹Ρ… ΠΊΠ°Π½Π°Π»ΠΎΠ² ΠšΡƒ2.1 ΠΈ ΠšΡƒ10.2 Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°.

Π˜ΡΡ…ΠΎΠ΄Ρ ΠΈΠ· ΠΏΠΎΡΡ‚Π°Π²Π»Π΅Π½Π½ΠΎΠΉ Ρ†Π΅Π»ΠΈ, Π±Ρ‹Π»ΠΈ сформулированы ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ основныС Π·Π°Π΄Π°Ρ‡ΠΈ:

ΠœΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ структур эукариотичСских ΠΊΠ°Ρ‚ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΊΠ°Π½Π°Π»ΠΎΠ² (Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ 5-НВЗ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π° ΠΈ ΠšΡƒ ΠΊΠ°Π½Π°Π»ΠΎΠ²: ΠšΡƒ2.1, ΠšΡƒ10.2).

2. Анализ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ ΠΊΠΎΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ ΠΊΠ°Π½Π°Π»Π° ΠšΡƒ2.1 ΠΈ 5-НВЗ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π°.

3. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π½ΠΎ-динамичСскоС сравнСниС сСлСктивности ΠΊΠ°Ρ‚ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΊΠ°Π½Π°Π»ΠΎΠ² с Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ симмСтриСй.

Π²Ρ‹Π²ΠΎΠ΄Ρ‹.

1. ΠœΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ построСнных ΠΏΠΎ Π³ΠΎΠΌΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ структур ΠΏΠ΅Π½Ρ‚Π°ΠΌΠ΅Ρ€Π½Ρ‹Ρ… ΠΈ Ρ‚Π΅Ρ‚Ρ€Π°ΠΌΠ΅Ρ€Π½Ρ‹Ρ… ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΊΠ°Π½Π°Π»ΠΎΠ² (сСротонинового 5-НВЗ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π° ΠΈ ΠšΡƒ ΠΊΠ°Π½Π°Π»ΠΎΠ² ΠšΡƒ2.1, ΠšΡƒ10.2) ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΡΠΎΠ³Π»Π°ΡΡƒΡŽΡ‰ΠΈΠΌΡΡ с ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ Π΄Π°Π½Π½Ρ‹ΠΌΠΈ ΠΎΠ± Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ ΠΈ ΠΊΠΈΠ½Π΅Ρ‚ΠΈΠΊΠ΅ пСрСноса ΠΈΠΎΠ½ΠΎΠ² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌ.

2. УстановлСно, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΈΠΈ ΠšΡƒ2.1 ΠΊΠ°Π½Π°Π»Π° сСнсор ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Π° Π£8Π  Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ измСняСт своС ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅, двигаясь Π² Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ Π²ΠΎ Π²Π½Π΅ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ пространство Π² ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ… 4−6 А ΠΈ Π½Π°Ρ€ΡƒΠΆΡƒ ΠΎΡ‚ ΠΎΡΠΈ ΠΏΠΎΡ€Ρ‹ Π² ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ… 8−11 А.

3. Показано, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΈ комплСкса 5-НВЗ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π° с Π»ΠΈΠ³Π°Π½Π΄ΠΎΠΌ происходит ΠΎΡ‚Π³ΠΈΠ± ΠΏΠ΅Ρ‚Π»ΠΈ Π‘ Π½Π° 3−4 А, стабилизация комплСкса обусловлСна Ρ€Π΅ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠ΅ΠΉ Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π½Ρ‹Ρ… связСй ΠΈ ΡΡ‚Π΅ΠΊΠΈΠ½Π³-взаимодСйствиями.

4. ВыявлСны ΠΎΠ±Ρ‰ΠΈΠ΅ структурныС закономСрности функционирования эукариотичСских ΠΊΠ°Ρ‚ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΊΠ°Π½Π°Π»ΠΎΠ² с Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ симмСтриСй. Показано, Ρ‡Ρ‚ΠΎ ΡΠ΅Π»Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΊΠ°Ρ‚ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΊΠ°Π½Π°Π»Π° опрСдСляСтся ΠΎΠ±Π»Π°ΡΡ‚ΡŒΡŽ ΠΊΠΎΠ»Π΅Ρ†, сформированных консСрвативными остатками Π• ΠΈ О ΠΈ ΡΡ‚СричСским Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠΌ, ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ консСрвативным Π’.

Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅

.

Π’ Π΄Π°Π½Π½ΠΎΠΉ диссСртационной Ρ€Π°Π±ΠΎΡ‚Π΅ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ комплСксного ΠΌΠ΅Ρ‚ΠΎΠ΄Π° модСлирования Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅ Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΊΠ°Π½Π°Π»ΠΎΠ² ΠšΡƒ10.2 (Π² ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΠΉ ΠΊΠΎΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ) ΠšΡƒ2.1 (Π² ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΠΉ ΠΈ Π·Π°ΠΊΡ€Ρ‹Ρ‚ΠΎΠΉ конформациях) ΠΈ ΡΠ΅Ρ€ΠΎΡ‚ΠΎΠ½ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ 5-НВЗ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π° (Π² ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΠΉ ΠΈ Π·Π°ΠΊΡ€Ρ‹Ρ‚ΠΎΠΉ конформациях), структуры ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π΄ΠΎ Π½Π°ΡΡ‚оящСго Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π½Π΅ Π±Ρ‹Π»ΠΈ кристаллизованы.

Π‘Ρ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· ΠœΠ” расчСтов ΠΊΠ°Π½Π°Π»ΠΎΠ² ΠšΡƒ2.1 ΠΈ ΡΠ΅Ρ€ΠΎΡ‚ΠΎΠ½ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ 5-НВЗ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π° Π² Ρ€Π°Π·Π½Ρ‹Ρ… конформациях выявил ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΡƒΡŽ Π·Π°ΠΊΠΎΠ½ΠΎΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒ: Π² ΡƒΡΠ»ΠΎΠ²ΠΈΡΡ… Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ открытая конформация ΠΊΠ°Π½Π°Π»Π° являСтся Π±ΠΎΠ»Π΅Π΅ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΠΉ, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π°Π΅Ρ‚ Π±ΠΎΠ»Π΅Π΅ Π½ΠΈΠ·ΠΊΠΎΠ΅ ЯМвО ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Π·Π°ΠΊΡ€Ρ‹Ρ‚Ρ‹ΠΌ состояниСм ΠΊΠ°Π½Π°Π»Π°. Π­Ρ‚ΠΎ справСдливо ΠΊΠ°ΠΊ для Π›Π—, Ρ‚Π°ΠΊ ΠΈ Π΄Π»Ρ ΠŸΠ— ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΊΠ°Π½Π°Π»ΠΎΠ².

Для ΠŸΠ— ΠΊΠ°Π½Π°Π»ΠΎΠ² ΠšΡƒ2.1 Π² Ρ€Π°Π·Π½Ρ‹Ρ… конформациях ΠΏΠΎΡ€ΠΎΠ²Ρ‹Π΅ участки ΠΊΠ°Π½Π°Π»Π° Π±ΠΎΠ»Π΅Π΅ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½Ρ‹, Ρ‡Π΅ΠΌ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»-Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ Π΄ΠΎΠΌΠ΅Π½Ρ‹ (Π£Π‘Πž). Π—Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ структурныС измСнСния Π±Ρ‹Π»ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½Ρ‹ Π² Ρ…ΠΎΠ΄Π΅ молСкулярной Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ Π£Π‘Π‘ Π΄ΠΎΠΌΠ΅Π½ΠΎΠ² Π·Π°ΠΊΡ€Ρ‹Ρ‚ΠΎΠΉ ΠΊΠΎΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ, ΠΏΡ€ΠΈ этом Π‘1, 82, 83 ΠΈ 84 спирали ΠΏΠΎΠ²ΠΎΡ€Π°Ρ‡ΠΈΠ²Π°ΡŽΡ‚ΡΡ ΠΏΠΎ Ρ‡Π°ΡΠΎΠ²ΠΎΠΉ стрСлкС, Ссли ΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΈΠ· Π²Π½Π΅ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ части. Π‘Ρ‹Π»ΠΎ установлСно, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΈΠΈ ΠšΡƒ2.1 ΠΊΠ°Π½Π°Π»Π° сСнсор ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Π° 84 Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ измСняСт своС ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ смСщСниСм Π² Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ Π²ΠΎ Π²Π½Π΅ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ пространство Π² ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ… 4−6 А ΠΈ Π½Π°Ρ€ΡƒΠΆΡƒ ΠΎΡ‚ ΠΎΡΠΈ ΠΏΠΎΡ€Ρ‹ Π² ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ… 8−11 А.

ΠŸΡ€ΠΈ исслСдовании комплСкса 5-НВЗ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π° с ΡΠ΅Ρ€ΠΎΡ‚ΠΎΠ½ΠΈΠ½ΠΎΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠœΠ” Π±Ρ‹Π»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΈ комплСкса 5-НВЗ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π° с Π»ΠΈΠ³Π°Π½Π΄ΠΎΠΌ происходит ΠΎΡ‚Π³ΠΈΠ± ΠΏΠ΅Ρ‚Π»ΠΈ Π‘ Π½Π° 3−4 А. Бтабилизация комплСкса происходит Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 1500 пс ΠΈ ΠΎΠ±ΡƒΡΠ»ΠΎΠ²Π»Π΅Π½Π° Ρ€Π΅ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠ΅ΠΉ Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π½Ρ‹Ρ… связСй, Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π³ΠΈΠ΄Ρ€ΠΎΡ„ΠΎΠ±Π½Ρ‹Ρ… ΠΈ ΡΡ‚Π΅ΠΊΠΈΠ½Π³-взаимодСйствий. Π’Π΅Π»ΠΈΡ‡ΠΈΠ½Π° расстояний ΠΌΠ΅ΠΆΠ΄Ρƒ Π°.ΠΎ. ?85, Π£148, V178 соотвСтствуСт Π΄Π»ΠΈΠ½Π΅ стСкинг взаимодСйствий Ρƒ Π±Π΅Π»ΠΊΠΎΠ²: 3,4−12 А. Π‘Ρ‹Π»ΠΎ установлСно, Ρ‡Ρ‚ΠΎ ΠžΠ Π³Ρ€ΡƒΠΏΠΏΠ° сСротонина оказываСтся Π² Π³ΠΈΠ΄Ρ€ΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎΠΌ ΠΏΠ°ΠΊΠ΅Ρ‚Π΅ ΠΈ ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅Ρ‚ Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π½Ρ‹Π΅ связи с ΠΎΠΊΡ€ΡƒΠΆΠ΅Π½ΠΈΠ΅ΠΌ. Π’Π΅Π»ΠΈΡ‡ΠΈΠ½Π° Π΄Π»ΠΈΠ½Ρ‹ Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π½ΠΎΠΉ связи ΠΌΠ΅ΠΆΠ΄Ρƒ сСротонином ΠΈ Π°.ΠΎ. 5-НВЗ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π° Π²Π°Ρ€ΡŒΠΈΡ€ΡƒΠ΅Ρ‚ Π² ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ… 2,4 А Π΄ΠΎ 3,5 А.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст

Бписок Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹

  1. О .Π‘., Π¨Π°ΠΉΡ‚Π°Π½ К. Π’., Π“Ρ€ΠΈΠ·Π΅Π»ΡŒ А. Π’., Попинако А. Π’., ΠšΠ°Ρ€Π»ΠΎΠ²Π° М. Π“., ΠšΠΈΡ€ΠΏΠΈΡ‡Π½ΠΈΠΊΠΎΠ² М. П. 3D структура чСловСчСского ΠΊΠ°Π½Π°Π»Π° Kvl0.2 ΠΏΠΎ Π΄Π°Π½Π½Ρ‹ΠΌ элСктронной микроскопии ΠΌΠ°ΠΊΡ€ΠΎΠΌΠΎΠ»Π΅ΠΊΡƒΠ» // Π‘ΠΈΠΎΡ„ΠΈΠ·ΠΈΠΊΠ°. 2012. Π’. 2. Π‘. 1−8.
  2. А.Π’., ΠŸΡ‚ΠΈΡ†Ρ‹Π½ О. Π‘. Π€ΠΈΠ·ΠΈΠΊΠ° Π±Π΅Π»ΠΊΠ°. Москва: ΠšΠ½ΠΈΠΆΠ½Ρ‹ΠΉ Π΄ΠΎΠΌ УнивСрситСт. 2002. Π‘. 376.
  3. Absalom N.L., Peter R.S., Trevor M.L. Pore structure of the Cys-loop ligand-gated ion channels //Neurochemical research. 2009. V. 34. P. 1805−1815.
  4. Adair Π’., Nunn R., Lewis S., Dukes I., Philipson L., Yeager M. Single particle image reconstruction of the human, recombinant Kv2.1 channel // Biophysical journal. 2008. V. 94. № 6. P. 2106−2114.
  5. Alberts Π’., Johnson A., Lewis J., Raff M., Roberts K., Walter P. Molecular biology of the cell, 4th edition. New York: Garland science. 2002. P. 6017−6700.
  6. Albrecht Π’., Lorra C., Stocker M., Pongs O. Cloning and characterization of a human delayed rectifier potassium channel gene // Receptors channels. 1993. V. 1. № 2. P. 99−110.
  7. Alder B.J., Wainwright Π’.Π•. Phase Transition for a hard sphere system // Journal of chemical physics. 1957. V. 27. P. 1208−1209.
  8. Alexeev Y., Mazanetz M.P., Ichihara O., Fedorov D.G. GAMESS as a free quantum-mechanical platform for drug research // Current topics in medicinal chemistry. 2012. V. 12 № 18. 20 132 033.
  9. Allen M.P., Tildesley D.J. Computer simulation of liquids. Oxford: Oxford university press. 1989. P. 408.
  10. Al-Owais M., Bracey K., Wray D. Role of intracellular domains in the function of the herg potassium channel // European biophysics journal. 2009. V. 38. № 5. P. 569−576.
  11. Anderson P.A., Greenberg R.M. Phylogeny of ion channels: clues to structure and function // Comparative biochemistry and physiology. Part B: Biochemistry and molecular biology. 2001. V. 129. P. 17−18.
  12. Barnes N.M., Hales T.G., Lummis S.C., Peters J.A. The 5-HT3 receptor-the relationship between structure and function // Neuropharmacology. 2009. V. 56. № 1. P. 273−284.
  13. Ba§ tug Π’., KuyucakS. Comparative study of the energetics of ion permeation in Kvl.2 and KcsA potassium channels // Biophysical journal. 2011. V. 100. № 3. 629−636.
  14. Bauer C.K., Schwarz J.R. Physiology of EAG ΠšΠ‘ channels // Journal of membrane Biology. 2001. V. 182. P. 1−15.
  15. Beckstein, O., Biggin P. C., Sansom M. S. P. A hydrophobic gating mechanism for nanopores //Journal of physical chemistry B. 2001. V. 105 P. 12 902−12 905.
  16. Beckstein O., Sansom M.S. A hydrophobic gate in an ion channel: the closed state of the nicotinic acetylcholine receptor // Physical biology. 2006. V. 3. № 2. P. 147−159.
  17. Berendsen H.J., Van Gunsteren W.F., Zwinderman H.R., Geurtsen R.G. Simulations of proteins in water // Annals of the New York academy of sciences. 1986. V. 482. P. 269−86.
  18. Bernard G., Shevell M.I. Channelopathies: a review // Pediatric neurology. 2008. V. 38. № 2. P. 73−85.
  19. Brazier M.A. A history of neurophysiology in the 19th century. Raven Press, New York, 1988.
  20. Brejc K., van Dijk W.J., Klaassen R.V., Schuurmans M., van Der Oost J., Smit A.B., Sixma T.K. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors // Nature. 2001. V. 411. P. 269−276.
  21. Brelidze T.I., Carlson A.E., Zagotta W.N. Absence of direct cyclic nucleotide modulation of mEAGl and hERGl channels revealed with fluorescence and electrophysiological methods // Journal of biological chemistry. 2009. V. 284. № 41. P. 27 989−27 997.
  22. Brelidze T.I., Carlson A.E., Davies D.R., Stewart L.J., Zagotta W.N. Identifying regulators for EAG1 channels with a novel electrophysiology and tryptophan fluorescence based screen // PLoS. One. 2010. V. 5. № 9. P. 12 523.
  23. Brelidze T.I., Carlson A.E., Sankaran B., Zagotta W.N. Structure of the carboxy-terminal region of a KCNH channel // Nature. 2012. V. 481. № 7382. P. 530−533.
  24. B.R., Bruccoleri R.E., Olafson B.D., States D.J., Swaminathan S., Karplus M. «CHARMM: A program for macromolecular energy, minimization, and dynamics calculations» // Journal of computational chemistry. 1983. V. 4. № 2. P. 187−217.
  25. Biggin P.C., Sansom M.S. Open-state models of a potassium channel // Biophysical journal. 2002. V. 83. № 4. P. 1867−1876.
  26. Bill R.M., Henderson P.J., Iwata S., Kunji E.R., Michel H., Neutze R., Newstead S., Poolman B., Tate C.G., Vogel H. Overcoming barriers to membrane protein structure determination // Nature biotechnology. 2011. V. 29. № 4. P.335−340.
  27. Bocquet N., Nury H., Baaden M., Poupon C.L., Changeux J., Delarue M., Corringer P.J. X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation // Nature. 2009 V. 457. № 7225. P. 111−114.
  28. Brenner R., Wilcox K.S. Potassium channelopathies of epilepsy// Epilepsia. 2010. V. 51. P. 60.
  29. Burley S.K. PDB40: the protein data bank celebrates its 40th birthday // Biopolymers. 2013. V. 99. № 3. P. 165−169.
  30. Cabral J.H., Lee A., Cohen S.L., Chait B.T., Li M., Mackinnon R. Crystal structure and functional analysis of the HERG potassium channel N terminus: a eukaryotic PAS domain // Cell. 1998. V. 95. P. 649−655.
  31. Capener C.E., Kim H.J., Arinaminpathy Y., Sansom M.S. Ion channels: structural bioinformatics and modelling // Human molecular genetics. 2002. V. 11. № 20. P. 2425−2433.
  32. Chen G.Q., Cui C., Mayer M.L., Gouaux E. Functional characterization of a potassium-selective prokaryotic glutamate receptor // Nature. 1999. V. 402. № 6763. P. 817−821.
  33. Chen S., Wang J., Siegelbaum S.A. Properties of hyperpolarization-activated pacemaker current defined by coassembly of HCN1 and HCN2 subunits and basal modulation by cyclic nucleotide // Journal of general physiology. 2001. V. 117. № 5. P. 491−504.
  34. Cheng X., Wang H., Grant B., Sine S.M., MeCammon J.A. Targeted molecular dynamics study of C-loop closure and channel gating in nicotinic receptors // PLOS computational biology. 2006. V. 2. № 9. P. el34.
  35. Chen X., Wang Q., Ni F., Ma J. Structure of the full-length Shaker potassium channel Kvl.2 by normal-mode-based X-ray crystallographic refinement // Proceedings of the National Academy of Sciences. 2010. V. 107. № 25. P. 11 352−11 357.
  36. Chiu P.L., Pagel M.D., Evans J., Chou H.T., Zeng X., Gipson B., Stahlberg H., Nimigean C.M. The structure of the prokaryotic cyclic nucleotide-modulated potassium channel MloKl at 16 A resolution// Structure. 2007. V. 15. P. 1053−1064.
  37. Clamp M., Fry B., Kamal M" Xie X., Cuff J., Lin M. F., Kellis M" Lindblad-Toh K., Lander, E. S. Distinguishing protein-coding and noncoding genes in human genome // Proceedings of the National Academy of Sciences. 2007. V. 104. № 19 428−19 433.
  38. Clarke E., Jacyna L.S. Nineteenth-century origins of neuroscientific concepts. Berkeley: University of California Press. 1988. P. 5−74.
  39. E., Jacyna L.S. «Nineteenth-century origins of neuroscientific concepts». By Edwin Clarke and L. S. Jacyna. Essay review // Medical history. 1987. V. 32. № 2. P. 211−213.
  40. Clayton G.M., Altieri S., Heginbotham L., Unger V.M., Morais-Cabral J.H. Structure of the transmembrane regions of a bacterial cyclic nucleotide-regulated hannel // Proceedings of the National Academy of Sciences. 2008. V. 105. P. 1511−1515.
  41. J.B., Weber M., Huchet M., Changeux J.P. // FEBS JOURNAL Letters. 1972 V. 26. № 1. P. 43−7.
  42. Collingridge G.L., Olsen R.W., Peters J., Spedding M. A nomenclature for ligand-gated ion channels //Neuropharmacology. 2009. V. 56. № 1. P. 2−5.
  43. Connolly C.N., Wafford K.A. The Cys-loop superfamily of ligand-gated ion channels: the impact of receptor structure on function // Biochemical society transactions. 2004. V. 32. P. 529 534.
  44. Corringer P.J., Nov’ere N.L., Changeux J.P. Nicotinic receptors at the amino acid level // Annual review of pharmacology and toxicology. 2000. V. 40. P. 431−458.
  45. Corringer P.J., Baaden M., Van Renterghem C. Atomic structure and dynamics of pentameric ligand-gated ion channels: new insight from bacterial homologues // Journal of physiology. 2010. V. 588. P.565−572.
  46. Corry B., Thomas M. Mechanism of ion permeation and selectivity in a voltage gated sodium channel //Journal of the american chemical society. 2012. V. 134. № 3. P. 1840−1846.
  47. Craven K.B., Zagotta W.N. CNG and HCN channels: two peas, one pod // Annual review of physiology. 2006. V. 68. P. 375−401.
  48. Cymes G.D., Grosman C. The unanticipated complexity of the selectivity-filter glutamates of nicotinic receptors //Nature chemical biology. 2012. V. 8. № 12. P. 975−981.
  49. Dabrowski M.A., Dekermendjian K., Lund P.E., Krupp J.J., Sinclair J., Larsson O. Ion channel screening technology // CNS & Neurological Disorders Drug Targets. 2008. V. 7. № 2. P.122−128.
  50. Delemotte L., Tarek M., Klein M.L., Amaral C., Treptow W. Intermediate states of the Kvl.2 voltage sensor from atomistic molecular dynamics simulations. // Proceedings of the National Academy of Sciences. 2011. V. 108. № 15. P. 6109−6114.
  51. Doyle D.A., Cabral M.J., Pfuetzner R.A., Kuo A., Gulbis J.M., Cohen S.L., Chait B.T., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity // Science. 1998. V. 280. № 5360. P. 69−77.
  52. Drain P., Dubin A.E., Aldrich R.W. Regulation of Shaker K+ channel inactivation gating by the cAMP-dependent protein kinase // Neuron. 1994. V. 12. № 5. P. 1097−1109.
  53. Dutzler R. A structural perspective on C1C channel and transporter function // FEBS Letters. 2007. V. 581. P. 2839−2844.
  54. Essmann U., Perera L., Berkowitz M.L., Darden T. A smooth particle mesh ewald method // Journal of chemical physics. 1995. V. 103. P. 8577−8593.
  55. Farber L., Haus U., Spath M., Drechsler S. Physiology and pathophysiology of the 5-HT3 receptor// Scandinavian journal of reumatology. Supplement. 2004. V. 119. P. 2−8.
  56. Fiebich B.L., Akundi R.S., Seidel M., Geyer V., Haus U., Muller W., Stratz T., Candelario-Jalil E. Expression of 5-HT3A receptors in cells of the immune system // Scandinavian journal of rheumatology. 2004. V. 119. P. 9−11.
  57. Fiser A., Sali A. Modeller: Generation and refinement of homology-based protein structure models // Methods ynzymology. 2003. V. 374. P. 461−491.
  58. Forster F., Webb B., Krukenberg K.A., Tsuruta H" Agard D.A., Sali A. Integration of small-angle X-ray scattering data into structural modeling of proteins and their assemblies // Journal of molecular biology. 2008. V. 382. № 4. P. 1089−1106.
  59. Franciolini F., Petris A. Evolution of ionic channels of biological membranes // Molecular biology and evolution. 1989. V. 6. № 5. P. 503−513.
  60. Froimowitz M.P. HyperChem a software package for computational chemistry and molecular modeling//Biotechniques. 1993. V. 14. № 6. P. 1010−1013.
  61. Galligan J.J. Ligand-gated ion channels in the enteric nervous system // Neurogastroenterology and motility. 2002. V. 14. № 6. P. 611−623.
  62. Garcia-Ferreiro R.E., Kerschensteiner D., Major F., Monje F., Stuhmer W., Pardo L.A. Mechanism of block of hEagl K+ channels by imipramine and astemizole // Journal of general physiology. 2004. V. 124. № 4. P. 301−317.
  63. Goddard T.D., Ferrin T.E. Visualization Software for Molecular Assemblies // Current Opinion in Structural Biology. 2007. V. 17. № 5. P. 587−595.
  64. Goddard T.D., Huang C.C., Ferrin T.E., Software extensions to UCSF Chimera for interactive visualization of large molecular assemblies // Structure. 2005. V. 13. P. 473−482.
  65. Gouaux E., Mackinnon R. Principles of selective ion transport in channels and pumps // Science. 2005. V. 310. P. 1461−1465.
  66. Gustina A.S., Trudeau M.C. hERG potassium channel gating is mediated by N- and C-terminal region interactions // Journal of general physiology. 2011. V. 137. № 3. P. 315−325.
  67. Han M., Zhang J.Z. Molecular dynamic simulation of the Kvl.2 voltage-gated potassium channel in open and closed state conformations // Journal of physical chemistry. 2008. V. 112. № 51. P. 16 966−16 974.
  68. Hansen S.B., Talley T.T., Radic Z., Taylor P. Structural and ligand recognition characteristics of an acetylcholine-binding protein from Aplysia californica // Journal of biological chemistry. 2004. V. 279. № 23. P. 24 197−241 202.
  69. Hess B., Bekker H., Berendsen H.J., Fraaije J.G., Lines. P. A linear constrant solver for molecular simulation // Journal of computational chemistry. 1997. V. 18. P. 1463−1472.
  70. Hilf R.J., Dutzler R. X-ray structure of a prokaryotic pentameric ligand-gated ion channel // Nature. 2008. V. 452. № 7185. P. 375−379.
  71. R.J., Dutzler R. // Nature. 2009. V. 457. № 7225. P. 115−118.
  72. Hille B. Ionic channels of excitable membranes, 3rd edn. Sunderland: Sinauer Associates Inc. 2001. P. 23−274.
  73. Hodgkin A.L., Huxley A.F. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo // Journal of physiology. 1952. V. 116. P. 449−472.
  74. Holmes T.C., Fadool D.A., Levitan I.B. Tyrosine phosphorylation of the Kvl.3 potassium channel // Journal of neuroscience. 1996. V. 16. № 5. P. 1581−1590.
  75. Hopkins A.L., Groom C.R. The druggable genome // Nature reviews drug discovery. 2002. V. 1. P. 727−730.
  76. Hopp T.P., Woods K.R. Prediction of protein antigenic determinants from amino acid sequences // Proceedings of the National Academy of Sciences. 1981. V. 78. № 6. P. 3824−3828.
  77. Horn R., Ding S., Gruber H.J. Immobilizing the moving parts of voltage-gated ion channels // Journal of general physiology. 2000. V. 116. P. 461−476.
  78. Hsin J., Arkhipov A., Yin Y., Stone J.E., Schulten K. Using VMD: an introductory tutorial // Current protocols in bioinformatics. 2008. V. 5. P. 5−7.
  79. Humphrey W., Dalke A., Schulten K. VMD Visual Molecular Dynamics // Journal of molecular graphics 1996. V. 14. P. 33−38.
  80. Jansen M., Bali M., Akabas M.H. Modular design of Cys-loop ligand-gated ion channels: functional 5-HT3 and GAB A rhol receptors lacking the large cytoplasmic M3M4 loop // Journal of general physiology. 2008. V. 131. № 2. P. 137−46.
  81. Jasti J., Furukawa H., Gonzales E.B., Gouaux E. Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH // Nature. 2007. V. 449. № 7160. P. 316−323.
  82. Jegla T.J., Zmasek C.M., Batalov S., Nayak S.K. Evolution of the human ion channel set // Combinatorial chemistry and high throughput screening. 2009. V. 12. № 1. P. 2−23.
  83. Jensen M.O., Jogini V., Borhani D.W., Leffler A.E., Dror R.O., Shaw D.E. Mechanism of voltage gating in potassium channel // Science. 2012. V. 336. № 6078. P. 229 233.
  84. Jentsch T.J. Chloride channels are different // Nature. 2002. V. 415. P. 276−277.
  85. Jiang Y., Lee A., Chen J., Cadene M., Chait B.T., MacKinnon R. Crystal structure and mechanism of a calcium-gated potassium channel // Nature. 2002. V. 417. № 6888. P. 515−522.
  86. Jorgensen W.L., Maxwell D.S., Tirado-Rivers J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids // Journal of the American chemical society. 1996. V. 118. P. 11 225−11 236.
  87. Jorgensen W.L., Chandrasekhar J., Madura J.D. Comparison of simple potential function for simulation liquid water // Journal of chemical physics. 1983. V. 79. P. 926−935.
  88. Ju M., Stevens L., Leadbitter E., Wray D. The Roles of N- and C-terminal determinants in the activation of the Kv2.1 potassium channel // Journal of biological chemistry. 2003. V. 278. № 15. P. 12 769−12 778.
  89. Ju M., Wray D. Molecular identification and characterization of human EAG2 potassium channel // FEBS Letters. 2002. V. 524. № 1−3. P. 204−210.
  90. Ju M., Wray D. Molecular regions responsible for differences in activation between heag channels // Biochemical and biophysical research communications. 2006. V. 342. № 4. P. 108 810 897.
  91. Kaczanowski S., Zielenkiewicz P. Why similar protein sequences encode similar three-dimensional structures? // Theoretical chemistry accounts. 2010. V. 125. P. 643−650.
  92. Karplus M., McCammon J.A. Protein structural fluctuations during a period of 100 ps // Nature. 1979. V. 277. P. 578.
  93. Katz B. Nerve, Muscle, and Synapse. New York: McGraw-Hill. 1966. P. 243.
  94. Kawate T., Michel J.C., Birdsong W.T., Gouaux E. Crystal structure of the ATP-gated P2X:(4) ion channel in the closed state // Nature. 2009. V. 460. P. 592−598.
  95. Kesters D., Thompson A.J., Brams M., van Elk R., Spumy R., Geitmann M., Villalgordo J.M., Guskov A., Danielson U.H., Lummis S.C., Smit A.B., Ulens C. Structural basis of ligand recognition in 5-HT3 receptors // EMBO Rep. 2013. V. 14. № 1. P. 49−56.
  96. Kiefer F" Arnold K., Kiinzli M" Bordoli L., Schwede T. The SWISS-MODEL Repository and associated resources // Nucleic acids research. 2009. V. 37. P. D387-D392.
  97. Kim L.A., Furst J., Gutierrez D., Butler M.H., Xu S., Grigorieff N. Three-dimensional structure of I (to) — Kv4.2-KChIP2 ion channels by electron microscopy at 21A resolution // Neuron. 2004. V. 41. № 4. P. 513−519.
  98. Kistler J., Stroud R.M. Crystalline arrays of membrane-bound acetylcholine receptor. // Proceedings of the National Academy of Sciences. 1981. V. 78. № 6. P. 3678−3682.
  99. Kovacs J.A., Baker K.A., Altenberg G.A., Abagyan R., Yeager M. Molecular modeling and mutagenesis of gap junction channels // Progress in biophysics and molecular biology. 2007. V. 94. № 1−2. P. 15−28.
  100. Kozuska J.L., Paulsen I.M. The Cys-loop pentameric ligand-gated ion channel receptors: 50 years on // Canadian journal of physiology and pharmacology. 2012. V. 90. № 6. P. 771−782 .
  101. Khalili-Araghi F., Jogini V., Yarov-Yarovoy V., Tajkhorshid E., Roux B., Schulten K. Calculation of the gating charge for the Kvl.2 voltage-activated potassium channel // Biophysical journal. 2010. V. 98. № 10. P. 2189−2198.
  102. Krieger E., Nabuurs S.B., Vriend G. Structural Bioinformatics. Edited by Bourne P.E. and Weissig H. 2003. New-York: Wiley-Liss, Inc. P. 56−163.
  103. Krzywkowski K. Do polymorphisms in the human 5-HT3 genes contribute to pathological phenotypes? // Biochemical society transactions. 2006. V. 34. P. 872−876.
  104. Kullmann D.M. The neuronal channelopathies // Brain. 2002. V. 125. P. 1177−1195.
  105. Kullmann D.M., Hanna M.G. Neurological disorders caused by inherited ion-channel mutations // Lancet neurology. 2002. V. 1. № 3. P. 157−166.
  106. Kuo A., Gulbis J.M., Antcliff J.F., Rahman T., Lowe E.D., Zimmer J., Cuthbertson J., Ashcroft F.M., Ezaki T., Doyle D.A. Crystal structure of the potassium channel KirBacl. l in the closed state // Science. 2003. V. 300. № 5627. P. 1922−1926.
  107. Kuo M.M., Haynes W.J., Loukin S.H., Kung C., Saimi Y. Prokaryotic K (+) channels: from crystal structures to diversity // FEMS microbiology reviews. 2005. V. 29. № 5. P. 961−985.
  108. LeeC.Y., Tseng L.F. Distribution of Bungarus multicinctus venom following envenomation // Toxicon. 1966. V. 3. № 4. P. 281−290.
  109. Leicher T" Bahring R., Isbrandt D., Pongs O. Coexpression of the KCNA3B gene product with Kvl.5 leads to a novel A-type potassium channel // Journal of biological bhemistry. 1998. V. 273. № 52. P. 35 095−35 101.
  110. Lemak A.S., Balabaev N.K. Molecular dynamics simulation of a polymer chain in solution by collisional dynamics method // Journal of computational chemistry. 1996. V. 17. № 15. P. 16 851 695.
  111. Lester H.A., Dibas M.I., Dahan D.S., Leite J.F., Dougherty D.A. Cys-loop receptors: new twists and turns // Trends in neurosciences. 2004. V. 27. № 6. P. 329−336.
  112. Lesyng B., McCammon J.A. Molecular modeling methods. Basic techniques and challenging problems // Pharmacology and therapeutics. 1993. V. 60. № 2. P. 149−67.
  113. Li Y., Um S.Y., McDonald T.V. Voltage-gated potassium channels: regulation by accessory subunits //Neuroscientist. 2006. V. 12. № 3. P. 199−210.
  114. Lindstrom J., Walter B., Einarson B. Immunochemical similarities between subunits of acetylcholine receptors from Torpedo, Electrophorus, and mammalian muscle // Biochemistry. 1979. V. 18. № 21. P. 4470−4480.
  115. Lim S.T., Antonucci D.E., Scannevin R.H., Trimmer J.S. A novel targeting signal for proximal clustering of the Kv2.1 K+ channel in hippocampal neurons // Neuron. 2000. V. 25. № 2. P. 385 397.
  116. Long S.B., Campbell E.B., Mackinnon R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel // Science. 2005. V. 309. № 5736. P. 897−903.
  117. Long S.B., Tao X., Campbell E.B., MacKinnon R. Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment // Nature. 2007. V. 450. № 7168. P. 376−382.
  118. D.M. 5-HT3 receptors and the neural actions of alcohols: an increasingly exciting topic //Neurochemistry international. 1999. V. 35. № 2. P. 125−130.
  119. Lu D., Aksimentiev A., Shih A.Y., Cruz-Chu E., Freddolino P.L., Arkhipov A., Schulten K. The role of molecular modeling in bionanotechnology // Physical biology. 2006. V. 3. № 1. P. S40−53.
  120. Lummis S.C. The transmembrane domain of the 5-HT3 receptor: its role in selectivity and gating // Biochemical society transactions. 2004. V. 32. P. 535−539.
  121. Lummis S.C., Beene D.L., Lee L.W., Lester H.A., Broadhurst R.W., Dougherty D.A. // Nature. 2005 Nov 10. V. 438. № 7065. P. 248−252.
  122. MacKinnon R. Potassium channels and the atomic basis of selective ion conduction (Nobel Lecture) // Angewandte chemie. 2004.V. 43. № 33. P. 4265−4277.
  123. Maffeo C., Bhattacharya S., Yoo J., Wells D., Aksimentiev A. Modeling and simulation of ion channels // Chemical reviews. 2012. V. 112. P. 6250−6284.
  124. Maksay G. Ligand-gated pentameric ion channels, from binding to gating // Current molecular pharmacology. 2009. V. 2. № 3. P. 253−262.
  125. Maricq A.V., Peterson A.S., Brake A.J., Myers R.M., Julius D. Primary structure and functional expression of the 5HT3 receptor, a serotonin-gated ion channel // Science. 1991. V. 254. № 5030. P. 432−437.
  126. McCammon J.A., Celin B.R., Karplus G.M. Dynamics of folded proteins // Nature. 1977. V. 267. P. 585−590.
  127. McCammon J.A., Karplus G.M. Dynamics of activated processes in globular proteins // Proceedings of the national academy of sciences of United States of America. 1979. V. 76. P. 3585−3589.
  128. Misonou H., Mohapatra D.P., Trimmer J.S. Kv2.1: a voltage-gated k+ channel critical to dynamic control of neuronal excitability // Neurotoxicology. 2005. V. 26. № 5. P. 743−752.
  129. Misonou H., Trimmer J.S. Determinants of voltage-gated potassium channel surface expression and localization in Mammalian neurons // Critical reviews of biochemistry and molecular biology. 2004. V. 39. № 3. P. 125−145.
  130. Minor D.L. An Overview of Ion Channel Structure. In: Bradshaw R.A., Dennis E.A. editors, Handbook of cell signaling 2nd edition. Oxford: Academic Press. 2009. P. 201−207.
  131. Miyamoto S., Komagoe K. Settle P. An analytical version of the shake and rattle algorithm for rigid water models // Journal of computational chemistry. 1992.V. 13. P. 952−962.
  132. Miyazawa A., Fujiyoshi Y., Unwin N. Structure and gating mechanism of the acetylcholine receptor pore // Nature. 2003. V. 423. № 6943. P. 949−955.
  133. Mohapatra D.P., Siino D.F., Trimmer J.S. Interdomain cytoplasmic interactions govern the intracellular trafficking, gating, and modulation of the Kv2.1 channel // Journal of neurosciences. 2008. 28. № 19. P. 4982−4994.
  134. Moorhouse A.J., Keramidas A., Zaykin A., Schofield P.R., Barry P.H. Single channel analysis of conductance and rectification in cation-selective, mutant glycine receptor channels. // Journal of general physiology. 2002. V. 119. P. 411−425.
  135. Murata Y., Iwasaki H. Sasaki M., Inaba K., Okamura Y. Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor // Nature 2005. V. 435. № 7046. P. 1239−43.
  136. Nishiyama A., Kambe F., Kamiya K., Seo H., Toyama J. Effects of thyroid status on expression of voltage-gated potassium channels in rat left ventricle // Cardiovascular research. 1998. V. 40. № 2 P. 343−351.
  137. Noda M., Takahashi H., Tanabe T., Toyosato M., Kikyotani S., Furutani Y., Hirose T., Takashima H., Inayama S., Miyata T., Numa S. Structural homology of Torpedo californica acetylcholine receptor subunits // Nature. 1983. V. 302. № 5908. P. 528−532.
  138. Noda M., Ikeda T., Suzuki H., Takeshima H., Takahashi T., Kuno M., Numa S. Expression of functional sodium channels from cloned cDNA // Nature. 1986. V. 322. № 6082. P. 826−828.
  139. Notredame C., Higgins D.G., Heringa J. T-Coffee: a novel method for fast and accurate multiple sequence alignment // Journal of molecular biology. 2000. V. 302. № 1. P. 205−217.
  140. Novikov F.N., Stroylov V.S., Zeifman A.A., Stroganov O.V., Kulkov V., Chilov G.G. Lead Finder docking and virtual screening evaluation with Astex and DUD test sets // Journal of computer-aided molecular design. 2012. V. 26. № 6. P. 725−735.
  141. Overington J.P., Al-Lazikani B., Hopkins A.L. How many drug targets are there? // Nature reviews. Drug discovery. 2006. V. 5. № 12. P. 993−996.
  142. Pandurangan A.P., Topf M. Finding rigid bodies in protein structures: application to flexible fitting into cryoEM maps // Journal of structural biology. 2012. V. 177. № 2. P. 520−531.
  143. Papazian D.M., Schwarz T.L., Tempel B.L., Jan Y.N., Jan L.Y.Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila // Science. 1987. V. 237. № 4816. P. 749−753.
  144. Park K.S., Mohapatra D.P., Misonou H., Trimmer J.S. Graded regulation of the Kv2.1 potassium channel by variable phosphorylation // Science. 2006. V. 313. № 5789. P. 976−979.
  145. Pasenkiewicz-Gierula M., Takaoka Y., Miyagawa H., Kitamura K., Kusumi A. Charge pairing of headgroups in phosphatidylcholine membranes: a molecular dynamics simulation study // Biophysical journal. 1999. V. 76. № 3. P. 1228−1240.
  146. Pathak M.M., Kurtz L., Tombola F., Isacoff E. The cooperative voltage sensor motion that gates a potassium channeln // Journal of general physiology. 2005. V. 125. P. 57−69.
  147. Pathak M.M., Yarov-Yarovoy V., Agarwal G., Roux B., Barth P., Kohout S., Tombola F., Isacoff E.Y. Closing in on the resting state of the shaker K + channel // Neuron. 2007. V. 56. β„– l.P. 124−140.
  148. Patra M., Karttunen M., Hyvonen M.T., Falck E., Lindqvist P., Vattulainen I. Molecular dynamics simulations of lipid bilayers: major artifacts due to truncating electrostatic interactions // Biophysical journal. 2003. V. 84. № 6. P. 3636−3645.
  149. Pellequer J.L., Brudler R., Getzhoff E.D. Biological sensors. More than one way to sense oxygen // Current biology. 1999. V. 9. № 11. P. 416−418.
  150. Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera a visualization system for exploratory research and analysis // Journal of Computational Chemistry. 2004. V. 25. P. 1605−1612.
  151. Phillips J.C., Braun R., Wang W., Gumbart J., Tajkhorshid E., Villa E., Chipot C" Skeel R.D., Kale L., Schulten K. Scalable molecular dynamics withNAMD // Journal of computational chemistry. 2005. V. 26. № 16. P. 1781−1802.
  152. Pischalnikova A.V., Sokolova O.S. The domain and conformational organization in potassium voltage-gated ion channels //Journal of neuroimmune pharmacology. 2009. V. 4. № 1. P. 71−82.
  153. Raftery M.A., Hunkapiller M.W., Strader C.D., Hood L.E. Acetylcholine receptor: complex of homologous subunits // Science. 1980. V. 208. № 4451. P. 1454−1456.
  154. Rahman A. Correlations in the motion of atoms in liquid argon // Physical review letters. 1964. V. 136. P.405−411.
  155. Reeves D.C., Lummis S.C. The molecular basis of the structure and function of the 5-HT3 receptor: a model ligand-gated ion channel (review) // Molecular membrane biology. 2002. V. 19. β„– l.P. 11−26.
  156. Reeves D.C., Sayed M.F., Chau P.L., Price K.L., Lummis S.C. Prediction of 5-HT3 receptor agonist-binding residues using homology modeling // Biophysical journal. 2003. V. 84. № 4. P. 2338−2344.
  157. Rossky P.J., Karplus M. Solvation. A molecular dynamics study of a dipeptide in water // Journal of the American Chemical society. 1979. V. 101. P. 1913−1937.
  158. Roux B., Allen T., Berneche S., Im W. Theoretical and computational models of biological ion channels // Quarterly reviews of biophysics. 2004. V. 37. № 1. P. 15−103.
  159. Roux B., Berneche S., Im W. Ion channels, permeation, and electrostatics: insight into the function of KcsA // Biochemistry. 2000. V. 39. № 44. P. 13 295−13 306.
  160. Rufener L., Keiser J., Kaminsky R., Maser P., Nilsson D. Phylogenomics of ligand-gated ion channels predicts monepantel effect // PLoS pathogens. 2010. V. 6. № 9. P. el001091
  161. Saito M. Molecular dynamics simulation of proteins in solution: artifacts caused by the cut-off approximation // Journal of chemical physics. 1994. V. 101. P. 4055−5061.
  162. Sanbonmatsu K.Y., Tung C.S.High performance computing in biology: multimillion atom simulations of nanoscale systems // Journal of structural biology. 2007. V. 157. № 3. P. 470−480.
  163. Sanguinetti M.C., Xu Q.P. Mutations of the S4-S5 linker alter activation properties of HERG potassium channels expressed in Xenopus oocytes // Journal of physiology. 1999. V. 514. P. 667−675.
  164. Santoro B., Liu D.T., Yao H., Bartsch D., Kandel E.R., Siegelbaum S.A., Tibbs G.R. Identification of a gene encoding a hyperpolarization-activated pacemaker channel of brain // Cell. 1998. V. 93. № 5. P. 717−729.
  165. Schmid R., Miah A.M., Sapunov V.N. A new table of the thermodynamic quantities of ionic hydration: values and some applications (enthalpy-entropy compensation and Born radii) // Physical chemistry chemical physics. 2000. V. 2. P. 97−102.
  166. Scholle A., Zimmer T., Koopman R., Engeland B., Pongs O., Benndorf K. Efects of Kvl.2 intracellular regions on activation of Kv2.1 channels // Biophysical journal. 2004. V. 87. № 2. P. 873−882.
  167. Schultz J.H., Volk T., Ehmke H. Heterogeneity of Kv2.1 mRNA expression and delayed rectifier current in single isolated myocytes from rat left ventricle // Circulation research. 2001. V. 88. № 5. P. 483−490.
  168. Schwede T" Kopp J., Guex N., Peitsch M.C. SWISS-MODEL: an automated protein homology-modeling server // Nucleic acids research. 2003. V. 31. № 13. P. 3381−3385.
  169. Sharman J.L., Benson H.E., Pawson A.J., Lukito V., Mpamhanga C.P., Bombail V., Davenport A.P., Peters J.A., Spedding M., Harmar A.J. IUPHAR-DB: updated database content and new features // Nucleic acids research. 2013. V. 41. β„– D1. P. D1083-D1088.
  170. Shaytan A.K., Ivanov V.A., Shaitan K.V., Khokhlov A.R. Free energy profiles of amino acid side chain analogs near water-vapor interface obtained via MD simulations // Journal of computational chemistry. 2010. V. 31. № 1. P. 204−216.
  171. Shindyalov I.N., Bourne P.E. Protein structure alignment by incremental combinatorial extension (CE) of the optimal path // Protein engineering. 1998. V. 11. № 9. P. 739−747.
  172. Sine S.M., Engel A.G. Recent advances in Cys-loop receptor structure and function // Nature. 2006.V. 440. № 7083. P. 448−455.
  173. Smart O.S., Neduvelil J.G., Wang X., Wallace B.A., Sansom M.S. HOLE: a program for the analysis of the pore dimensions of ion channel structural models // Journal of molecular graphics. 1996. V. 14. № 6. P. 354−60, 376.
  174. Sokolova O., Kolmakova-Partensky L., Grigorieff N. Three-dimensional structure of a voltage-gated potassium channel at 2.5 nm resolution // Structure. 2001. V. 9. JVb 3. P. 215−220.
  175. Spier A.D., Lummis S.C.The role of tryptophan residues in the 5-Hydroxytryptamine (3) receptor ligand binding domain. // Journal of biological chemistry. 2000. V. 275. № 8. P. 56 205 625.
  176. Stevens L., Ju M., Wray D. Roles of surface residues of intracellular domains of heag potassium channels // European biophysics journal. 2009.V. 38. Jte 4. P. 523−532.
  177. Tai K., Haider S., Grottesi A., Sansom M.S. Ion channel gates: comparative analysis of energy barriers // European biophysics journal. 2009. V. 38. № 4. P. 347−354.
  178. Taly A., Delarue M., Grutter T., Nilges M., Nov"ere N.L., Corringer P., Changeux J. Normal mode analysis suggests aquaternary twist model for the nicotinic receptor gating mechanism // Biophysical journal. 2005. V. 88. P. 3954−3965.
  179. Taly A., Corringer P.J., Guedin D., Lestage P., Changeux J.P. Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system // Nature reviews. Drug discovery. 2009. V. 8. № 9. P. 733−750.
  180. Tao X., Avalos J.L., Chen J., MacKinnon R. Crystal structure of the eukaryotic strong inward-rectifier K+ channel Kir2.2 at 3.1 A resolution // Science. 2009. V. 326. № 5960. P. 1668−1674.
  181. Tasneem A., Iyer L.M., Jakobsson E., Aravind L. Identification of the prokaryotic ligand-gated. ion channels and their implications for the mechanisms and origins of animal Cys-loop ion channels // Genome biology. 2005. V. 6. № 1. P. R4.
  182. Terlau H., Heinemann S.H., Stuhmer W., Pongs O., Ludwig J. Amino terminal-dependent gating of the potassium channel rat eag is compensated by a mutation in the S4 segment // Journal of physiology. 1997. V. 502. P. 537−543.
  183. Terstappen G.C., Reggiani A. In silico research in drug discovery // Trends in pharmacological sciences. 2001. V. 22. № 1. P. 23−26.
  184. Thomas M., Jayatilaka D., Corry B. How does overcoordination create ion selectivity? // Biophysical chemistry. 2013. V. 172. P. 37−42.
  185. Thompson A.J., Price K.L., Reeves D.C., Chan S.L., Chau P.L., Lummis S.C. Locating an antagonist in the 5-HT3 receptor binding site using modeling and radioligand binding // Journal of biological chemistry. 2005. V. 280. № 21. P. 20 476−20 482.
  186. Thompson A.J., Lummis S.C.R. The 5-HT3 receptor as a therapeutic target. Expert opinion in therapeutic targets. 2007. V. 11. № 4. P. 527−540.
  187. Thompson A.J., Lester H.A., Lummis S.C. The structural basis of function in Cys-loop receptors // Quarterly reviews of biophisics. 2010. V. 43. № 4. P. 449−499
  188. Tieleman D.P., Biggin P.C., Smith G.R., Sansom M.S. Simulation approaches to ion channel structure-function relationships // Quarterly reviews of biophisics. 2001. V. 34. № 4. P. 473−561.
  189. Tombola F., Pathak M.M., Isacoff E.Y. How Does Voltage Open an Ion Channel? // Annual reviews of cell and developmental biology. 2006. V. 22. P. 23−52.
  190. Topf M., Sali A. Combining electron microscopy and comparative protein structure modeling // Current opinion in structural biology. 2005. V. 15. № 5. P. 578−585.
  191. Trabuco L.G., Villa E., Mitra K., Frank J., Schulten K. Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics // Structure. 2008. V. 16. JSfe 5. P. 673−683.
  192. Treptow W., Tarek M. K+ conduction in the selectivity filter of potassium channels is monitored by the charge distribution along their sequence // Biophysical journal. 2006. V. 91. № 10. P. L81−83.
  193. Unwin N. Refined structure of the nicotinic acetylcholine receptor at 4A resolution // Journal of molecular biology. 2005. V. 346. № 4. P. 967−989.
  194. Unwin N., Fujiyoshi Y. Gating movement of acetylcholine receptor caught by plunge-freezing // Journal of molecular biology. 2012. V. 422. № 5. P. 617−634.
  195. VanDongen A.M., Freeh G.C., Drewe J.A., Joho R.H., Brown A.M. Alteration and restoration of K+ channel function by deletions at the N- and C-termini // Neuron. 1990. V. 5. № 4. P. 433 443.
  196. Verlet L. Computer «experiments» on classical fluids. I. thermodynamical properties of lennard-jones molecules // Physical review. 1967. V. 159. P. 98−103.
  197. Wadhwa S., Wadhwa P., Dinda A.K., Gupta N.P. Differential expression of potassium ion channels in human renal cell carcinoma // International urology and nephrology. 2009. V. 41. № 2. P. 251−257.
  198. Weill C.L., McNamee M.G., Karlin A. Affinity-labeling of purified acetylcholine receptor from Torpedo californica // Biochemical and biophysical research communications. 1974. V. 61. № 3. P. 997−1003.
  199. Wickenden A., Priest B., Erdemli G. Ion channel drug discovery: challenges and future directions. Future medicinal chemistry. 2012. V. 4. № 5. P. 661−679.
  200. Wilson G., Karlin A. Acetylcholine receptor channel structure in the resting, open, and desensitized states probed with the substituted-cysteine-accessibility method // Proceedings of the National Academy of Sciences. 2001. V. 98. № 3. P. 1241−1248.
  201. Wray D. Intracellular regions of potassium channels: Kv2.1 and heag // European biophisics journal. 2009. V. 38. № 3. P. 285−292.
  202. Xu C., Lu Y., Tang G., Wang R. Expression of voltage-dependent K (+) channel genes in mesenteric artery smooth muscle cells // American journal of physiology. 1999. V. 277. P. 10 551 063.
  203. Ye S., Li Y., Chen L., Jiang Y. Crystal structures of a ligand-free MthK gating ring: insights into the ligand gating mechanism of K+ channels // Cell. 2006. V. 126. № 6. P. 1161−1173.
  204. Yellen G. The voltage-gated potassium channels and their relatives // Nature 2002. V. 419. № 6902. P. 35−42.
  205. Yu F.H., Catterall W.A. The VGL-chanome: a protein superfamily specialized for electrical signaling and ionic homeostasis // Science’s STKE. 2004. № 253. P. rel5.
  206. Yu F.H., Catterall W.A. The VGL-chanome: a protein superfamily specialized for electrical signaling and ionic homeostasis // Science’s STKE. 2004. V. 2004. № 253. P. rel5.
  207. Zagotta W.N., Hoshi T., Aldrich R.W. Shaker potassium channel gating. Ill: evaluation of kinetic models for activation // Journal of general physiology. 1994. V. 103. № 2. P. 321−362.
  208. Zagotta W.N., Olivier N.B., Black K.D., Young E.C., Olson R., Gouaux E. Structural basis for modulation and agonist specificity of HCN pacemaker channels // Nature. 2003. V. 425. № 6954. P. 200−205.
  209. Zhou Y., Morais-Cabral J.H., Kaufman A., MacKinnon R. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0A resolution // Nature. 2001. V. 414. № 6859. P. 43−48.
  210. Zhu F., Hummer G. Pore opening and closing of a pentameric ligand-gated ion channel // Proceedings of the National Academy of Sciences. 2010. V. 107. № 46. P. 19 814−19 819.
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ