ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² написании студСнчСских Ρ€Π°Π±ΠΎΡ‚
АнтистрСссовый сСрвис

ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½Ρ‹ΠΉ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ Π°Π½Ρ‚ΠΈΠΌΠΈΠΊΡ€ΠΎΠ±Π½ΠΎΠ³ΠΎ дСйствия ΠΌΠΈΠΊΡ€ΠΎΡ†ΠΈΠ½Π° Π‘

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

Kern, D., and Lapointe, J. (1980) The catalytic mechanism of glutamyl-tRNA synthetase of Escherichia coli. Evidence for a two-step aminoacylation pathway, and study of the reactivity of the intermediate complex. Eur. j Biochem. 106, 137βˆ’150. Solbiati J., Chapman-Smith A., Miller J: L., Miller C.G., and Cronan J.E. (1999) Processing of the N Termini of Nascent Poly peptide Chains Requires… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½Ρ‹ΠΉ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ Π°Π½Ρ‚ΠΈΠΌΠΈΠΊΡ€ΠΎΠ±Π½ΠΎΠ³ΠΎ дСйствия ΠΌΠΈΠΊΡ€ΠΎΡ†ΠΈΠ½Π° Π‘ (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • Бписок сокращСний
  • Аминоацил Ρ‚Π ΠΠš синтСтазы
  • ΠΠ»ΡŒΠ±ΠΎΠΌΠΈΡ†ΠΈΠ½
  • Агроцин
  • ΠœΠΈΠΊΡ€ΠΎΡ†ΠΈΠ½ Π’
  • ΠœΠΈΠΊΡ€ΠΎΡ†ΠΈΠ½ Π‘
  • ΠœΠΈΠΊΡ€ΠΎΡ†ΠΈΠ½ J
  • ΠŸΠ΅ΠΏΡ‚ΠΈΠ΄Π°Π·Ρ‹.Π•. col
  • АминопСптидаза А
  • АминопСптидаза Π’
  • АминопСптидаза N
  • ΠœΠ΅Ρ‚ΠΈΠΎΠ½ΠΈΠ½ΠΎΠ²Π°Ρ Π°ΠΌΠΈΠ½ΠΎΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Π°Π·Π°
  • ΠžΠ»ΠΈΠ³ΠΎΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Π°Π·Π° А
  • Π”ΠΈΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Π°Π·Π° D
  • ΠŸΠ΅ΠΏΡ‚ΠΈΠ΄Π°Π·Π° Π’
  • ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹
  • Π‘Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ ΡˆΡ‚Π°ΠΌΠΌΡ‹
  • ΠŸΠΈΡ‚Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ срСды
  • ΠžΡ‚Π±ΠΎΡ€ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΠ»ΠΎΠ½ΠΈΠΉ ΠΈ ΠΈΡ… ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ° Π½Π° ΡƒΡΡ‚ΠΎΠΉΡ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ ΠΊ Π°Π½Ρ‚ΠΈΠ±ΠΈΠΎΡ‚ΠΈΠΊΠ°ΠΌ
  • Π­Π»Π΅ΠΊΡ‚Ρ€ΠΎΡ„ΠΎΡ€Π΅Π· Π² Π°Π³Π°Ρ€ΠΎΠ·Π½ΠΎΠΌ Π³Π΅Π»Π΅
  • ΠŸΡ€ΠΎΡ†Π΅ΡΡΠΈΠ½Π³ ΠΌΠΈΠΊΡ€ΠΎΡ†ΠΈΠ½Π° Π‘
  • ΠœΠ΅Ρ‚ΠΎΠ΄ ПЦР
  • Π˜Π·Π²Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ² Π”ΠΠš ΠΈΠ· Π°Π³Π°Ρ€ΠΎΠ·Ρ‹
  • БиоинформатичСский Π°Π½Π°Π»ΠΈΠ· Π±Π΅Π»ΠΊΠΎΠ²
  • ΠžΡ‡ΠΈΡΡ‚ΠΊΠ° ΠΌΠΈΠΊΡ€ΠΎΡ†ΠΈΠ½Π° Π‘
  • ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ S
  • ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ S
  • Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠ»Π°Π·ΠΌΠΈΠ΄
  • ΠžΡ‡ΠΈΡΡ‚ΠΊΠ° Π”ΠΠš ΠΎΡ‚ Π±Π΅Π»ΠΊΠΎΠ²Ρ‹Ρ… примСсСй
  • Вранскрипция in vitro
  • Врансформация ΠΊΠ»Π΅Ρ‚ΠΎΠΊ E. col
  • ΠŸΠ΅Ρ€Π΅ΠΎΡΠ°ΠΆΠ΄Π΅Π½ΠΈΠ΅ Π”ΠΠš
  • РСакция аминоацилирования
  • Π’Π₯Π£ осаТдСниС Π±Π΅Π»ΠΊΠΎΠ²
  • Π‘ΠΈΠ½Ρ‚Π΅Π· Π»ΡŽΡ†ΠΈΡ„Π΅Ρ€Π°Π·Ρ‹ in vitro
  • Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈ ΠΎΠ±ΡΡƒΠΆΠ΄Π΅Π½ΠΈΠ΅
  • ΠŸΡ€ΠΎΡ†Π΅ΡΡΠΈΠ½Π³ ΠΌΠΈΠΊΡ€ΠΎΡ†ΠΈΠ½Π° Π‘ Π΄Π΅Π»Π°Π΅Ρ‚ Π΅Π³ΠΎ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΌ in vitro
  • ВнутриклСточная мишСнь процСссированного МсБ
  • ΠŸΡ€ΠΎΡ†Π΅ΡΡΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ ΠΌΠΈΠΊΡ€ΠΎΡ†ΠΈΠ½ подавляСт ΠΏΠ΅Ρ€Π²ΡƒΡŽ ΡΡ‚Π°Π΄ΠΈΡŽ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ аминоацилирования
  • Π£ΡΡ‚ΠΎΠΉΡ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΊ ΠœΡΠ‘ ΠΏΠΎΠ²Ρ‹ΡˆΠ°Π΅Ρ‚ΡΡ ΠΏΡ€ΠΈ супСрпродукции Asp-RS
  • Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° процСссированного МсБ
  • ΠŸΡ€ΠΎΡ†Π΅ΡΡΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ МсБ подавляСт Ρ€Π°Π±ΠΎΡ‚Ρƒ эукариотичСской Ρ‚Π ΠΠš синтСтазы
  • БвязываниС процСссированного МсБ ΠΈ ΠΌΠΈΡˆΠ΅Π½ΠΈ ΠΎΡ‡Π΅Π½ΡŒ ΠΏΡ€ΠΎΡ‡Π½ΠΎ
  • ΠŸΡ€ΠΎΡ†Π΅ΡΡΠΈΠ½Π³ ΠΌΠΈΠΊΡ€ΠΎΡ†ΠΈΠ½Π° Π‘ Π² Ρ†ΠΈΡ‚ΠΎΠΏΠ»Π°Π·ΠΌΠ΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ-мишСни
  • Π›ΡŽΠ±Π°Ρ ΠΈΠ· Π°ΠΌΠΈΠ½ΠΎΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Π°Π· А, Π’ ΠΈΠ»ΠΈ N ΡΠΏΠΎΡΠΎΠ±Π½Π° ΠΏΡ€ΠΎΡ†Π΅ΡΡΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ МсБ
  • ΠšΠ»Π΅Ρ‚ΠΊΠΈ, Π»ΠΈΡˆΡ‘Π½Π½Ρ‹Π΅ ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Π°Π·, производят Π΄Π΅Ρ„ΠΎΡ€ΠΌΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ ΠΌΠΈΠΊΡ€ΠΎΡ†ΠΈΠ½
  • Бтадия дСформилирования Π·Π°Π½ΠΈΠΌΠ°Π΅Ρ‚ ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Ρƒ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ процСссинга ΠΈΠ½Ρ‚Π°ΠΊΡ‚Π½ΠΎΠ³ΠΎ ΠΌΠΈΠΊΡ€ΠΎΡ†ΠΈΠ½Π°
  • Π€ΠΎΡ€ΠΌΠΈΠ»ΡŒΠ½Π°Ρ Π³Ρ€ΡƒΠΏΠΏΠ° МсБ трСбуСтся для эффСктивного транспорта Π²Π½ΡƒΡ‚Ρ€ΡŒ ΠΊΠ»Π΅Ρ‚ΠΊΠΈΠΌΠΈΡˆΠ΅Π½ΠΈ
  • Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π½ΠΎ-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΌΠΈΠΊΡ€ΠΎΡ†ΠΈΠ½Π° Π‘
  • ИзмСнСниС аминокислотного состава Π»ΠΈΠ΄Π΅Ρ€Π½ΠΎΠ³ΠΎ ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Π° ΠΌΠΎΠΆΠ΅Ρ‚ привСсти ΠΊ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡŽ активности МсБ
  • Π’Ρ‹Π²ΠΎΠ΄Ρ‹
  • ΠŸΡƒΠ±Π»ΠΈΠΊΠ°Ρ†ΠΈΠΈ Π°Π²Ρ‚ΠΎΡ€Π° ΠΏΠΎ Ρ‚Π΅ΠΌΠ΅ диссСртации

Π²Ρ‹Π²ΠΎΠ΄Ρ‹.

1. ΠœΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ дСйствия ΠΌΠΈΠΊΡ€ΠΎΡ†ΠΈΠ½Π° Π‘ ΡΠΎΠΎΡ‚вСтствуСт ΠΌΠΎΠ΄Π΅Π»ΠΈ «Ρ‚роянского коня» — Π°Π½Ρ‚ΠΈΠ±ΠΈΠΎΡ‚ΠΈΠΊ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎ поглощаСтся ΠΊΠ»Π΅Ρ‚ΠΊΠΎΠΉ-мишСнью, послС Ρ‡Π΅Π³ΠΎ ΠΏΡ€Π΅Ρ‚Π΅Ρ€ΠΏΠ΅Π²Π°Π΅Ρ‚ процСссинг, осущСствляСмый Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°ΠΌΠΈ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ, Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΏΡ€ΠΈΠΎΠ±Ρ€Π΅Ρ‚Π°Π΅Ρ‚ свойства ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€Π°.

2. Π’Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ мишСнью ΠΌΠΈΠΊΡ€ΠΎΡ†ΠΈΠ½Π° Π‘ ΡΠ²Π»ΡΠ΅Ρ‚ся аспартил-Ρ‚Π ΠΠš-синтСтаза, ΠΏΡ€ΠΈΡ‡Ρ‘ΠΌ Π°Π½Ρ‚ΠΈΠ±ΠΈΠΎΡ‚ΠΈΠΊ способСн in vitro ΠΏΠΎΠ΄Π°Π²Π»ΡΡ‚ΡŒ ΠΊΠ°ΠΊ прокариотичСский, Ρ‚Π°ΠΊ ΠΈ ΡΡƒΠΊΠ°Ρ€ΠΈΠΎΡ‚ичСский Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚. Активная Ρ‡Π°ΡΡ‚ΡŒ ΠΌΠΈΠΊΡ€ΠΎΡ†ΠΈΠ½Π° прСдставляСт собой нСрасщСпляСмый Π°Π½Π°Π»ΠΎΠ³ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ субстрата Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ аминоацилирования, Π°ΠΌΠΈΠ½ΠΎΠ°Ρ†ΠΈΠ»Π°Π΄Π΅Π½ΠΈΠ»Π°Ρ‚Π°.

3. БвязываниС Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ части ΠΌΠΈΠΊΡ€ΠΎΡ†ΠΈΠ½Π° (процСссированного МсБ) с Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ мишСнью, ΠΏΠΎ-Π²ΠΈΠ΄ΠΈΠΌΠΎΠΌΡƒ, Π½Π΅ΠΎΠ±Ρ€Π°Ρ‚ΠΈΠΌΠΎ.

4. ΠŸΠ΅ΠΏΡ‚ΠΈΠ΄Π½Π°Ρ Ρ‡Π°ΡΡ‚ΡŒ Π·Ρ€Π΅Π»ΠΎΠ³ΠΎ Π°Π½Ρ‚ΠΈΠ±ΠΈΠΎΡ‚ΠΈΠΊΠ° ΠΈΠ³Ρ€Π°Π΅Ρ‚ Ρ€ΠΎΠ»ΡŒ сигнальной ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ для транспорта ΠΌΠΈΠΊΡ€ΠΎΡ†ΠΈΠ½Π° Π²Π½ΡƒΡ‚Ρ€ΡŒ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ. N-ΠΊΠΎΠ½Ρ†Π΅Π²Ρ‹Π΅ ΠΈ Π‘-ΠΊΠΎΠ½Ρ†Π΅Π²Ρ‹Π΅ аминокислотныС остатки ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Π½ΠΎΠΉ части МсБ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π²Π°ΠΆΠ½Ρ‹ ΠΊΠ°ΠΊ для созрСвания Π°Π½Ρ‚ΠΈΠ±ΠΈΠΎΡ‚ΠΈΠΊΠ° Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ΅-ΠΏΡ€ΠΎΠ΄ΡƒΡ†Π΅Π½Ρ‚Π΅, Ρ‚Π°ΠΊ ΠΈ Π΄Π»Ρ транспорта ΠΌΠΈΠΊΡ€ΠΎΡ†ΠΈΠ½Π° Π² ΠΊΠ»Π΅Ρ‚ΠΊΡƒ-мишСнь.

5. ΠŸΡ€ΠΎΡ†Π΅ΡΡΠΈΠ½Π³ ΠΈΠ½Ρ‚Π°ΠΊΡ‚Π½ΠΎΠ³ΠΎ ΠΌΠΈΠΊΡ€ΠΎΡ†ΠΈΠ½Π° осущСствляСт любая ΠΈΠ· Π°ΠΌΠΈΠ½ΠΎΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Π°Π· А, Π’, N ΠΈ ΠΊΠ»Π΅Ρ‚очная Π΄Π΅Ρ„ΠΎΡ€ΠΌΠΈΠ»Π°Π·Π°. ΠŸΡ€ΠΎΡ†Π΅ΡΡΠΈΠ½Π³ ΠΈΠ΄Ρ‘Ρ‚ ΠΎΡ‚ N-ΠΊΠΎΠ½Ρ†Π° ΠΊ Π‘-ΠΊΠΎΠ½Ρ†Ρƒ. ΠšΠ»ΡŽΡ‡Π΅Π²ΠΎΠΉ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ Π΄Π΅Π³Ρ€Π°Π΄Π°Ρ†ΠΈΠΈ Π±Π΅Π»ΠΊΠΎΠ², MAP, Π½Π΅ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ участия Π² ΡΡ‚ΠΎΠΌ процСссС, вмСсто Π½Π΅Π³ΠΎ ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΈΠΎΠ½ΠΈΠ½ отщСпляСт любая ΠΈΠ· Π°ΠΌΠΈΠ½ΠΎΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Π°Π·: А, Π’ ΠΈΠ»ΠΈ N. НаличиС тяТСло отщСпляСмого аминокислотного остатка Π² ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Π½ΠΎΠΉ части ΠΌΠΎΠΆΠ΅Ρ‚ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π·Π°ΠΌΠ΅Π΄Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ процСссинга.

ΠŸΡƒΠ±Π»ΠΈΠΊΠ°Ρ†ΠΈΠΈ Π°Π²Ρ‚ΠΎΡ€Π° ΠΏΠΎ Ρ‚Π΅ΠΌΠ΅ диссСртации.

Metlitskaya*, A., Kazakov*, Π’., КошшСг, A., Pavlova, О., Praetorius-Ibba, М., Ibba, М., Krashenninikov, I., Kolb, V., Khmel', I., and Severinov, K. (2006) Aspartyl-tRNA synthetase is the target of peptidenucleotide antibiotic Microcin C. J. Biol. Chem., 281,18 033−18 042. — Π°Π²Ρ‚ΠΎΡ€Ρ‹ внСсли ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ΠΉ Π²ΠΊΠ»Π°Π΄ Π² Ρ€Π°Π±ΠΎΡ‚Ρƒ).

Kazakov, Π’., Metlitskaya, A., and Severinov, К. (2007) Structure-activity analysis of translation inhibitor microcin C. J. Bacteriol., 189,2114−2118.

Severinov, K., Semenova, E., Kazakov, A., Kazakov, Π’., and Gelfand, M. S. (2007) The post-translationally modified microcins. Mol. Microbiol., 65, 1380−1394.

Kazakov, Π’., Vondenhoff, G.H., Datsenko, K.A., Novikova, M., Metlytskaya, A., Wanner, B.L., Severinov, K. (2008) E. coli Peptidases A, B, or N Can Process Translation Inhibitor Microcin C. Bacteriol., 190, 2607−2610.

ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½ΠΈΠ΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π½Π° ΠΊΠΎΠ½Ρ„СрСнциях.

Molecular Genetics of Bacteria & Phages August 7−12, 2007.

University of Wisconsin-Madison, WI, USA.

Poster presentation," Molecular Mechanism of Action of Microcin Π‘5Π“' (Authors: T.S. Kazakov, A.Z. Metlitskaya, K. Severinov).

NIAID Region II Center of Biodefense and Emerging Infectious Disease Research October 7−9,2007.

Northeast Biodefense Center, NY, USA.

Poster presentation, «Molecular Mechanism of Action of Microcin C51» (Authors: T.S. Kazakov, A.Z. Metlitskaya, M. Novikova, K. Datsenko, K. Severinov).

1. Schimmel, Π . (1987) Aminoacyl-tRNA synthetases: general scheme of structure-function relationships in the polypeptides and recognition of transfer RNAs. Annu. Rev. Biochem. 56, 125−158.

2. Lapointe, J., and Giege, R. (1991) Transfer RNAs and aminoacyl-tRNA synthetases. Translation in Enkaryotes (Trachsel, H., ed) pp. 35−69, CRC Press Inc., Boca Raton, Florida.

3. Schulman, L. H. (1991) Recognition oftRNAs by aminoacyl-tRNA synthetasesJVog. Nueleic Acid Res. Mol. Biol. 41,23−87.

4. Schimmel, P., and Soil, D. (1979) Aminoacyl-tRNA Synthetases: general features and recognition of transfer RNAs. Annu. Rev. Biochem. 48, 601−648.

5. Hountondji, C., Dessen, P., and Blanquet, S. (1986) Sequence similarities among the family of aminoacyl-tRNA synthetases. Biochimie 68,1071−1078.

6. Mirande, M.' (1991) Aminoacyl-tRNA synthetase family from prokaryotes and eukaryotes: structural domains and their implications. Prog. Nucleic Acid Ret. Mol. Biol 40, 95−142.

7. Martinis, S. A., Plateau, P., Cavarelli, J., and Florentz, G. (1999) Aminoacyl-tRNA synthetases: A family of expanding functions, EMBOJ. 18,4591−4596:

8. Ibba, M., and Soil, D. (2000) Aminoacyl-tRNA synthesis, Annu. Rev. Biochem. 69, 617−650.

9. Francklyn, C., Perona, J. J., Puetz, J., and Hou, Y. M. (2002) Aminoacyl-tRNA synthetases: versatile players in the changing theater of translation, RNA 8, 1363−1372'.

10. Arnez, J. G., and Moras, D. (1997) Structural and functional considerations of the aminoacylation reaction, Trends Biochem. Sci. 22, 211−216.

11. Kern, D., and Lapointe, J. (1980) The catalytic mechanism of glutamyl-tRNA synthetase of Escherichia coli. Evidence for a two-step aminoacylation pathway, and study of the reactivity of the intermediate complex. Eur. j Biochem. 106, 137−150.

12. Dibbelt, L., Pachmann, U., and Zachau, H. G. (1980) Serine activation is the rate-limiting step of tRNASer aminoacylation by yeast seryl tRNA synthetase, Nucleic Acids Res. 8, 40 214 039.

13. Dibbelt, L., and Zachau, H. G. (1981) On the rate-limiting step of yeast tRNAPhe aminoacylation, FEBS Lett. 129, 173−176.

14. Eldred, E. W., and Schimmel, P. R. (1972) Investigation of the transfer of amino acid from a transfer ribonucleic acid synthetaseaminoacyl adenylate complex to transfer ribonucleic acid, Biochemistry 11, 17−23.

15. Killmann, II., Braun, M., Herrmann, G., and’Braun, V. (2001) FhuA Barrel-Cork Hybrids Are Active Transporters and Receptors. J. Bacteriol. 183: 3476−3487.

16. System of Streptococcus? pneumoniae R.6. J. Bacteriol- 188,3878−3886:23- Ellis, JI G. & Murphy, P. J. (1981) Mol. Gem Genet. 181- 36−43−24- GelvinS: B. (2000) Ann. Rev. Plant PhysiolPlant Mol. Biol- 51, 223−256.

17. Hayman, G. T. & Farrand, S. K. (1988) J. Bacteriol- 170,1759−1767.

18. Kim, H- & Farrand, S. K. (1997) J. Bacteriol. 179, 7559−7572.27. von Bodman, S. B, HaymanG.T. & FarrandS- K. (1992) i>roc. Natl: AcadSei. USA 89, 643−647.28: P. J. Murphy, M/ E. Tate, fi?. Kerr, Eur. J: Biochem: 115, 539 (1981).

19. EllisJ. G., Kerr, A., Van Montagu, Mi &β€’ SchellR (^979)Pf^siolPlantPatholii5,3n319.30: SlotaJ: E. & FarrandS: K.,(1982) Plasmid>&-, 175−186;

20. Reader, J.S., Ordoukhanian, P.T., Kim, J.-G., de Cre’cy-Lagard, V., Ingyu Hwang, I.H., Farrand, S., Schimmel, P. (2005) Major Biocontrol of Plant tumors Targets tRNA Synthetase. Science 309:1533.

21. Baquero F., Bouanchaud D, Martinez-Perez M.C., Fernandez C.(1978) Microcin plasmids: a group of extrachromosomal elements coding forlow-molecular-weight antibiotics in Escherichia coli // J. Bacteriol. V. 135. P. 342−347.

22. Davagnino J., Herrero M., Furlong D., Moreno F., Kolter R. (1986) The DNA replication inhibitor microcin B17 is a forty-three-amino-acid protein containing sixty percent glycine // Proteins. V. 1. P. 230−238.

23. Connell N., Han Z., Moreno F., Kolter R. (1987) An E. coli promoter induced by the cessation of growth// Mol. Microbiol. V. l.P. 195−201.

24. Genilloud O., Moreno F., Kolter R. (1989) DNA sequence, products, and transcriptional pattern of the genes involved in production of the DNA replication inhibitor microcin B17. J. Bacteriol. V. 171. P. 1126−1135.

25. Yorgey P., Davagnino J., Kolter R. (1993) The maturation pathway of microcin B17, a peptide inhibitor of DNA gyrase. Mol. Microbiol. V. 9. P." 897−905.

26. Yorgey P., Lee J., Kordel J., Vivas E., Warner P., Jebaratnam D., Kolter R. (1994) Posttranslational modifications in microcin B17 define an additional class of DNA gyrase inhibitor. Proc. Natl. Acad. Sei. U S A. V. 91. P. 4519−4523.

27. Kelleher N.L., Hendrickson C.L., Walsh C.T. (1999) Posttranslational heterocyclization ofcysteine and serine residues in the antibiotic Microcin B17: distributivity and directionality.

28. Biochemistry. V. 38. P. 15 623−15 630.

29. Gilson L., Mahanty H"K., Kolter R. (1990) Genetic analysis of an MDR-like export system: the secretion of colicin V. EMBO. J. V. 9. P. 3875−3884.

30. Garrido M.C., Herrero M., Kolter R., Moreno F. (1988) The export of the DNA replication inhibitor Microcin B17 provides immunity for the host cell // EMBO. J. V. 7. P. 1853−1862.

31. Madison L.L., Vivas E.I., Li Y.M., Walsh C.T., Kolter R. (1997) The leader peptide is essential for the post-translational modification of the DNA-gyrase inhibitor microcin B17. Mol. Microbiol. V. 23. P. 161−168.

32. Breil B.T., Ludden P.W., Triplett E.W. (1993) DNA sequence and mutational analysis of genes involved in the production and resistance of the antibiotic peptide trifolitoxin // J. Bacteriol. V. 175. P. 3693−3702.

33. Liu J. (1994) Microcin B17: posttranslational" modifications and their biological implications. Proc. Natl. Acad. Sei. USA. V. 91. P. 4618−4620.

34. Lavina M., Pugsley A.P., Moreno F. (1986) Identification, mapping, cloning and characterization of a gene (sbmA) required for microcin B17 action on Escherichia coli Kl 2 // J. Gen. Microbiol. V. 132. P. 1685−1693.

35. Khmel' I.A. (1999) Microcins—peptide antibiotics of enterobacteria: genetic control of the synthesis, structure, and mechanism of action // Genetika. V. 35. P. 5−16.

36. Pierrat O.A., and Maxwell A. (2003) The action of the bacterial toxin microcin B17. Insight into the cleavage-religation reaction of DNA gyrase II J. Biol. Chem. V. 278. P. 35 016−35 023.

37. Pierrat O.A., Maxwell A. (2005) Evidence for the role of DNA strand’passage in the mechanism of action of microcin B17 on DNA gyrase // Biochemistry. V. 44. P. 4204−4215.

38. Vizan J.L., Hernandez-Chico C., del C., I, Moreno F. (1991) The peptide antibiotic microcin B17 induces double-strand cleavage of DNA mediated by E. coli DNA gyrase // EMBO. J. V. 10. P. 467−476.

39. KimiO.K., Ohemeng K., Barrett J.F. (2001) Advances in DNA gyrase inhibitors II Expert. Opin. Investig. Drugs. V. 10. P. 199−212.

40. Metlitskaya, A.Z., Katrukha, G.S., Shashkov, A.S., Zaitsev, D.A., Egorov, Ts.A., and Khmel, I.A. (1995) Structure of microcin C51, a new antibiotic with a broad spectrum of activity. FEBSLett. 357:235−8.

41. Kurepina, N.E., Basyuk, E.I., Metlitskaya, A.Z., Zaitsev, D.A., Khmel, I.A. (1993) Cloning and mapping of the genetic determinants for microcin C51 production and immunity. Mol. Gen. Genet. 241:700−6.

42. Khmel1 I.A., Bondarenko V.M., Manokhina I.M., Basyuk E. L, Metlitskaya A.Z., Lipasova V.A., Romanova Y.M. (1993) Isolation and characterization of Escherichia coli strains producing microcins of B and C types // FEMS. Microbiol. Lett. Ill :269−274.

43. Fomenko, D.E., Metlitskaya, A.Z., Peduzzi, J., Goulard, C., Katrukha, G.S., Gening, L.V., Rebuffat, S., Khmel, I.A. (2003) Microcin C51 plasmid genes: possible source of horizontal gene transfer. Antimicrob. Agents Chemother. 47:2868−74.

44. Novikova, M., A. Metlitskaya, A., K. Datsenko, T. Kazakov, A. Kazakov, B. Wanner, and K. Severinov. (2007) The E. coli Yej ABC transporter is required for the uptake of translation inhibitor microcin C. J. Bacteriol. 189:8361−8365.

45. Guijarro J.T., Gonzalez-PastorJ.E., Baleux F., San Millan J.L., Castilla M.A., Rico M. et al. (1995) Chemical structure and-translation inhibition-studies of the antibiotic microcin, C7 // J. Biol. Chem. V. 270. P. 23 520−23 532.

46. Blond A., Peduzzi J., Goulard C., Chiuchiolo M.J., Barthelemy M., Prigent Y. et al. (1999) The cyclic structure of microcin J25, a 21-residue peptide antibiotic from Escherichia coli // Eur. J. Biochemi V. 259. P.1747−755.

47. Salomon R.A., Farias R.N. (1992) Microcin 25, a novel antimicrobial peptide produced by Escherichia coli II J. Bacteriol V. 174. P. 7428−7435.

48. Wilson K.A., Kalkum M., Ottesen J., Yuzenkova J., Chait B.T., Landick R. et al. (2003) Structure of microcin J25, a peptide inhibitor of bacterial RNA polymerase, is a lassoed tail // J. Am. Chem. Soc. V. 125. P: 12 475−12 483.

49. Rosengren K.J., Clark R.J., Daly N.L., Goransson U., Jones A., Craik D.J. (2003) Microcin J25 has a threaded sidechain-to-backbone ring structure and not a head-to-tail cyclized backbone II J. Am. Chem. Soc. V. 125. P. 12 464−12 474.

50. Bayro M.J., Mukhopadhyay J., Swapna G.V., Huang J.Y., Ma L.C., Sineva E. et al. (2003) Structure of antibacterial peptide microcin-J25: a 21-residue lariat protoknot // J. Am. Chem. Soc. V. 125. P. 12 382−12 383.

51. Rosengren K.J., Blond A., Afonso C., Tabet J.C., Rebuffat S., Craik D.J. (2004) Structure of thermolysin cleaved microcin J25: extreme stability of a two-chain antimicrobial peptide devoid of covalent1 links II Biochemistry. V. 43. P. 4696−4702.

52. Solbiati J.O., Ciaccio M., Farias R.N., Salomon R.A. (1996) Genetic analysis of plasmid determinants for microcin J25 production and immunity // J. BacterioI. V. 178. P. 3661−3663.

53. Solbiati J.O., Ciaccio M., Farias R.N., Gonzalez-Pastor J.E., Moreno F., and. Salomon R.A. (1999) Sequence analysis of the four plasmid^ genes required to produce the circular peptide antibiotic microcin J25 II J. Bacteriol. V. 181. P. 2659−2662.

54. Delgado M.A., Vincent P.A., Farias R.N., Salomon R.A. (2005) Yojl of Escherichia coli functions as a microcin J25 efflux pump // J. Bacteriol. V. 187. P. 3465−3470.

55. Salomon R.A., Farias R.N. (1993) The FhuA protein is involved in microcin 25 uptake // J. Bacteriol. V. 175. P. 7741−7742.

56. Braun V., Patzer S.I., Hantke K. (2002) Ton-dependent colicins and microcins: modular design and evolution // Biochimie. V. 84. P. 365−380.

57. Darst S.A. (2004) New inhibitors targeting bacterial RNA polymerase // Trends. Biochem. Sei. V. 29. P. 159−160.

58. Mukhopadhyay J., Sineva E., Knight J., Levy RM., Ebright R: H. (2004) Antibacterial peptide microcin J25 inhibits transcription by binding within and obstructing the RNA polymerase secondary channel // Mol. Cell V. 14. P. 739−751.

59. Adelman K., Yuzenkova J., La Porta A., Zenkin N., Lee J., Lis J. T., Borukhov S., Wang M. D., Severinov K. (2004) Molecular mechanism of transcription inhibition by peptide antibiotic Microcin J25 //. Mol Cell V. 16. P. 753−762.

60. Vincent P.A., Bellomio A., de Arcuri B.F., Farias R.N., Morero R.D. (2005) MccJ25 C-terminal is involved in RNA-polymerase inhibition but not in respiration inhibition-// Biochem. Biophys. Res. Commun. V. 331. P. 549−551.

61. Rintoul M.R., de Arcuri B.F., Salomon R.A., Farias R.N., Morero R.D. (2001) The antibacterial action of microcin J25: evidence for disruption of cytoplasmic membrane energization in Salmonella newport // FEMS. Microbiol. Lett. V. 204. P. 265−270.

62. Chandu D., Kumar A., and Nandi D. (2003) PepN, the Major Suc-LLVY-AMC-hydrolyzing Enzyme in Escherichia coli, Displays Functional Similarity with Downstream Processing Enzymes in Archaea and Eukarya. J. Biol. Chem. 278: 5548−5556.

63. Gonzales T.&Robert-Baudouy J. (1996) Bacterial aminopeptidases: Properties and functions. FEMS Microbiology Reviews 18: 319−344.

64. Miller C.G., Strauch K.L., Kukral A.M., Miller J.L., Wingfield P.T., Mazzei G.J., Werfen R.C., Graber P., and Mowa N.R. (1987) N-terminal methionine-specific peptidase in Salmonella typhimurium. PNAS 84: 2718−2722.

65. Strater N., Sherratt DJ., and Colloms S.D. (1999) X-ray structure of aminopeptidase A from Escherichia coli and a model for the nucleoprotein complex in Xer site-specific recombination. EMBOJ. 18:4513−4522.

66. Barrett A.J., Rawlings N.D., and. Woessner J.F. (1998) Handbook of proteolytic enzymes. Academic Press, San Diego, Calif.

67. Vogt V.M. (1970) Purification and properties of an aminopeptidase from Escherichia coli. J.Biol.Chem. 245: 4760−4769.

68. Mathew Z., Knox T.M., and Miller C.G. (2000) Salmonella enterica serovar typhimurium peptidase B is a leucyl aminopeptidase with specificity for acidic amino acids. J. Bacterioh 182: 3383−3393.

69. Suzuki H., Kamatani S., and Kumagai H. (2001) Purification^ and Characterization of aminopeptidase B from Escherichia coli K-12. Biosci. Biotechnol. Biochem. 65: 1549−1558.

70. Addlagatta A., Gay L., and Matthews B.W. (2006) Structure of aminopeptidase N from' Escherichia coli suggests a compartmentalized, gated active site. PNAS 103: 13 339−13 344.

71. Chandu D. & Nandi D. (2003) PepN is the major aminopeptidase in Escherichia coli: insights on substrate spl, 149: 3437−3447.

72. Kumar A. & Nandi D. (2007) Characterization and role of peptidase N from Salmonella enterica serovar typhimurium. Biochemical and Biophysical Research Communications 353: 706−712.

73. Gharbi S., Belaich A., Murgier M., and Lazdunski A. (1985) Multiple Controls Exerted on In Vivo Expression of the pepN in Escherichia coli: Studies with’pepN-lacZ Operon and Protein Fusion Strains. J.Bacteriol. 163: 1191−1195.

74. Lowther W.T., Orville A.M., Madden D.T., Lim S., Rich D.H., and Matthews B.W. (1999) Escherichia coli Methionine Aminopeptidases: Implications of Crystallographic Analyses of the.

75. Native, Mutant, and Inhibited Enzymes for the Mechanism of Catalysis. Biochemistry 38: 76 787 688.

76. Ye Q.-Z., Xie S.-X., Ma Z.-Q., Huang M., and Hanzlik R.P. (2006) Structural basis of catalysis by monometalated methionine aminopeptidase. PNAS103: 9470−9475.

77. Solbiati J., Chapman-Smith A., Miller J: L., Miller C.G., and Cronan J.E. (1999) Processing of the N Termini of Nascent Poly peptide Chains Requires Deformilation Prior to Methionine Removal. Communication. J. Mol. Biol. 290: 607−614.f.

78. Frottin F., Martinez A., Peynot P., Mitra S., Holz R.C., Giglione C., and Meinnel T. (2006) The Proteomics ofN-terminal Methionine Cleavage. Mol. CellProteomics 5:2336−49.

79. Chang S.-Y.P., McGary E.C., and Chang S. (1989) Methionine Aminopeptidase Gene of Escherichia coli Is Essential for Cell Growth. J.Bacteriol. 171: 4071−4072.

80. Conlin C.A.&Miller C.G. (2000) opdA, a Salmonella enterica Serovar Typhimurium Gene Encoding a Protease, Is Part of an Operon Regulated by Heat Shock. J.Bacteriol. 182: 518−521.

81. Schroeder U., Henrich., Fink J., and R.Plapp. (1994) Peptidase D of Escherichia coli K-12 a metallopeptidase of low substrate specificity. FEMS Microbiol. Lett. 123: 153−160.1.

82. Kirsh M., Dembinski D.R., Hartman P.E., and Miller C.G. (1978) Salmonella typhimurium' Peptidase Active on Carnosine. J.Bacteriol. 134: 361−374.

83. Hakansson K.& Miller C.G. (2002) Structure of peptidase T from Salmonella typhimurium. Eur.J. Biochem. 269:443−450.

84. Strauch K.L.&Miller C.G. (1983) Isolation and’Characterization Salmonella typhimurium β€’ Mutants Lacking a Tripeptidase (Peptidase T). J.Bacteriol. 154: 763−771.

85. Strauch K.L., Carter T.H., and Miller C.G. (1983) Overproduction of Salmonella typhimurium Peptidase T. J.Bacteriol. 156: 743−751.

86. Strauch K.L., Lenk J.B., Gamble B.L., and Miller C.G. (1985) Oxygen Regulation in Salmonella typhimurium. J.Bacteriol. 161: 673−680.

87. Lombardo > M.-J., Lee A.A., Knox T.M., and Miller C.G. (1997) Regulation of the Salmonella typhimurium pepT gene by cyclic AMP receptor protein (CRP) and FNR acting at a hybrid CRP-FNR site. J. Bacteriol. 179: 1909;1917.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ