Помощь в написании студенческих работ
Антистрессовый сервис

P2Y рецепторы вкусовых клеток. 
Фармакология и моделирование Ca2+ответов

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

На основе ультраструктурных критериев во вкусовых почках идентифицировано несколько типов клеток: округлые базальные клетки и три типа веретеновидных клеток (типы I, II, III), которые выполняют рецепторную, поддерживающую и/или секреторную функции. Эти клетки обмениваются примерно раз в две недели, развиваясь из базальных клеток и в конце жизни подвергаясь апоптозу. Поскольку вкусовые клетки… Читать ещё >

P2Y рецепторы вкусовых клеток. Фармакология и моделирование Ca2+ответов (реферат, курсовая, диплом, контрольная)

Содержание

  • 1. Обзор литературы
    • 1. 1. Организация вкусового анализатора
      • 1. 1. 1. Устройство периферического вкусового рецепторного органа
    • 1. 2. Межклеточные коммуникации во вкусовой почке
      • 1. 2. 1. Первичные мессенджеры вкусовой почки
      • 1. 2. 2. АТР как афферентный вкусовой нейротрансмиттер
    • 1. 3. Пуринорецепторы
    • 1. 4. Кальций — классический вторичный посредник
    • 1. 5. Функциональная роль олигомеризации сигнальных белков
  • 2. Материалы и методы
    • 2. 1. Выделение изолированных вкусовых клеток
    • 2. 2. Метод микрофотометрии и экспериментальная установка
    • 2. 3. Кривые доза-ответ. Достоверность полученных результатов
    • 2. 4. Обработка данных и математическое моделирование
  • 3. Результаты и обсуждение
    • 3. 1. Эффекты агонистов пуринорецепторов
      • 3. 1. 1. Ответы на АТР
      • 3. 1. 2. Ответы на BzATP."
    • 3. 2. Модель пуринергической кальциевой сигнализации
    • 3. 3. Моделирование ответов на нуклеотиды
      • 3. 3. 1. Проверка модели
      • 3. 3. 2. Модели мономерных рецепторных единиц
      • 3. 3. 3. Модели димерных рецепторных единиц

Наряду со зрением, осязанием, слухом и обонянием, вкус является одним из основных чувств, участвующих в восприятии информации об окружающем нас мире. Вкусовое ощущение зарождается при возбуждении специализированных сенсорных клеток — вкусовых рецепторных клеток — в составе плотных клеточных образований — вкусовых почек. Вкусовые почки формируют периферический вкусовой орган — вкусовые сосочки 5 типов, 3 из которых локализованы на языке — желобоватые, листовидные и грибовидные. Основополагающей функцией хеморецепторных клеток в составе вкусовых почек является распознавание вкусовых веществ, трансдукция и кодирование информации о их концентрации и вкусовой модальности для дальнейшего анализа в соответствующих структурах мозга.

На основе ультраструктурных критериев во вкусовых почках идентифицировано несколько типов клеток: округлые базальные клетки и три типа веретеновидных клеток (типы I, II, III), которые выполняют рецепторную, поддерживающую и/или секреторную функции. Эти клетки обмениваются примерно раз в две недели, развиваясь из базальных клеток и в конце жизни подвергаясь апоптозу. Поскольку вкусовые клетки устанавливают афферентные синапсы со вкусовыми нервами, то их непрерывное обновление требует постоянного установления новых синаптических связей во вкусовой почке. Кроме того, подобно тому, как это происходит в сетчатке или обонятельной луковице, сенсорная информация также может подвергаться первичной обработке во вкусовой почке. Протекание всех этих гетерогенных, но синхронизированных процессов, несомненно, требует хорошо отлаженных коммуникаций между вкусовыми клетками. Поэтому одной из актуальных задач физиологии периферической вкусовой системы является исследование межклеточных коммуникаций во вкусовой почке.

Исследования, выполненные в нашей лаборатории в последние годы, свидетельствуют о том, что пуринергическая сигнальная система может играть ключевую роль в функционировании вкусовой почки млекопитающих. Так было показано, что в желобоватом и листовидном сосочках субпопуляция вкусовых клеток экспрессирует метаботропные P2Y рецепторы, активация которых приводит к мобилизации внутриклеточного Са2+ (Kim et а1., 2000; Baryshnikov et al., 2003; Bystrova et al., 2006). Было также установлено, что вкусовые клетки типа II секретируют АТР в ответ на их стимуляцию (Romanov et al., 2007) и что мишенью нуклеотида являются клетки типа III (Romanov et al., в печати). Кроме того, Фингером с соавторами (Finger et al., 2005) недавно было показано, что генетический нокаут ионотропных Р2Х2/Р2Х3 рецепторов, которые функционируют в афферентном вкусовом нерве, приводит к полному подавлению вкусовой чувствительности у генетически модифицированных животных. Это является убедительным аргументом в пользу того, что АТР выполняет функцию афферентного нейротрансмиттера в акте вкусовой трансдукции.

Перечисленные выше факты свидетельствуют о том, что внеклеточный АТР является основной сигнальной молекулой во вкусовой почке, которая вовлечена как в передачу вкусовой информации, так и в паракринную регуляцию. В свете изложенного, нам представлялось важным детально.

2+ исследовать Са сигнализацию во вкусовых клетках при участи P2Y рецепторов. Прежде всего мы попытались охарактеризовать фармакологический профиль пуринорецепторов, функционально экспрессируемых во вкусовых клетках, используя определенный набор P2Y агонистов и антагонистов и регистрируя Са ответы. В результате проделанной работы были получены кривые доза-ответ, которые было невозможно объяснить в своей совокупности, опираясь на представленные в литературе фармакологические свойства рекомбинантных P2Y рецепторов. В поисках объяснения данного противоречия, мы предположили, что в экспрессионной системе P2Y рецепторы функционируют преимущественно в мономерной форме, в то время как во вкусовых клетках P2Y рецепторы образуют димеры. Для количественной проверки этой идеи нами была разработана математическая модель пуринергической Са2+ сигнализации, которая описывала активацию P2Y рецепторов (мономерных и/или димерных), стимуляцию фосфоинозитидного сигнального каскада (G-белок, фосфолипаза С, продукция 1Р3) и мобилизацию внутриклеточного Са2+. Как и ожидалось, компьютерные эксперименты показали, что модель адекватно воспроизводит экспериментальные кривые доза-ответ только в случае димерных P2Y рецепторов. Разработанная модель может быть расширена для интерпретации любых клеточных ответов, опосредуемых рецепторами, сопряженными с фосфолипазным сигнальным каскадом и мобилизацией внутриклеточного Са2+.

1. Обзор литературы.

Выводы.

1. Изучена мобилизация Са в цитоплазме вкусовых клеток при аппликации различных агонистов P2Y рецепторов и эффекты их антагонистов. Получен следующий ряд эффективности агонистов при насыщающих концентрациях: АТР ~ BzATP ~ UTP > ADP > UTP.

2. Фармакологические свойства рекомбинантных P2Y рецепторов таковы, что ни одна из их комбинациий не может одновременно объяснить наблюдаемый фармакологический профиль ответов вкусовых клеток на нуклеотиды и полученные кривые доза-ответ. Данное несоответствие удается объяснить, если предположить, что в экспрессионной системе P2Y рецепторы функционируют в виде мономеров, в то время как во вкусовых клетках P2Y рецепторы димеризуются, что изменяет их сродство к агонистам и чувствительность к антагонистам по сравнению с мономерными рецепторами.

3. Для количественной проверки гипотезы о димеризации P2Y рецепторов разработана математическая модель пуринергической Са2+ сигнализации во вкусовых клетках. Модель носит достаточно универсальный характер и, следовательно, применима для анализа клеточных ответов на агонисты других рецепторов, сопряженных с фосфоинозитидным каскадом и мобилизацией внутриклеточного Са2+.

944. Проведены вычисления Са ответов вкусовых клеток, которые показали, что разработанная модель способна адекватно воспроизвести всю совокупность экспериментальных данных, но лишь в случае, если P2Y рецепторы предполагаются существующими в димерной форме. Это является серьезным аргументом в пользу димеризации P2Y рецепторов в специфических условиях вкусовых клеток.

Заключение

.

Современные знания о молекулярной природе рецепторов и о их сопряжении с сигнальными каскадами преимущественно базируются на исследованиях клеточных ответов, проводимых с использованием гетерологично экспрессированных рецепторов. Хотя данный подход является весьма эффективным, обычно, экспрессионные системы — это линия клеток с относительно простой физиологией. В клетках организма те же рецепторы могут функционировать отличным образом, поскольку пребывают в ином микроокружении и находятся под контролем иных аксессорных белков и регуляторных каскадов. Кроме того, природные клетки экспрессируют, как правило, множественные изоформы сигнальных белков. Можно поэтому думать, что прямая экстраполяция данных, полученных при использовании экспрессионных систем, на нативные системы — процедура не вполне правомерная. Поэтому анализ связывания агониста с рецепторами и дальнейшего прохождения внутриклеточного сигнала в нативных клеточных системах — задача весьма непростая.

Вкусовые клетки отвечают на аппликацию АТР и ряда других нуклеотидов мобилизацией цитоплазматического Са2+. Генерация этих Са2+ сигналов обусловлена стимуляцией фосфоинозитидного каскада при участии метаботропных рецепторов нуклеотидов P2Y типа, в то время как вклад ионотропных рецепторов Р2Х типа пренебрежимо мал (Baryshnikov et al, 2003). Методами молекулярной биологии и иммуногистохимии нами было показано, что вкусовые клетки экспрессируют несколько изоформ P2Y рецепторов, в частности P2Yb P2Y2, P2Y4 и P2Y6. (Bystrova et al, 2006). Поскольку внеклеточный ATP является сигнальной молекулой, которая вовлечена в афферентную нейропередачу (Finger et al, 2005) и паракринную регуляцию (Baryshnikov et al, 2003) во вкусовой почке, детальное исследование пуринергической сигнализации в периферическом вкусовом органе может внести существенный вклад в понимание молекулярных механизмов вкуса. В частности, нам представлялось целесообразным исследовать вклад различных изоформ P2Y рецепторов в генерацию ответов вкусовых клеток на АТР, что и послужило отправной точкой для данного исследования. Учитывая, что агонистами P2Yi и Р2Уб рецепторов являются ADP и UDP, соответственно, мы a priori предполагали, что основной вклад в АТР-чувствительность вкусовых клеток вносят P2Y2 и P2Y4 изоформы. Учитывая фармакологические данные, полученные на рекомбинантных P2Y рецепторах, мы исследовали ответы клеток на АТР и BzATP в присутствии и отсутствии сурамина — антагониста P2Y рецепторов. Выбор данных веществ основывался на том, что АТР является полным агонистом как для P2Y2, так и для P2Y4, BzATP является полным агонистом для P2Y2 и антагонистом для P2Y4, сурамин эффективно ингибирует P2Y2 и является слабым антагонистом для P2Y4. Поэтому использование АТР, BzATP и сурамина в различных комбинациях должно было бы прояснить вклад P2Y2 и P2Y4 изоформ в генерацию физиологических ответов на нуклеотиды.

Полученные данные привели нас, к парадоксальным выводам — во вкусовых клетках функционирует P2Y рецептор, который по своим свойствам отличается от любого рекомбинантного P2Y рецептора. В качестве гипотезы, которая могла бы примирить наши и литературные экспериментальные факты, мы предположили, что в рекомбинантных системах P2Y рецепторы преимущественно функционируют в мономерной форме, но в специфических условиях вкусовых клеток P2Y рецепторы способны димеризоваться, что приводит к индукции новых свойств, обычно не наблюдаемых в рекомбинантных системах.

Для количественной проверки гипотезы о димеризации рецепторов, нами была разработана математическая модель, основанная на равновесной аппроксимации процесса сопряжения активного P2Y рецептора с Са2+ ответом. Модель позволила симулировать клеточные ответы (более точно, кривые доза-ответ) при неизменном каскаде Са2+ сигнализации, но при разных рецепторных единицах. Проверяя различные комбинации мономерных и димерных P2Y рецепторов, мы установили, что модель способна полностью воспроизводить всю совокупность экспериментальных данных, но лишь в случае, если в качестве рецепторных единиц берутся два гомодимера P2Y2 и P2Y4 изоформ и их гетеродимер. Причем присутствие гетеродимера абсолютно необходимо для описания концентрационной зависимости для BzATP в контроле и в присутствии Р2У-антагонистасурамина. На наш взгляд, данные математического моделирования являются существенным аргументом в пользу димеризации P2Y рецепторов во вкусовых клетках, существование которой, разумеется, может быть окончательно доказано лишь в специальных экспериментах.

В заключении отметим, что разработанная нами модель пуринергической Са2+ сигнализации носит достаточно универсальный характер, и поэтому она может быть расширена и применена для интерпретации клеточных ответов, опосредуемых рецепторами не только P2Y типа, но теми, которые сопряжены с мобилизацией внутриклеточного Са фосфоинозитидным каскадом.

Показать весь текст

Список литературы

  1. Авдонин ПВ, Ткачук ВА. Рецепторы и внутриклеточный кальций. // М., Наука. 1994. 288.
  2. Барышников СГ, Рогачевская OA, Ким ЮВ, Колесников СС.1. Л I
  3. Мобилизация Са экстраклеточным АТР во вкусовых рецепторных клетках. // Биологические мембраны. 2002. 19, 4, 283−288.
  4. ПГ. Кальций и внутриклеточная возбудимость. // М., Наука, 1986. 250.
  5. Крутецкая ЗИ, Лебедев ОЕ. Метаболизм фосфоинозитидов и формирование кальциевого ответа в клетке. // Цитология. 1992. 34, 26−44.
  6. ДО. Кальций и биологические мембраны. // Биохимия мембран. Учебное пособие, под ред. А.А. Болдырева- кн. 7. М., Высш. Шк, 1990. 124.
  7. Abbaffy Т, Trubey KR, and Chaudhari N. Adenylyl cyclase expression and modulation of camp in rat taste cells. // Am J.Physiol. Cell Physiol. 2003. 284, 1420−1428.
  8. Airey JA, Grinsell MM, Jones LR, Sutko JL, and Witcher D. Three ryanodine receptor isoforms exist in avian striated muscles. // Biochemistry. 1993. 32, 5739−5745.
  9. Armstrong D and Strange PG. Dopamine D2 receptor dimer formation: evidence from ligand binding. IIJ Biol Chem 2001. 276:22 621−22 629.
  10. Asano-Miyoshia M, Abe K, and Emori Y. Co-expression of calcium signaling components in vertebrate taste bud cells. // Neurosci Lett. 2000. 283, 6164.
  11. Babcock GJ, Farzan M, and Sodroski J. Ligand-independent dimerization of CXCR4, a principal HIV-1 coreceptor. IIJ Biol Chem. 2003. 278:3378−3385.
  12. Bagchi S, Liao Z, Gonzalez FA, Chorna NE, Seye CI, Weisman GA, and Erb L. The P2Y2 nucleotide receptor requires interaction with v integrins to communicate with G0 and stimulate chemotaxis. IIJ Biol Chem. 2005. 280:3 905 839 066.
  13. Bailey MA, Turner CM, Hus-Citharel A, Marchetti J, Imbert-Teboul M, Milner P, Burnstock G, Unwin RJ. P2Y receptors present in the native and isolated rat glomerulus. // Nephron Physiol. 2004. 96, 79−90.
  14. Baryshnikov SG, Rogachevskaja OA, and Kolesnikov SS. Cacium signaling mediated by P2Y2 receptors in mouse taste cells. // J. Neurophysiol. 2003. 90, 3283−3294.
  15. Berridge MJ, Lipp P, and Bootman MD. The versatility and universality of calcium signaling. 11 Nature Rev Mol Cell Biol. 2000. 1, 11−21.
  16. Berridge MJ. Capacititive calcium entry. // Biochemical J. 1995. 312,1−11.
  17. Beidler LM, Smallman RL. Renewal of cells within taste buds. // J Cell Biol. 1965.27(2), 263−72.
  18. Bigiani A, Delay RJ, Chaudhari N, Kinnamon SC, and Roper SD. Responses to glutamate in rat taste cells. I IJ Neurophysiol 1997. 77, 3048−3059.
  19. Во X, Alavi A, Xiang Z, Oglesby I, Ford A, Burnstock G. Localization of ATP-gated P2X2 and P2X3 receptor immunoreactive nerves in rat taste buds. // Neuroreport. 1999. 10,1107−1111.
  20. Bodor ET, Waldo GL, Hooks SB, Corbitt J, Boyer JL, Harden TK. Purification and functional reconstitution of the human P2Y12 receptor. // Mol Pharmacol. 2003. Nov, 64 (5). 1210−6.
  21. Bunemann M, Lee KB, Pals-Rylaarsdam R, Roseberry AG, Hosey MM. Desensitization of G-protein coupled receptors in the cardiovascular system. // Annu Rev Physiol. 1999. 61,169−192.
  22. Burnstock G. Purine-mediated signalling in pain and visceral perception. // Trends Pharm.Sci. 2001. 22, 182−188.
  23. Burnstock G. The past, present and future of purine nucleotides as signalling molecules. II Neuropharmacology. 1997. 36,1127−1139.
  24. Bystrova MF, Yatzenko YE, Fedorov IV, Rogachevskaja OA, and Kolesnikov SS. P2Y isoforms operative in mouse taste cells. // Cell and Tissue Research. 2006. 323, 377−382.
  25. Caicedo A, Jafri MS, and Roper SD. In Situ Ca2+ Imaging Reveals Neurotransmitter Receptors for Glutamate in Taste Receptor Cells. // J.Neurosci. 2000.20, 7978−7985.
  26. Carrillo JJ, Pediani J, and Milligan G. Dimers of class A G protein-coupled receptors function via agonist-mediated trans-activation of associated G proteins. // J Biol Chem. 2003. 278:42 578−42 587.
  27. Cattaneo M, Lecchi A, Joshi BV, Ohno M, Besada P, Tchilibon S, Lombardi R, Bischofberger N, Harden TK, and Jacobson KA Antiaggregatory activity in human platelets of potent antagonists of the P2Y1 receptor. // Biochem Pharmacol. 2004. 68:1995−2002.
  28. Chaudhari N, Landin AM, and Roper SD. A novel metabotropic glutamate receptor is a taste receptor for monosodium L-glutamate. // Nat.Neurosci. 2000. 3, 113−119.
  29. Chaudhari N, Yang H, Lamp C, Delay E, Cartford C, Than T, and Roper S. The taste of monosodium glutamate, Membrane receptors in taste buds. // J Neurosci. 1996. 16, 3817−3826.
  30. Chen SR, Ebisawa K, Li X, and Zhang L. Functional characterization of the recombinant type 3 Ca release channel (ryanodine receptor) expressed in HEK293 cells. IIJ Biol Chem. 1997. 272, 24 234−24 246.
  31. Chen SR, Ebisawa K, Li X, and Zhang L. Molecular identification of the ryanodine receptor Ca2+ sensor. IIJ Biol Chem. 1998. 273,14 675−14 678.
  32. Communi D, Suarez Gonzales N, Detheux M, Brezillon S, Lannoy V, Parmentier M, and Boeynaems J-M. Identification of a novel human ADP receptor coupled to Gi. IIJ Biol Chem. 2001. 276,41 479−41 485.
  33. Coronado R, Morrissette J, Sukhareva M, and Vaughan D.M., Structureand function of ryanodine receptors. // Am J Physiol Cell Physiol. 1994. 266, 14 851 504.
  34. Cvejic S and Devi LA. Dimerization of the delta opioid receptor: implication for a role in receptor internalisation. // J Biol Chem. 1997. 272:26 959−26 964.
  35. Dascal N. Ion-channel regulation by G proteins. // Trends in Endocrinology and Metabolism. 2001.12.
  36. Delay RJ and Roper SD. Ultrastructure of taste cells and synapses in the mudpuppy Necturus maculosus. IIJ Comp Neurol. 1988. 277, 268−280.
  37. Delay RJ, Kinnamon SC, and Roper SD. Serotonin modulates voltage dependent calcium current in Necturus taste cells. // J Neurophysiol. 1997. 77, 2515−2524.
  38. Dinger MC, Bader JE, Kobor AD, Kretzschmar AK, and Beck-Sickinger AG. Homodimerization of neuropeptide у receptors investigated by fluorescence resonance energy transfer in living cells. IIJ Biol Chem. 2003. 278:10 562−10 571.
  39. Di Virgilio F and Solini A. P2 receptors, new potential players in atherosclerosis. II Br J Pharmacol. 2002. 135, 831−842.
  40. Dolphin AC. G Protein Modulation of Voltage-Gated Calcium Channels. // Pharmacol Rev. 2003. 55, 607−627.
  41. Dunn PM, Zhong Y, and Burnstock G. P2X receptors in peripheral neurons. II Progr Neurobiol. 2001. 65, 107−134.
  42. Fill M, Copello JA. Ryanodine receptor calcium release channels. Physiol Rev. 2002. Oct- 82(4):893−922.
  43. Finger ET, Danilova V, Barrows J, Bartel DL, Vigers AJ, Stone L, Hellekant G, Kinnamon SC. ATP Signaling Is Crucial for Communication from Taste Buds to Gustatory Nerves. II Science. 2005. 310,1495−1499
  44. Franke H., Krugel U., Grosche J., Heine C., Hartig W., Allgaier C., and Illes P. P2Y receptor expression on astrocytes in the nucleus accumbens of rats. // Neuroscience 2004. 127:431−441.
  45. Fries JE, Wheeler-Schilling TH, Kohler K, Guenther E. Distribution of metabotropic P2Y receptors in the rat retina, a single-cell RT-PCR study. // Mol Brain Res. 2004. 130,1−6.
  46. Fruen BR, Bardy JM, Byrem TM, Strasburg GM, and Louis CF. Differential Ca sensitivity of skeletal and cardiac muscle ryanodine receptors in the presence of calmodulin. II Am J Physiol Cell Physiol. 2000. 279, 724−733.
  47. Galligan JJ, LePard, Schneider, and Zhou X. Multiple mechanisms of fast excitatory synaptic transmission in the enteric nervous system. // J Auton Nerv Syst. 2000.81,97−103.
  48. Ganchrow D and Ganchrow RJ. Renewal of taste bud cells. // Med Sci Res. 1992. 20, 653−656.
  49. Ganchrow JR and Ganchrow D. Long-term effects of gustatory neurectomy on fungiform papillae in the young rat. // Anat Rec. 1988. 225, 224−231.
  50. Ganchrow JR. Taste cell function, Structural and biochemical implications. II Physiol Behav. 2000. 69, 29−40.
  51. Gilbertson ТА, Damak S, and Margolskee RF. The molecular physiology of taste transduction. // Current Opinion in Neurobiology. 2000. 10, 519−527.
  52. Grynkiewicz G, Poenie M, and Tsien RY. A novel generation of Ca2+ indicators with greatly improved fluorescence properties. // J Biol Chem. 1985. 260, 3440−3450.
  53. Hagar RE and Ehrlich BE. The regulation of the type III InsP3 receptor by InsP3 and ATP. // Biophys J. 2000. 79: 271−278.
  54. Hain J, Onoue H, Mayrleitner M, Fleischer S, and Schindler H. Phosphorylation modulates the function of the calcium release channel of sarcoplasmic reticulum from cardiac muscle. // J Biol Chem. 1995. 270, 20 742 081.
  55. Herness MS and Chen Y. Serotonergic agonists inhibit calcium-activated potassium and voltage-dependent sodium currents in rat taste receptor cells. // J Memb Biol. 2000. 173, 27−138.
  56. Herness MS and Gilbertson ТА. Cellular mechanisms of taste transduction. II Annu Rev Physiol. 1999.61, 873−900.
  57. Herness MS and Sun XD. Characterization of chloride currents and their noradrenergic modulation in rat taste receptor cells. // J Neurophysiol. 1999. 82, 260−271.
  58. Herness S, Zhao F, Kaya N, Lu S, Shen T, and Sun X. Adrenergic signalling between rat taste receptor cells. IIJ Physiol. 2002a. 543, 601−614.
  59. Herness S, Zhao F, Lu S, Kaya N, and Shen T. Expression and Physiological Actions of Cholecystokinin in Rat Taste Receptor Cells. // J Neurosci. 2002b. 22, 10 018−10 029.
  60. Hoth M, Penner R. Calcium release-activated calcium current in rat mast cells. J Physiol. 1993. Jun-465:359−86.
  61. Huang Y-J, Maruyama Y, Lu K-S, Pereira E, Plonsky I, Baur JE, Wu D, and Roper SD. Mouse Taste Buds Use Serotonin as a Neurotransmitter. // J Neurosci. 2005. 25,4, 843−847.
  62. Hussain A., Inesi G. Involvement of Sarco/endoplasmic Reticulum Ca2+ ATPases in Cell Function and the Cellular Consequences of Their Inhibition. // J. Membrane Biol. 1999. 172, 91−99.
  63. Irvine RF and Schell MJ. Back in the water, The Return of the inositol phosphates. // Molecular Cell Biology. 2001. 2.
  64. Ishii K, Kaneda M, Li H, Rockland KS, Hashikawa T. Neuron-specific distribution of P2X7 purinergic receptors in the monkey retina. IIJ Comp Neurol. 2003. 459, 267−277.
  65. Jabs R, Guenther E, Marquordt K, Wheeler-Schilling TH. Evidence for P2X3, P2X4, P2X5 but not for P2X7 containing purinergic receptors in Muller cells of the rat retina. // Brain Res Mol Brain Res. 2000. 76,205−210.
  66. Jeyakumar LH, Copello JA, O’Malley AM, Wu GM, Grassucci R, Wagenkhecht T, and Fleischer S. Purification and characterization of ryanodine receptor 3 from mammalian tissue. IIJ Biol Chem. 1998. 273,16 011−16 020.
  67. Jiang Q, Guo D, Lee BX, Van Rhee AM, Kim YC, Nicholas RA, Schachter JB, Harden TK, and Jacobson KA. A mutational analysis of residues essential for ligand recognition at the human P2Y1 receptor. // Mol Pharmacol. 1997. 52:499 507.
  68. Karczewski P, Hendrischke T, Wolf-Peter W, Morano I, Bartel S, Schrader J. Phosphorylation of phospholambancorrelates with relaxation of coronary artery induced by nitricoxide, adenosine, and prostracyclin in the pig. // J Cell Biochem 1998. 70,49−59.
  69. Kataoka S, Toyono T, Seta Y, Ogura T, Toyoshima K. Expression of P2Y1 receptors in rat taste buds. Histochem Cell Biol. 2004. 121:419
  70. Kauffenstein G, Hechler B, Cazenave JP, and Gachet C. Adenine triphosphate nucleotides are antagonists at the P2Y12 receptor. // J Thromb Haemost. 2004. 2:1980−1988.
  71. Kaupp UB and Seifert R. Cyclic Nucleotide-Gated Ion Channels. // Physiol Rev. 2002. 82, 769−824.
  72. Kawai K, Sugimoto K, Nakashima K, Miura H, and Ninomiya Y. Leptin as a modulator of sweet taste sensitivities in mice. II Proc Natl Acad Sci USA. 2000. 97,11 044−11 049.
  73. Kaya N, Shen T, Lu SG, Zhao FL, Herness S. A paracrine signaling role for serotonin in rat taste buds: expression and localization of serotonin receptor subtypes. II Am J Physiol Regul Integr Comp Physiol. 2004. 286(4), R649−58.
  74. Kenakin T. Principles: receptor theory in pharmacology. // Trends Pharmacol Sci. 2004. 25(4): 186−92.
  75. Kim YV, Bobkov YV, and Kolesnikov SS. ATP mobilizes cytosolic calcium and modulates ionic currents in mouse taste receptor cells. // NeurosciLett. 2000. 290,165−168.
  76. Klepeis VE, Weinger I, Kaczmarek E, Trinkaus-Randall V. P2Y receptors play a critical role in epithelial cell communication and migration. // J Cell Biochem. 2004. 93, 1115−1133.
  77. Kraus-Friedmann N. Cyclic nucleotide-gated channels in non-sensory organs. // Cell Calcium. 2000. 27, 3,127−138.
  78. Krimm RF, Miller KK, Kitzman PH, Davis BM, and Albers KM. Epithelial Overexpression of BDNF or NT4 Disrupts Targeting of Taste Neurons That Innervate the Anterior Tongue. // Develop Biol. 2001. 232, 508−521.
  79. Kunapuli SP, Dorsamy RT, Kimz S, Quinton TM. Platelet purinergic receptors. // Curr Opin Pharmacol. 2003. 3,175−180.
  80. Launay S, Babe R, Lacabaratz-Porret C, Bredoux R, Ко vacs T, Enouf J, Papp B. Modulation of endoplasmic reticulum calcium pump expression during T lymphocyte activation. II J. Biol. Chem. 1997. 272, 10 746−10 750.
  81. Lazarowski ER, Homolya L, Boucher RC, and Harden TK. Identification of an ecto-nucleoside diphosphokinase and its contribution to interconversion of P2 receptor agonists. IIJ Biol Chem. 1997. 272:20 402−20 407.
  82. Lee C, Ji I, Ryu K, Song Y, Conn PM, and Ji TH. Two defective heterozygous luteinizing hormone receptors can rescue hormone action. // J Biol Chem. 2002. 277:15 795−15 800.
  83. Lemon G, Gibson WG, and Bennett MR. Metabotropic receptor activation, desensitization and sequestration. I: modelling calcium and inositol 1,4,5trisphosphate dynamics following receptor activation. // J Theor Biol. 2003. 223: 93−111.
  84. Lin W and Kinnamon SC. Electrophysiological evidence for ionotropic and metabotropic glutamate receptors in rat taste cells. // J Neurophysiol. 1999. 82, 2061−2069.
  85. Lindemann B. Receptors and transduction in taste. // Nature. 2001. 413, 219−225.
  86. Lindemann B. Taste Reception. // Physiol Rev. 1996. 76, 719−766.
  87. Lokuta AJ, Rogers ТВ, Lederer WJ, and Valdivia H.H. Modulation of cardiac ryanodine receptors of swine and rabbit by a phosphorylation-dephosphorylation mechanism. IIJ Physiol. 1995. 487, 609−622.
  88. Мак DOD, McBride S, and Foskett JK. Regulation by Ca and Inositol 1,4,5 9−1
  89. Trisphosphate (InsP) of Single Recombinant Type 3 InsP Receptor Channels, Ca Activation Uniquely Distinguishes Types 1 and 3 InsP Receptors. // J. Gen. Physiol. 2001.117, 435−446.
  90. Margolskee RF. Molecular Mechanisms of Bitter and Sweet Taste Transduction. IIJ Biol Chem. 2002. 277, 1−4.
  91. Marshall FH, Jones KA, Kaupmann K, and Bettler B. GABAB receptors— the first 7TM heterodimers. // Trends Pharmacol Sci. 1999. 20:396−399.
  92. Marteau F, Le Poul E, Communi D, Labouret C, Savi P, Boeynaems JM, and Gonzalez NS. Pharmacological characterization of the human P2Y13 receptor. IIMolPharmacol. 2003. 64:104−112.
  93. Matsunami H and Amrein H. Taste perception: how to make a gourmet mouse. // Curr Biol. 2004.14:118−120.
  94. Michael F and Copello JA. Ryanodine Receptor Calcium Release Channels II Physiol Rev. 2002. 82, 893−922.
  95. Milligan G. Applications of bioluminescence- and fluorescence resonance energy transfer to drug discovery at G protein-coupled receptors. Eur J Pharrn Sci. 2004.21:397−405.
  96. Monteith GR. and Roufogalis BD. The plasma membrane calcium pump, a physiological perspective on its regulation. // Cell Calcium. 1995. 18,459−470.
  97. Moro S, Guo D, Camaioni E, Boyer JL, Harden TK, and Jacobson KA. Human P2Y1 receptor: molecular modelling and site-directed mutagenesis as tools to identify agonist and antagonist recognition sites. IIJ Med Chem. 1998. 41:14 561 466.
  98. Mozhaeva GN, Naumov AP, Kuryshev YA. Inositol 1,4,5-trisphosphate activated two types of Ca2±permeable channels in human carcinoma cells. // FEBS Lett. 1990. 277,233−234.
  99. Murray RG, Murray A, and Fujimoto A. Fine structure of gustatory cells in rabbit taste buds. // J Ultrastruct Res. 1969. 27, 444−461.
  100. Nagai T, Kim DJ, Delay RJ, and Roper SD. Neuromodulation of transduction and signal processing in the end organs of taste. // Chem Senses. 1996. 21,353−365.
  101. Nagato T, Matsumoto K, Tanioka H, Kodama J and Toh H. Effect of denervation on morphogenesis of the rat fungiform papilla. // Acta Anat. 1995. 153, 301−309.
  102. Nimchinsky EA, Hof PR, Janssen WG, Morrison JH, and Schmauss С () Expression of dopamine D3 receptor dimers and tetramers in brain and in transfected cells. IIJ Biol Chem. 1997. 272:29 229−29 237.
  103. North RA. Molecular physiology of P2X receptors. // Physiol Rev. 2002. 82, 1013−1067.
  104. Oakley B, Wu LH, Lawton A, and DeSibour С L. Neural control of ectopic filiform spines in adult tongue. II Neurosci. 1990. 36, 831−838.
  105. Obata H, Shimada K, Sakai N, Saito N. GABAergic neurotransmission in rat taste buds, immunocytochemical study for GABA and GABA transporter subtypes. // Mol Brain Res. 1997.49,29−36.
  106. Ogura T, Margolskee RF, and Kinnamon S. Taste Receptor Cell Responses to the Bitter Stimulus Denatonium Involve Ca2+ Influx Via Store-Operated Channels. IIJNeurophysiol. 2002. 87, 3152−3155.
  107. Ogura Т. Acetylcholine increases intracellular Са in taste cells via activation of muscarinic receptors. П J Neurophysiol. 2002. 87, 2643−2649.
  108. Pan YX, Bolan E, and Pastrnak GW. Dimerization or morphine and orphanin/nociceptin receptors: generation of a novel opioid receptor subtype. // Biochem Biophys Res Commun. 2002. 297:659−663.
  109. Pendergast W, Yerxa BR, Douglass JG 3rd, Shaver SR, Dougherty RW, Redick CC, Sims IF, and Rideout JL. Synthesis and P2Y receptor activity of a series of uridine dinucleoside 5-polyphosphates. // Bioorg Med Chem Lett. 2001.11:157−160.
  110. Penniston JT. and Enyedi A. Modulation of the plasma membrane Ca21 pump Л JMembrBiol. 1998. 165,101−109.
  111. Petersen OH and Fedirko NV. Calcium signalling, Store-operated channel found at last. // CurrBiol. 2001. 11, 520−523.
  112. Proenza C, O’Brien J, Nakai J, Mukherjee S, Allen P. D, and Beam K.G. Identification of a region of RYR1 that participates in allosteric coupling with the 1S CaVl.l. II-III loop. IIJ Biol Chem. 2002. 277, 6530−6535.
  113. Protasi F. Structural interaction between RYRs and DHPRs in calcium release units of cardiac and skeletal muscle cells. // Front Biosci. 2002. 7, 650−658.
  114. Pumplin DW and Getschman E. Synaptic proteins in rat taste bud cells, Appearance in the Golgi apparatus and relationship to a-Gustducin and the Lewisb and A antigens. /IJComp Neurol. 2000. 427,171−184.
  115. Ralevic V and Burnstock G. Receptors for purines and pyrimidines. // Pharmacol Rev. 1998. 50, 413−492.
  116. Rebecchi MJ and Pentyala SN. Structure, Function, and Control of Phosphoinositide-Specific Phospholipase С. II Physiol Rev. 2000. 80,1291−1335.
  117. Roper SD. Signal transduction and information processing in mammalian taste buds. // Pflugers Arch. 2007. 454(5): 759−76.
  118. Ren Y, Shimada K, Shirai Y, Fujimiya M, and Saito N. Immunocytochemical localization of serotonin and serotonin transporter SET. in taste buds of rat. // Mol Brain Res. 1999. 74, 221−224.
  119. Royer SM and Kinnamon JC. HVEM serial-section analysis of rabbit foliate taste buds, I. Type III cells and their synapses. // J Comp Neurol. 1991. 306, 4972.
  120. , K. (2004) The sweet and the bitter of mammalian taste. Current Opinion in Neurobiology. 2004, 14:423−427
  121. Schwinger R, Munch G, BOck B, Karczewski P, Krause EG and Erdmann E. Reduced Ca2±Sensitivity of SERCA 2a in Failing Human Myocardium due to Reduced Serin-16 Phospholamban phoshorylation J. II Mol Cell Cardiol. 1999. 31, 47991.
  122. Seta Y, Toyono S, Takeda S, and Toyoshima K. Expression of Mash 1 in basal cells of rat circumvallate taste buds is dependent upon gustatory innervation. IIFEBS Lett. 1999. 444,43−46.
  123. Shoshan-Barmatz, V. and Ashley, R. H, The structure, function, and cellular regulation of ryanodine-sensitive Ca2+ release channels. // Int. Rev. Cytol. 1998. 183, 185−270.
  124. Sollars SI, Smith PC, and Hill DL. Time course of morphological alterations of fungiform papillae and taste buds following chorda tympani transection in neonatal rats. // JNeurobiol. 2002. 51, 223−236.
  125. Soyer OS, Dimmic MW, Neubig RR, and Goldstein RA. Dimerization inaminergic G-protein-coupled receptors: application of a hidden-site class model ofevolution. Biochemistry. 2003. 42:14 522−14 531.
  126. Stanasila L, Perez J-B, Vogel H, and Cotecchia S. Oligomerization of the la and lb-adrenergic receptor subtypes. // J Biol Chem. 2003. 278:4 023 940 251.
  127. Stojilkovic SS and Koshimizu T. Signaling by extracellular nucleotides in anterior pituitary cells. // Trends Endocr Metab. 2001. 12, 218−225.
  128. Strehler E.E. and. Zacharias D.A. Role of Alternative Splicing in Generating Isoform Diversity Among Plasma Membrane Calcium Pumps. // Physiological Reviews. 2001.81, 1.
  129. Suh B-C and Hille B. Recovery from Muscarinic Modulation of M Current Channels Requires Phosphatidylinositol 4,5-Bisphosphate Synthesis. // Neuron. 2002. 35, 507−520.
  130. Sun H and Oakley B. Development of Anterior Gustatory Epithelia in the Palate and Tongue Requires Epidermal Growth Factor Receptor. // Develop Biol. 2002. 242,313.
  131. Takeda M, Suzuki Y, Obara N, and Nagai Y. Apoptosis in mouse taste buds after denervation. // Cell Tissue Res. 1996. 286, 55−62.
  132. Tanabe T, Mikami A, Niidome T, Numa S, Adams B. A, and Beam KG. Structure and function of voltage-dependent calcium channels from muscle. // Ann NYAcadSci. 1993. 707, 81−86.
  133. Terrillon S, Durroux T, Mouillac B, Breit A, Ayoub MA, Taulan M, Jockers R, Barberis C, and Bouvier M. Oxytocin and vasopressin Via and V2 receptors form constitutive homo- and heterodimers during biosynthesis. // Mol Endocrinol. 2003.17:677−691.
  134. Thrower EC, Hagar RE, and Ehrlich BE. Regulation of Ins 1,4,5. P3 receptor isoforms by endogenous modulators. // Trends Pharm Sci. 2001. 22, 580 586.
  135. Torres GE, Egan TM, Voigt MM. N-Linked glycosylation is essential for the functional expression of the recombinant P2X2 receptor. // Biochemistry. 1998. Oct 20. 37(42):14 845−51
  136. Toyono T, Seta Y, Kataoka S, Harada H, Morotomi T, Kawano S, Shigemoto R, and Toyoshima K. Expression of the metabotropic glutamate receptor, mGluR4a, in the taste hairs of taste buds in rat gustatory papillae. I I Arch Histol Cytol. 2002. 65, 91−96.
  137. Tu H, Wang Z, and Bezprozvanny I. Modulation of mammalian inositol 1,4,5-trisphosphate receptor isoforms by calcium: A role of calcium sensor region. // Biophys J. 2005. 88:1056−1069.
  138. Vassort Guy, Adenosine 59-Triphosphate, a P2-Purinergic Agonist in the Myocardium. II Physiological Reviews. 2001. 81, 2.
  139. Venkatachalam К, Ma HT, Ford DL, and Gill DL. Expression of functional receptor-coupled TRPC3 channels in DT40 triple InsP3 receptor-knockout cells. // J Biol Chem. 2001. 276, 33 980−33 985.
  140. Venkatachalam K, van Rossum DB, Patterson RL, Ma H-T, and Gill DL. The cellular and molecular basis of store-operated calcium entry. // Nature Cell Biol. 2002. 4, 263−272.
  141. Vigne P, Hechler B, Gachet C, Breittmayer JP, Frelin C. Benzoyl ATP is an antagonist of rat and human P2Y1 receptors and of platelet aggregation. // Biochem Biophys Res Commun. 1999. 256, 94−97.
  142. Von Kugelgen I, Spath L, and Starke K. Evidence for P2-purinoceptor-mediated inhibition of noradrenaline release in rat brain cortex. // Br J Pharmac. 1994.113,815−822.
  143. Waldo GL, Harden TK. Agonist binding and Gq-stimulating activities of the purified human P2Y1 receptor. II Mol Pharmacol. 2004. 65,426−436.
  144. Wennemuth G, Babcock DF and Hille B. Calcium clearance mechanisms of mouse sperm. I IJ Gen Physiol. 2003. 122: 115−128.
  145. Wheeler-Schilling TH, Marquordt K, Kohler K, Guenther E, Jabs R. Identification of purinergic receptors in retinal ganglion cells. // Mol Brain Res. 2001.92, 177−180.
  146. Wheeler-Schilling TH, Marquordt K, Kohler K, Jabs R, Guenther E. Expression of purinergic receptors in bipolar cells of the rat retina. // Brain Res Mol Brain Res. 2000. 76,415118.
  147. White PJ, Webb ТЕ, and Boarder MR. Characterization of a Ca2+ response to both UTP and ATP at human P2Y11 receptors: evidence for agonist-specific signaling. // Mol Pharmacol. 2003. 63:1356−1363.
  148. Wildman SS, Unwin RJ, and King BF. Extended pharmacological profiles of rat P2Y2 and rat P2Y4 receptors and their sensitivity to extracellular H+ and Zn2+ ions. II Br J Pharmacol. 2003. 140:1177−1186.
  149. Williams AJ, West DJ and Rebecca Sitsapesan. Light at the end of the Ca2±release channel tunnel, structures and mechanisms involved in ion translocation in ryanodine receptor channels. // Quarterly Reviews of Biophysics. 2001.34, 1, pp. 61−104.
  150. Yamamoto T, Nagei T, Shimura T, Yasoshimi Y. Roles of chemical mediators in the taste system. // Jpn J Pharmacol. 1998. 76, 325−348.
  151. Yang R, Crowley HH, Rock ME, and Kinnamon JC. Taste bud cells with synapses express SNAP-25-like immunoreactivity. // J Comp Neurol. 2000a. 424, 205−215.
  152. Yang R, Tabata S, Crowley HH, Margolskee RF, and Kinnamon JC. Ultrastructural localization of gustducin immunoreactivity in microvilli of type II taste cells in the rat. IIJ Comp Neurol. 2000b. 425, 139−151.
  153. Yee CL, Yang R, Bottger B, Finger ТЕ, and Kinnamon JC. «Type III» Cells of Rat Taste Buds, Immunohistochemical and Ultrastructural Studies of Neuron-Specific Enolase, Protein Gene Product 9.5, and Serotonin. // J Comp Neurol. 2001.440, 97−108.
  154. Yegutkin GG, Henttinen T, and Jalkanen S. Extracellular ATP formation on vascular endothelial cells is mediated by ecto-nucleotide kinase activities via phosphotransfer reactions. //FASEB. 2001.15,251−260.
  155. Yegutkin GG, Henttinen T, Samburski SS, Spychala J, and Jalkanen S. The evidence for two opposite, ATP-generating and ATP-consuming, extracellular pathways on endothelial and lymphoid cells. // Biochem. J. 2002. 367,121−128.
  156. Yoshioka K, Saitoh O, and Nakata H. Heteromeric association creates a P2Y-like adenosine receptor. II Proc Natl Acad Sci USA. 2001. 98:7617−7622.
  157. Yoshie S, Kanazawa H, and Fujita T. A possibility of efferent innervation of the gustatory cell in the rat circumvallate taste bud. // Arch Histol Cytol. 1996. 59, 47984.
  158. Zeng Q, Kwan A, and Oakley B. Gustatory innervation and Bax-dependent Caspase-2, Participants in the life and death pathways of mouse taste receptors cells. IIJ Comp Neurol. 2000. 424, 640−650.
  159. Zhao GQ, Zhang Y, Hoon MA, Chandrashekar J, Erlenbach I, Ryba NJ, and Zuker CS. The receptors for mammalian sweet and umami taste. // Cell. 2003. 115:255−266.
  160. Zimmermann H. Extracellular metabolism of ATP and other nucleotides. // Naunyn Schmiedeberg’s Arch Pharmacol. 2000. 362, 299−309.
Заполнить форму текущей работой