Помощь в написании студенческих работ
Антистрессовый сервис

Структурные и функциональные характеристики природных и хирально модифицированных модельных ионных каналов

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Главной особенностью живой клетки является ее способность к самовоспроизводству. Химическая основа этого процесса — матричный синтез белков и нуклеиновых кислот, который происходит с участием различных ферментов, ДНК, РНК и не возможен без их взаимной стереоспецифичности. Последняя достигается тем, что аминокислоты ферментов и нуклеиновые кислоты ДНК и РНК имеют разный знак хиральности… Читать ещё >

Структурные и функциональные характеристики природных и хирально модифицированных модельных ионных каналов (реферат, курсовая, диплом, контрольная)

Содержание

  • ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
  • I. АНАЛИЗ ЭНЕРГЕТИЧЕСКИХ ПРОФИЛЕЙ ИОНОВ МЕМБРАННЫХ КАНАЛОВ (НА ПРИМЕРЕ ПОТЕНЦИАЛ-НЕЗАВИСИМОГО КАЛИЕВОГО КАНАЛА KCSA)
    • 1. 1. Введение
    • 1. 2. Расчет энергетических профилей ионов в мембранных каналах
      • 1. 2. 1. Введение
      • 1. 2. 2. Представление ионного канала в системе координат с поворотной осью симметрии
      • 1. 2. 3. Расчет эффективной диэлектрической постоянной и энергии ион-водного комплекса в поре канала
      • 1. 2. 4. Расчет энергетических профилей методами силового поля
      • 1. 2. 5. Расчет взаимодействия местных анестетиков с модельными каналами методом силового поля
      • 1. 2. 6. Разделение дальних и ближних взаимодействий в расчетах энергетических профилей: описание и физическое обоснование метода
      • 1. 2. 7. Результаты и их обсуждение
    • 1. 3. Расчет функциональных характеристик одиночных каналов
      • 1. 3. 1. Введение
      • 1. 3. 2. Ионный ток, проводимость и вольтамперная характеристика одиночного канала
      • 1. 3. 3. Результаты и их обсуждение
    • 1. 4. Неэмпирический расчет энергетических профилей ионов в канале
      • 1. 4. 1. Выбор системы базисных функций
      • 1. 4. 2. Результаты и их обсуждение
    • 1. 5. Выводы
  • II. ТЕОРЕТИЧЕСКОЕ ИССЛЕДОВАНИЕ ФУШСЦИОНАЛЬНЫХ ХАРАКТЕРИСТИК ПОТЕНЦИАЛ-ЗАВИСИМЫХ КАЛИЕВЫХ КАНАЛОВ КЛЕТКИ
    • 2. 1. Введение
    • 2. 2. Потенциал-зависимый калиевый канал KvAP из Aeropyrum pernix
      • 2. 2. 1. Структура и механизмы функционирования канала
      • 2. 2. 2. Энергетические профили канала
      • 2. 2. 3. Функциональные характеристики канала
    • 2. 3. Потенциал-зависимый калиевый канал в виде комплекса а- и Р-субъединицы из Rattus norvegicus
      • 2. 3. 1. Структура и механизмы функционирования канала
      • 2. 3. 2. Энергетические профили канала
      • 2. 3. 3. Функциональные характеристики канала
      • 2. 3. 4. Построение третичной структуры а/р-канала в закрытом состоянии
    • 2. 4. Потенциал-зависимый калиевый канал Kvl.2 типа Shaker из Rattus norvegicus
      • 2. 4. 1. Структура и механизмы функционирования канала
      • 2. 4. 2. Энергетические профили канала
      • 2. 4. 3. Функциональные характеристики канала
    • 2. 5. Выводы
  • III. ТЕОРЕТИЧЕСКОЕ ИССЛЕДОВАНИЕ СТРУКТУРНЫХ И ФУНКЦИОНАЛЬНЫХ ХАРАКТЕРИСТИК ХИРАЛЬНО МОДИФИЦИРОВАННЫХ МОДЕЛЬНЫХ ИОННЫХ КАНАЛОВ С ИНВАРИАНТНОЙ И МОДИФИЦИРОВАННОЙ ПЕРВИЧНОЙ СТРУКТУРОЙ
    • 3. 1. Введение
    • 3. 2. Структурные и функциональные характеристики хирально модифицированных каналов с инвариантной первичной структурой
      • 3. 2. 1. Потенциал-независимый калиевый канал KcsA
      • 3. 2. 2. Потенциал-зависимый калиевый канал KvAP
      • 3. 2. 3. Потенциал-зависимый калиевый а/(3-канал
      • 3. 2. 4. Потенциал-зависимый калиевый канал Kvl
      • 3. 2. 5. NRl-центр связывания NMDА-рецептора
    • 3. 3. Структурные и функциональные характеристики хирально модифицированных каналов с модифицированной первичной структурой
      • 3. 3. 1. Энергетическое выравнивание структур — метод построения хирально модифицированных каналов с природной функциональностью
      • 3. 3. 2. Потенциал-независимый калиевый канал KcsA
      • 3. 3. 3. Потенциал-зависимый калиевый канал KvAP
      • 3. 3. 4. Модельный потенциал-зависимый калиевый канал в виде комплекса а-и (3-субъединиц
      • 3. 3. 5. Потенциал-зависимый калиевый канал Kvl
      • 3. 3. 6. NR1 -центр связывания NMDА-рецептора
    • 3. 4. Выводы
  • IV. ТЕОРЕТИЧЕСКОЕ ИССЛЕДОВАНИЕ ВЛИЯНИЯ НЕФЕРМЕНТАТИВНОЙ ИЗОМЕРИЗАЦИИ И РАЦЕМИЗАЦИИ АМИНОКИСЛОТ ИОННЫХ КАНАЛОВ НА ИХ СТРУКТУРНЫЕ И
  • ФУНКЦИОНАЛЬНЫЕ ХАРАКТЕРИСТИКИ
    • 4. 1. Введение
      • 4. 1. 1. Рацемизация аминокислот в белках организма
      • 4. 1. 2. In vivo механизм рацемизации Asx стареющих белков
      • 4. 1. 3. Рацемизация Asx как молекулярный индикатор старения белков
      • 4. 1. 4. Связь рацемизации Asx с деградацией белков при патологических состояниях
      • 4. 1. 5. Механизмы репарации и обновления как защита от молекулярного повреждения рацемизацией Asx
      • 4. 1. 6. Патофизиологическая роль рацемизации Asx в ходе старения
      • 4. 1. 7. Скорость неферментативной рацемизации Asx
      • 4. 1. 8. Рацемизация Asx как часть комплексной биологии старения белков
      • 4. 1. 9. Неферментативная изомеризация Asx в белках организма
    • 4. 2. Математическое моделирование динамики неферментативной изомеризации и рацемизации аминокислот в белках
      • 4. 2. 1. Одиночный модельный белок
      • 4. 2. 2. Совокупность белков организма в норме с учетом распределения скоростей изомеризации и относительных частот фрагмента Asn-Xxx
      • 4. 2. 3. Одиночный белок с учетом увеличения времени жизни белков с возрастом
    • 4. 3. Влияние неферментативной изомеризации аспарагина ионных каналов на их структурно-функциональные характеристики
      • 4. 3. 1. Структура ионных каналов с isoAsp-остатками
      • 4. 3. 2. Функциональные характеристики ионных каналов с isoAsp-остатками
    • 4. 4. Структура модифицированного NR1-центра связывания NMDA-рецептора в комплексе с D-аминокислотными лигандами
    • 4. 5. Выводы

Актуальность работы. Перенос ионов через биологические мембраны является одним из наиболее важных процессов, происходящих в живых клетках. Обеспечивая общую термодинамическую неравновесность клетки, он играет основополагающую роль в таких важнейших физиологических процессах, как преобразование энергии, поддержание постоянного химического состава внутренней среды, регуляция и рецепция, биологическая подвижность, распространение импульса и др. Так как липидный бислой мембраны создает исключительно высокий энергетический барьер для прохождения ионов, то осуществление ионного транспорта требует наличия специализированных макромолекулярных структур, которые могли бы существенно уменьшить этот энергетический барьер. Именно эту роль выполняют ионные насосы, ионные каналы, ионообменники, антибиотики. Среди различных ион-транспортных систем ионные каналы характеризуются относительно высокой скоростью транспорта в сочетании с высокой селективностью к транспортируемым ионам.

Центральной проблемой в исследовании физических свойств ионных каналов является установление связи между их структурой и функциями. Появление экспериментальной информации по структуре ионных каналов стимулировало разработку различных теоретических подходов к исследованию механизмов переноса ионов в каналах, основывающихся, прежде всего, на уравнениях молекулярной и броуновской динамики, теории абсолютных скоростей реакций Эйринга и теории диффузии Пуассона-Нернста-Планка. Вместе с тем прогресс в теоретическом исследовании механизмов переноса ионов существенно затруднен из-за отсутствия единого подхода к оценке энергетических профилей ионов в канале, которые, в явном или неявном виде, включены во все вышеуказанные уравнения. Следствием этого является физически неоднозначная калибровка параметров энергетических профилей и уравнений для расчета функциональных характеристик каналов, таких как проводимости, ионные токи, вольтамперные характеристики и отношения коэффициентов проницаемостей для различных ионов.

Ионная асимметрия в содержании важнейших катионов во внутренней среде клеток относительно внешней среды, формируемая при участии ионных насосов и ионных каналов, непосредственным образом связана с другой фундаментальной асимметрией — хиральной асимметрией важнейших биомолекул во всей биосфере, которая проявляется в построении нуклеиновых кислот из D-энантиомеров (дезокси)рибозы, а синтезируемых в рибосомах белков — из L-энантиомеров аминокислот. Так существуют близкие значения свободной энергии, необходимой для формирования хирально чистых биополимеров и ионной асимметрии клеток [110]. '.

Рассматривая общие структурные и функциональные особенности живой клетки, целесообразно выделить два аспекта нарушения зеркальной симметрии биомолекул. Во-первых, это эволюционно востребованная необходимость гомохиральности, во-вторых — эволюционно закрепившийся знак хиральности.

Физико-химические и биологические основы гомохиральности биополимеров в последнее время изучены достаточно разносторонне [1, 13, 110, 107]. Так гомохиральность белков и нуклеиновых кислот определяет их стереоспецифичность — необходимое условие матричного синтеза, обусловливает стабильность их структур, обеспечивающих их функционирование. Для биохимических преобразований гомохиральных соединений требуется значительно меньший набор ферментов, чем для таких же преобразований гетерохиральных соединений. Основы механизмов сопряжения ионной и хиральной асимметрий рассмотрены в работах Твердислова, Яковенко, Дмитриева (1988 — 2008).

Несмотря на значительные успехи, достигнутые в области исследования гомохиральности биополимеров, физико-химическое и биологическое основы того, что белки-ферменты и нуклеиновые кислоты имеют строго определенный знак хиральности, остаются недостаточно выясненными. Интерес к этой проблеме усиливается тем, что, согласно гипотезам спонтанной дерацемизации и решающей роли глобального фактора преимущества [13], повторение всей совокупности событий, приведших к появлению хиральной чистоты, равновероятно способно привести к такой гипотетической биосфере, которая использовала бы D-аминокислоты и L-caxapa.

Следует отметить, что, помимо Сахаров и аминокислот, другие хиральные компоненты клетки в определенных случаях могут встречаться как в одной, так и в другой изомерной форме. В некоторых бактериях обнаружены L-caxapa и D-аминокислоты. D-аминокислоты достаточно широко распространены в живой природе и, более того, входят в состав ряда биологически значимых коротких олигопептидов. Встречаются бактерии, которые содержат D-гл ютами новую кислоту и D-Ala в своих клеточных стенках, а в организме человека вырабатывается в качестве нейромедиатора D-Ser. Некоторые пептидные антибиотики, а также плазма крови высших организмов, имеют в своем составе D-аминокислоты. Некоторые термофилы используют высокие концентрации D-Ala в качестве осморегулятора. В нервных клетках высших организмов находят D-Ala, D-Asp и D-Ser, иногда в значительных концентрациях. Поэтому в деталях биологический мир не обнаруживает хиральной чистоты, но все, что относится к рибосомальному синтезу полипептидов, характеризуется абсолютной хиральной чистотой.

Нарушение хиральной чистоты аминокислот в белках является следствием их посттрансляционной модификации — неферментативной рацемизации и изомеризации аминокислот в белках. Причем из двадцати аминокислот, участвующих в рибосомальном синтезе, прежде всего Aspи Asn-остатки в белках являются наиболее подверженными неферментативной модификации: рацемизации и изомеризации. Если накопление остатков D-Asp в белках — достаточно долгий процесс, который является наиболее значимым для очень медленно обновляющихся белков и белков организма, вовлеченных в патофизиологические процессы при заболеваниях пожилого возраста, то появление остатков iAsp в белках — существенно для функционирования медленно обновляющихся белков даже в норме.

Посттрансляционные неферментативные модификации аминокислот в белках играют существенную роль в патогенезе болезней, характерных для людей пожилого возраста. Так установлено появление значительного содержания остатков D-Asp в белках организмов с болезнью Альцгеймера, Паркинсона, а также при склеротических изменениях в сердечно-сосудистой системе, при глазной катаракте и т. д. Некоторые исследователи рассматривают содержание остатков D-Asp в белках как патофизиологический фактор в патогенезе болезней пожилого возраста, таких как атеросклероз, эмфизема легкого, катаракта, дегенеративные заболевания хряща и возрастная дисфункция головного мозга и др.

Исследование влияния посттрансляционных модификаций аминокислотных остатков белков на их структуру и механизмы функционирования остаётся малоисследованным направлением в биофизике. Прежде всего, это относится к биологически активным соединениям стереоспецифичного действия, которые могут оказывать как более, так и менее активное действие на белки организмов, подверженным возрастным изменениям.

Отдавая должное значительным успехам экспериментальной молекулярной геронтологии последних лет, достигнутым в данном направлении, следует отметить, что в ряде случаев функциональные нарушения, связанные с хиральными нарушениями, можно исследовать исключительно в модельных компьютерных экспериментах. В первую очередь это относится к молекулярным структурам, присутствующим в отдельных клетках в незначительных количествах, как, например, в белковых ион-транспортных системах мембран. Тем более, когда изменение знака хиральности захватывает аминокислотные группы, укрытые в их гидрофильных ион-связывающих полостях. При этом принципиально важно в рамках единого численного эксперимента выполнить сравнение функций нормальных и хирально модифицированных молекулярных структур.

Таким образом, представляется перспективным исследование структуры и механизмов функционирования ионных каналов по следующим направлениям:

1) Выбор и обоснование метода расчета энергетических профилей ионов в каналах, не требующего значительных затрат расчетного времени и выявляющего с хорошей точностью функциональные характеристики природных и модифицированных ионных каналов.

2) Исследование функциональных характеристик природных ионных каналов, для которых известны их электрохимические характеристики.

3) Построение хирально модифицированных1 модельных ионных каналов, исследование их структуры и функциональных характеристик.

4) Исследование влияния неферментативной модификации остатков Asn и Asp в ионных каналах на их структуру и функциональные характеристики.

Цель и задачи исследования

Целью настоящего исследования являлось теоретическое исследование структурных и функциональных характеристик природных и хирально модифицированных модельных ионных каналов с инвариантной и измененной аминокислотной последовательностью.

Для достижения цели исследования решались следующие задачи:

1) Выбор и обоснование метода расчета энергетических профилей ионов в мембранных каналах, не требующего значительных затрат расчетного времени и предсказывающего с хорошей точностью функциональные характеристики каналов.

1 Под хирально модифицированными ионными каналами мы понимаем каналы, в которых проведена замена их L-аминокислот на соответствующие D-аминокислоты.

2) Построение хирально модифицированных модельных каналов с первичной структурой, инвариантной природным каналам, исследование их структурных и функциональных характеристик.

3) Разработка метода построения структуры хирально модифицированных модельных каналов с модифицированной первичной структурой и функциональными характеристиками, адекватными характеристикам природных каналов.

4) Построение математической модели изменения содержания остатков iAsp и D-Asp в белках, а также оценка степени аккумуляции остатков iAsp в белках, время обновления которых больше времени образования остатков iAsp.

5) Исследование влияния посттрансляционных неферментативных модификаций остатков Asn и Asp в ионных каналах на их структурные и функциональные характеристики.

Объект и предмет исследования. Объектом теоретического исследования являлись:

1) ионные каналы клетки (потенциал-независимый калиевый канал KcsA из Streptomyces lividans, потенциал-зависимый калиевый канал KvAP из Aeropyrum pernix, потенциал-зависимый калиевый канал Kvl.2 из Rattus norvegicus, комплекс аи (З-субъединицы калиевого канала из Homo sapiens)',.

2) NR1-центр связывания NMDA-рецептора из Rattus noi~vegicus в комплексе с Gly, D-Ser и D-cSer;

3) модельные D-аминокислотные каналы с модифицированной и инвариантной природной первичной структурой;

4) модельные ионные каналы, содержащие остатки D-Asp и iAsp.

Сведения о четвертичной структуре природных белков получены из.

Банка белковых структур". Выбор выше указанной группы каналов.

2 Protein Data Bank, Brookhaven National Laboratory, USA обусловлен тем, что для них существуют надежные экспериментальные данные по структуре и функциональным характеристикам.

Предметом исследования являлись механизмы функционирования природных и хирально модифицированных модельных ионных каналов.

Предпосылки и направление исследования.

Экспериментально обнаруженная и теоретически изучаемая модификация отдельных аминокислотных остатков каналов приведет не к ожидаемой инвариантности их третичной структуры, а к ее нарушению. Последнее обстоятельство является причиной изменения функциональных характеристик каналов. Для построения хирально модифицированных модельных каналов с природной функциональностью необходима модификация их первичной структуры. Появление остатков D-Asp и iAsp в ионных каналах, обусловленное старением организма или его патологическим состоянием, повлечет изменение их функциональных характеристик и в определенных случаях нарушение механизмов их функционирования.

Научная новизна и значимость полученных результатов. В результате исследований впервые:

1) Теоретически обоснован и применен для расчета энергетических профилей ионов в каналах комбинированный квантово-классический метод. Установлено расстояние, характеризующее разделение аминокислотных остатков ионных каналов на ближние и дальние.

2) Установлено, что использование полученных комбинированных энергетических профилей дает возможность вычислять функциональные характеристики каналов с хорошей точностью, что показано на примере ионной специфичности калиевых каналов клетки. Предложена и теоретически обоснована модельная структура ионного канала в виде комплекса, а и Р субъединиц, согласующаяся с экспериментально наблюдаемой структурой гомологичного потенциал-зависимого калиевого канала Kv 1.2.

3) Построены хирально модифицированные модельные каналы с инвариантной природной аминокислотной последовательностью, которые являются энергетически менее стабильными, чем их природные антиподы с нарушенными функциональными характеристиками.

4) Предложен метод, основанный на вариации первичной структуры и энергетическом выравнивании третичных структур, позволяющий моделировать атомную структуру хирально модифицированного модельного канала с природной функциональностью. Построенные из 10 D-аминокислотных остатков каналы являются энергетически эквивалентными по полной механической энергии соответствующим природным каналам и с аналогичными функциональными характеристиками.

5) Построена математическая модель, описывающая изменение содержания остатков iAsp и D-Asp в белках, с помощью которой показано, что аккумуляция остатков iAsp — значимый процесс не только для очень медленно обновляющихся, но и для медленно обновляющихся белков, таких как ионные каналы.

6) В численном эксперименте показано, что появление остатков iAsp в калиевых ионных каналах приводит к уменьшению их энергетической стабильности, незначительному увеличению ионных токов при сохранении их калиевой избирательности. Появление остатков D-Asp в NR1-центре связывания NMDA-рецептора, обусловленное патофизиологическими процессами при хронических заболеваниях пожилого возраста, приводит к появлению дополнительных алифатических аминокислотных лигандов (D-Ala, D-Leu, D-Ile и D-Pro), что не свойственно для немодифицированного NR1 -центра связывания.

Методология и методы проведенного научного исследования. В работе использовались как традиционные методы расчета энергетических профилей ионов (силовые поля молекулярной механики) и функциональных характеристик каналов (теория абсолютных скоростей реакций Эйринга), так и:

1) адаптированный и теоретически обоснованный нами для расчета энергетических профилей ионов в поре канала комбинированный квантово-классический метод;

2) разработанный нами метод «энергетического выравнивания» третичных структур белков как метод построения хирально модифицированных модельных каналов с измененной первичной структурой, структурно и функционально эквивалентных соответствующим природным каналам.

Практическая значимость полученных результатов.

Разработанные подходы позволяют изучать функциональные характеристики ионных каналов, моделировать атомные структуры хирально модифицированных модельных ионных каналов с функциональными характеристиками, свойственными природным каналам.

Теоретически установленные изменения в работе каналов, обусловленные in vivo появлением в них остатков D-Asp и iAsp в результате старения организма или при патологических состояниях, позволяют наметить пути поиска эффективных лекарственных препаратов, в качестве активных центров которых служат рецепторы ионных каналов.

Учитывая, что значительное число заболеваний связано с «каналопатологиями» — нарушениями функционирования ионных каналов или связанных с ними рецепторов, полученные результаты и разработанные подходы могут быть использованы при разработке стратегии и средств лечения этих заболеваний. Полученные результаты могут применяться при исследовании биологического отклика организмов на хиральные фармпрепараты и модификацию аминокислотных остатков каналов под воздействием антропогенных внешних факторов при решении проблем хиральной безопасности биосферы.

Полученные результаты расширяют представления о физических механизмах происхождения хиральной асимметрии биосферы, функционирования ионных каналов и могут быть использованы в курсах лекций по биофизике, биохимии и физиологии в университетах и вузах медико-биологического профиля.

Основные положения диссертации, выносимые на защиту.

1) Теоретическое обоснование комбинированного квантово-классического метода для расчета энергетических профилей, с помощью которого установлено, что в клетке с хирально модифицированными калиевыми каналами с природной первичной структурой будут нарушены многие биологические процессы, обусловленные функционированием калиевых ионных каналов. Появление остатков iAsp в калий-избирательных каналах и остатков D-Asp в NR1-центре связывания NMDA-рецептора, обусловленное посттрансляционными неферментативными модификациями аминокислотных остатков, приводит к нарушению структуры и функциональных характеристик каналов.

2) Разработанный и теоретически обоснованный нами метод энергетического выравнивания структур каналов, с помощью которого были построены D-аминокислотные модельные каналы с природными функциональными характеристиками и модифицированной аминокислотной последовательностью из 10 D-аминокислот: Gly, Ala, Ser, Cys, Asp, Asn, Lys, His, Phe, Pro.

Личный вклад соискателя. Выбор и обоснование научной тематики исследования, получение результатов, приведенных в диссертации, их анализ и интерпретация, как и основные публикации, сделаны при решающем участии соискателя.

Апробация работы. Результаты исследований по теме диссертации представлены на 3-й Региональной научно-технической конференции «Проблемы экологии и экологической безопасности ЦЧ РФ» (Липецк, 1999), 7-й Международной конференции «Математика. Компьютер. Образование» (Дубна, 2000), 3-м Всероссийском медицинском конгрессе (Ижевск, 2000), 3-м Сибирском конгрессе по прикладной и индустриальной математике (Новосибирск, 1998), 5-й Международной конференции «Физика в системе современного образования» (Санкт-Петербург, 1999), 3-й Всероссийский симпозиум «Математическое моделирование и компьютерные технологии» (Кисловодск, 1999), 4-м Сибирском конгрессе по прикладной и индустриальной математике (Новосибирск, 2000), 5-й Республиканской электронной научной конференции «Современные проблемы информатизации» (Воронеж, 2000), Международной конференции «Математика. Образование. Экология. Тендерные проблемы» (Воронеж,.

2000), 4-й Международной научно-технической конференции «Физика и радиоэлектроника в медицине и экологии» (Владимир, 2000), Международной конференции «Биохимическая физика на рубеже столетий» (Москва, 2000), 2-й Региональной научной конференции по органической химии «Органическая химия на пороге третьего тысячелетия — итоги и перспективы» (Липецк, 2000), 5-й Пущинской конференции молодых ученых «Биология — наука 21-го века» (Пущино, 2001), 8-й Международной конференции «Математика. Компьютер. Образование» (Пущино, 2001), 2-й Конференции молодых ученых России с международным участием «Фундаментальные науки и прогресс клинической медицины» (Москва,.

2001), 3-й Всероссийской научной конференции «Молекулярная физика неравновесных систем» (Иваново, 2001), Международном симпозиуме «Компьютерное обеспечение химических исследований» (Москва, 2001), 7th Scandinavian Symposium on Chemometrics (Copenhagen, 2001), XVIII Съезде физиологического общества им. И. П. Павлова (Казань, 2001), Школесеминаре «Введение в многомерный анализ данных (проекционные методы)» (Москва, 2001), 3-й Всероссийской школе-конференции по квантовой и вычислительной химии им. В. А. Фока (Великий Новгород, 2001), Международной школе-конференции «Введение в многомерный анализ данных (проекционные методы)» (Кострома, 2002), 13th International Congress on Molecular Biology (Toronto, 2002), 8-м Всероссийском симпозиуме «Биоинформатика и компьютерное конструирование лекарств» (Москва, 2002), 6-й Пущинской школе-конференции молодых ученых «Биологиянаука 21-го века» (Пущино, 2002), 3-й Всероссийской конференции «Молекулярное моделирование» (Москва, 2003), 4th Symposium on Multivariate Data Analysis (Moscow, 2003), 3-м Съезде биофизиков России (Воронеж, 2004), 4-й Всероссийской конференции «Молекулярное моделирование» (Москва, 2005), Международной конференции студентов, аспирантов и молодых ученых «Ломоносов-2005» (Москва, 2005), Международной научной конференции «Молекулярные, мембранные и клеточные основы функционирования биосистем» (Минск, 2006), 5-м Съезде Белорусского общественного объединения фотобиологов и биофизиков (Минск, 2006), Всероссийской научной конференции «Актуальные проблемы естественных наук и их преподавания» (Липецк, 2006), 5-й Всероссийской конференции «Молекулярное моделирование» (Москва, 2007), 3-м Всероссийском съезде фармакологов (Санкт-Петербург, 2007), 5-м Международном семинаре «Компьютерное моделирование электромагнитных процессов в физических, химических и технических системах» (Воронеж, 2007), 5-м Международном семинаре «Физико-математическое моделирование систем» (Воронеж, 2008).

Опубликованность результатов. По материалам диссертации опубликовано 49 печатных работ: 20 статей в рецензируемых научных журналах по списку ВАК, статьи в других журналах, изданиях и тематических сборниках — 9, в материалах конференций — 20. Список основных работ по теме диссертации приведен в конце автореферата.

Структура и объем диссертации

Диссертация включает введение, основную часть, состоящую из 4 глав, заключение, основные выводы и список цитируемой литературы. Диссертация изложена на 315 страницах, содержит 69 рисунков и 39 таблиц.

VI. ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ.

1) Модифицирован и теоретически обоснован комбинированный квантово-классический метод применительно к расчету энергетических профилей ионов в поре канала. Получено соответствие теоретических и экспериментальных значений функциональных характеристик каналов, определены значения функциональных характеристик ранее экспериментально не исследованных модифицированных каналов. Установлено, что расстояние между ионом и атомами поры канала, на котором возможно разделение квантовой и классической составляющей энергии, составляет 4.2А. Для калиевого канала в виде комплекса аи (3-субъединиц предложена и теоретически обоснована модельная структура, которая согласуется с экспериментально наблюдаемой структурой гомологичного потенциал-зависимого калиевого канала Kv 1.2.

2) Хирально модифицированные модельные каналы с природной первичной структурой имеют относительно большой диаметр поры канала и не являются калий-избирательными каналами. При этом их полная потенциальная энергия совпадает с энергией соответствующих природных каналов.

3) Разработанный и теоретически реализованный метод построения хирально модифицированных каналов с природными функциональными характеристиками, основанный на энергетическом выравнивании третичных структур каналов с различными аминокислотными последовательностями, позволил получить молекулярные структуры хирально модифицированных каналов с функциональными характеристиками соответствующих природных каналов. При этом модельные каналы строятся из 10 D-аминокислотных остатков и являются энергетически более стабильными, чем соответствующие природные каналы.

4) Формирование остатков iAsp может быть значимым процессом не только для очень медленно обновляющихся белков, но и для медленно обновляющихся белков, таких как ионные каналы. Теоретически прогнозируется, что появление остатков iAsp в калиевых ионных каналах приведет к уменьшению их энергетической стабильности, незначительному увеличению ионных токов при сохранении их калиевой избирательности.

5) Гипотетическое появление остатков D-Asp в NRl-центре связывания NMDA-рецептора, обусловленное патофизиологическими процессами при хронических заболеваниях пожилого возраста, способно привести к увеличению числа связываемых алифатических аминокислотных лигандов (D-Ala, D-Leu, D-Ile и D-Pro), что не свойственно для немодифицированного NR1 -центра связывания.

V.

ЗАКЛЮЧЕНИЕ

.

Целью диссертационной работы являлось исследование структурных и функциональных характеристик природных и хирально модифицированных модельных каналах с инвариантной и модифицированной первичной структурой.

При написании работы мы не задавались вопросом о возможных причинах, послуживших эволюционному закреплению хирального состава современной природной клетки. Частичные ответы на этот вопрос можно найти в обзорах [1, 13, 107, 110, 99, 88, 109, 460]. В любом случае, в литературе, посвященной данной проблеме, отсутствуют какие-либо физически обоснованные данные, свидетельствующие о невозможности существования эволюционного сценария происхождения зеркальной клетки — клетки компонентами которой являются белки-ферменты, построенные из D-аминокислот, и нуклеиновые кислоты, построенные из L-сахаров.

Главной особенностью живой клетки является ее способность к самовоспроизводству. Химическая основа этого процесса — матричный синтез белков и нуклеиновых кислот, который происходит с участием различных ферментов, ДНК, РНК и не возможен без их взаимной стереоспецифичности. Последняя достигается тем, что аминокислоты ферментов и нуклеиновые кислоты ДНК и РНК имеют разный знак хиральности. В зеркальной клетке, как и в природной клетке, данное требование соблюдается: ферменты включают D-аминокислоты, а нуклеиновые кислоты — L-caxapa. Вероятно, единственной отличительной особенностью зеркальной клетки будет либо измененная нуклеотидная последовательность генов, кодирующих первичную структуру калиевых каналов, либо будет изменена таблица генетического кода. Кроме того, калиевые каналы, а вероятно, и другие трансмембранные белки зеркальной клетки будут энергетически менее стабильными, чем таковые в природной клетке, а также будет изменена первичная структура всех мембранных белков. Последнее структурное свойство зеркальной клетки является необходимым, т.к. в противном случае нарушится фермент-субстратная стереоспецифичность — необходимое условие матричного биосинтеза белков. Действительно, как ранее было показано на примере калиевого канала, точечная рацемизация полного набора аминокислот природного канала без изменения его первичной структуры приводит к нарушению механизмов его функционирования, в частности ионной избирательности. Для более детального исследования этих нарушений, целесообразно провести рассмотренные выше исследования для целого ряда калиевых каналов, формирующих единое суперсемейство каналов, а также других мембранных белков.

В заключение отметим, что за рамками данной работы остались весьма актуальная проблема эволюционной фиксации аминокислот и нуклеиновых кислот гомохиральности строго определенного типа, последствия загрязнения организма «неприродными» изомерами и, прежде всего, проблема хиральной безопасности биосферы. Кратко отметим, что под экологической безопасностью в настоящее время понимается защищенность населения и экосистем от негативных последствий природных и техногенных катастроф, а также антропогенного воздействия на качество окружающей среды. В связи с тем, что многие органические вещества природного и техногенного происхождения имеют энантиомерные формы, существенно различающиеся по эффектам воздействия на организмы, вплоть до токсического и мутагенного, проблема «хиральной чистоты биосферы», являясь по принадлежности экологической, по существу имеет биофизическую, или, шире, биогеофизическую и биогеохимическую основу.

Область применения хиральных соединений чрезвычайно широка: от фармацевтических препаратов до сельского хозяйства и производства оптических кабелей. Традиционный химический синтез органических соединений, не включающий участие хиральных катализаторов, приводит к образованию рацемических смесей, содержащих равное количество Dи Lэнантиомеров. Но и при их разделении и очистке, при хирально-специфическом синтезе, трансформации хиральных соединений в искусственных и природных условиях образуются токсические хиральные продукты.

Развитые биофизикой и смежными науками подходы могут быть чрезвычайно полезны не только для понимания механизмов взаимодействия хиральных соединений с биологическими системами разного уровня организации, но и для развития методов и направленности экологического мониторинга в решении данной проблемы.

Приведенные в настоящей диссертации результаты демонстрируют, что методы квантовой химии, молекулярной механики и динамики, теории абсолютных скоростей реакции Эйринга являются мощными средствами исследования функционирования как природных, так и модельных хирально модифицированных мембранных каналов, а также построения и исследования механизмов функционирования хирально модифицированных модлельных белков функционально эквивалентных соответствующим природным белкам.

Хирально модифицированные ионные каналы с модифицированной первичной структурой теоретически могут продуцироваться в клетке при условии, что ее нуклеиновые и рибонуклеиновые кислоты включают L-сахара, а ферменты — D-аминокислоты. В этом случае возможны два взаимоисключающих сценария матричного синтеза таких каналов. Первый сценарий связан с тем, что ген «зеркальной клетки», кодирующий данную аминокислотную последовательность должен отличаться от гена, кодирующего природный калиевый канал. Второй сценарий теоретически возможен при сохранении нуклеотидной последовательности гена, кодирующего аминокислотную последовательность природного калиевого канала. Это изменение может быть следствием преобразования единого универсального генетического кода. Причем для получения первичной структуры любого D-белка, функционально эквивалентного природному, достаточно комбинации 10 аминокислот: G, A, S, С, D, N, К, Н, F, Р.

В таком «зеркальном мире» таблица генетического кода будет включать 10 D-аминокислот. Если предполагать, что ДНК будет составлена из четырех оснований, то в данном случае достаточным будет дублетный код, кодирующий 16 аминокислот, а не триплетный код с 64 кодонами.

Двукратное уменьшение аминокислот в генетическом коде приведет к сокращению в 2N раз (N — количество аминокислотных остатков в белке) количества различных вариантов D-аминокислотной последовательности белка и существенному уменьшению разнообразия структур и функций белков зеркальной клетки. Возможно, последнее обстоятельство играло решающую роль в выборе знака хиральности аминокислот в ходе эволюции.

Более подробно рассмотрим особенности гипотетического рибосомального синтеза хирально модифицированных каналов с природной функциональностью.

5.1. Особенности рибосомального синтеза природных мембранных каналов.

Матричный синтез природных белков происходит с участием ДНК и различные РНК (матричная (мРНК), транспортная (тРНК) и рибосомная (рРНК)). Упрощено [251] схема биологического синтеза белков выглядит следующим образом. Отрезок ДНК (ген), на котором закодирована первичная структура белка активизируется, т. е. в этом месте двойная спираль ДНК расплетается. На обнажившемся участке из отдельных нуклеотидов синтезируется молекула матричной РНК (мРНК). Законченная молекула мРНК выходит из ядра в цитоплазму. Здесь на нее нанизываются рибосомы, в которой происходит синтез белка по программе, записанной в мРНК. Каждая рибосома движется вдоль мРНК, переходя от одного триплета нуклеотидов к другому. В данном случае каждый триплет комплементарно связан с определенной молекулой транспортной РНК (тРНК). Из всех молекул тРНК, входящих в рибосому, именно эта тРНК (комплементарная) связывается с мРНК, и противоположный конец тРНК с присоединенной к нему аминокислотой приблизится к месту сборки полипептидной цепи. Здесь аминокислота отделяется от тРНК и присоединяется к аминокислотной цепи. Затем тРНК выделяется в цитоплазму, а рибосома передвигается к следующему триплету. Каждой тРНК соответствует только одна аминокислота, и таким образом, последовательность триплетов нуклеотидов мРНК копирует последовательность аминокислот в цепочке. Следует отметить, что каждый из этапов биосинтеза проходит при участии особых белков-катализаторов — ферментов и источников энергии — аденозинтрифосфорной кислоты (АТФ).

В более детальной схеме [94], биологический синтез происходит в результате последовательности двух стадий:

1) транскрипции — переноса генетической информации от ДНК к РНК;

2) трансляции — декодирования мРНК, в результате которого информация с языка последовательности оснований мРНК переводится на язык аминокислотной последовательности белка.

Фундаментальную роль в матричном синтезе белков играет генетический код, который связывает последовательность оснований данного гена или его РНК-транскрипта с аминокислотной последовательностью соответствующего белка.

Генетический код удобно представлять в виде, так называемой, таблицы кода, которая указывает, какая аминокислота кодируется тем или иным кодоном (последовательность трех нуклеотидов). Направление чтения закодированной записи — от 5'-конца к З'-концу мРНК, являющейся транскриптом «+"-цепи ДНК, считанным с нее в направлении 5'—>3'. Первый с 5'-конца кодон отвечает N-концевой аминокислоте полипептидной цепи. Таким образом, белки синтезируются от N-конца к С-концу. В таблице 35 первый нуклеотид помещен в левом столбце, второй — в верхней строке, а третий — в правом столбце.

Показать весь текст

Список литературы

  1. В.А., Гольданский В. И. Физические аспекты нарушения зеркальной симметрии биоорганического мира // Успехи физических наук. 1996. Т. 166. № 8. С. 873−891.
  2. Э. Избирательная токсичность. М.: Мир, 1971. с. 25, 50.
  3. Ю.С. Силы Ван-Дер-Ваальса. М.: Наука, 1988. 344 с.
  4. С.С. Структурная химия. Факты и зависимости. М.: Диалог-МГУ, 2000. 292 с.
  5. М.М., Румянцев В. В., Топтыгин И. Н. Классическая электродинамика. М.: Наука, 1985. 400 с.
  6. К .Я., Шорыгин П. П. Квантовохимические расчеты в органической химии и молекулярной спектроскопии. М:. Наука, 1989. 104 с.
  7. Г. Симметрия. М: Наука, 1968. 200 с.
  8. В.Г. Исследования структурного состояния воды в малонил-бисдезформилграмицидиновом канале методом Монте-Карло // Биологические мембраны. 1986. Т. 3. С. 1062−1072.
  9. Р. Биологические мембраны. Молекулярная структура и функции. М.: Мир, 1997, 624 с.
  10. Дж., Кэртисс Ч., Бэрд Р. Молекулярная теория газов и жидкостей. М.: ИЛ, 1961. 650 с.
  11. . Биофизика. М.: Мир, 1983. 72 с.
  12. В.И., Кузьмин В. В. Спонтанное нарушение зеркальной симметрии в природе и происхождение жизни // Успехи физических наук. 1989. Т. 157. № 1. С. 3−50.
  13. JI.A., Муштакова С. П. Квантовая химия. М.: Гардарики, 1999. 390 с.
  14. Г., Орчин М. Симметрия в химии. М.: Мир, 1967. 300 с.
  15. А.В., Барышников В. Г. О движении ионов в порообразующих белковых молекулах // Молекулярное моделирование: тезисы докладов 3-й Всероссийской конференции. -Москва: Изд-во ГЕОКХИ РАН, 2003. С. 10−11.
  16. А.В., Барышников В. Г., Лузянин С. Е. О конфигурациях электростатического поля в ионных каналах мембран // Биохимическая физика: тезисы докладов 2-й ежегодной молодежной конференции ИБХФ-ВУЗы. Москва: Изд-во ИБХФ РАН, 2002. — С.З.
  17. А.В., Барышников В. Г., Марков И. В., Твердислов В. А. О механизмах ионной избирательности калиевого канала // 3-й Съезд биофизиков России: тезисы докладов. Воронеж: Изд-во ВГУ, 2004. с. 209−210.
  18. А.В., Твердислов В. А. Исследование ионной избирательности потенциал-зависимого калиевого канала // Журнал структурной химии. 2006. — Т.47. — № 4. — С.557−565.
  19. А.В., Исаев П. П. Представление молекулы мембранного канала в системе координат с поворотной осью симметрии // Вестник КГУ им. Н. А. Некрасова. 2005. — Т.5. — № 7. — С.4−7.
  20. А.В., Исаев П. П. Сравнительный анализ методов расчета потенциала димера грамицидина, А // Биохимическая физика: тезисы докладов 2-й ежегодной молодежной конференции ИБХФ-ВУЗы. -Москва: Изд-во ИБХФ РАН, 2002. С. 4.
  21. А.В., Исаев П. П. Физическое объяснение водной проницаемости аквапорина API // Вестник КГУ им. Н. А. Некрасова. 2005. Т. 5. № 4. С. 17−20.
  22. А.В., Исаев П. П., Твердислов В. А. Влияние изомеризации аминокислотных остатков на структуру аквапорина // Журнал структурной химии. 2006. — Т.47. -№ 3. — С. 100−120.
  23. А.В., Исаев П. П., Твердислов В. А. Разделение дальних и ближних взаимодействий в расчетах распределения энергии ионов в мембранных каналах // Журнал структурной химии. 2006. — Т.47. — № 2. — С.255−259.
  24. А.В., Исаева Г. А., Исаев П. П., Барышников В. Г., Ласточкин А. В. Уровни энергии и волновые функции иона в грамицидиновых каналах // Биофизика. 2002. Т. 47. № 5. С. 864−868.
  25. А.В., Исаева Г. А., Исаев П. П., Лузянин С. Е. Исследование ионных потоков через границу раздела раствор/мембрана // Конденсированные среды и межфазные границы. 2002. Т. 5. № 3. С. 3540.
  26. А.В., Марков И. В., Барышников В. Г., Твердислов В. А. Об использовании приближенных силовых полей для расчета распределения электростатического потенциала мембранных каналов // Журнал структурной химии. 2005. Т. 46. № 5. С. 624−628.
  27. А.В., Марков И. В., Барышников В. Г., Твердислов В. А. Распределение энергии и ионная избирательность бактериального калиевого канала // Биофизика. 2006. — Т.51. — № 4. — С. 1006−1011.
  28. А.В., Марков И. В., Твердислов В. А. Моделирование третичной структуры функционально эквивалентных изомеров трансмембранных белков // 4-я Всероссийская конференция «Молекулярное моделирование»: тезисы докладов. Москва, 2005. С. 3537.
  29. А.В., Твердислов В. А. О возможности существования и структурных особенностях зеркального антипода природной клетки // Препринт Физ. ф-та МГУ им. М. В. Ломоносова. 2005. 50 с.
  30. А.В., Твердислов В. А. О методах расчета распределения потенциала в белковых порах // Биофизика. 2004. Т.49. — № 3. — С.506−510.
  31. А.В., Марков И. В., Твердислов В. А. Рацемизация бактериального калиевого канала и хиральная безопасность биосферы // Технологии живых систем. 2006. — Т.З. — № 1. — С.5−8.
  32. А.А. Взаимодействие ионов и хиральных соединений в модельных и биологических системах / Диссертация на соискание ученой степени кандидата физико-математических наук. М. МГУ, 2008. 134 с.
  33. Г. М., Багатурьянц А. А., Абронин И. А. Прикладная квантовая химия. Расчеты реакционной способности и механизмов химических реакций. М.: Химия, 1979. 296 с.
  34. А.В., Дмитриев А. В., Исаев П. П. Компьютерная программа моделирования равновесной геометрии молекул аминокислот // Биохимическая физика: тезисы докладов 2-й ежегодной молодежной конференции ИБХФ-ВУЗы. Москва: Изд-во ИБХФ РАН, 2002. — С.5.
  35. Г. А., Дмитриев А. В., Исаев П. П. Анализ количественных соотношений структура анестезирующая активность ацетанилидов с применением регрессионных и квантово-химических методов // Химико-фармацевтический журнал. 2001. Т. 35. № 6. С.54−56.
  36. Г. А., Дмитриев А. В., Исаев П. П. Взаимодействие местных анестетиков с модельными ионными каналами // Биофизика. 2002. Т.47. № 3. С. 506−511.
  37. Г. А., Дмитриев А. В., Исаев П. П. Влияние вязкости растворителя на молекулярную динамику грамицидинового канала // Известия вузов. Серия Химия и химическая технология. 2001. Т. 44. № 6. С. 560−568.
  38. Г. А., Дмитриев А. В., Исаев П. П. Математическое моделирование межмолекулярных взаимодействий в системе анестетик-биомембрана // Вестник КГУ им. Н. А. Некрасова. 2000. Т. 2. № 2. С. 50−55.
  39. Г. А., Дмитриев А. В., Исаев П. П. Механизм местной анестезии: ориентационные эффекты на дальних расстояниях // Биофизика. 2000. Т.45. № 6. С. 1066−1071.
  40. Г. А., Дмитриев А. В., Исаев П. П. Моделирование поляризационных взаимодействий в системе спирт биомембрана // Известия вузов. Сер. Химия и хим. технология. 2003. Т. 46. № 6. С. 101 103.
  41. Г. А., Дмитриев А. В., Исаев П. П. Моделирование растворимости местных анестетиков ряда фенилпропиофенона // Современные проблемы информатизации: Тезисы докладов 5-й Республиканской электронной научной конференции. Воронеж, 2000. — С.21.
  42. Г. А., Дмитриев А. В., Исаев П. П. Поляризационные взаимодействия в системе анестетик-биомембрана: активность производных ацетанилида // Журнал физической химии. 2001. Т. 75. № 10. С. 1716−1720.
  43. Г. А., Дмитриев А. В., Исаев П. П., Зайнутдинов А. В., Рожков А. Н. Влияние базиса на точность оценки дипольного момента молекулы ацетанилида // Журнал структурной химии. 2001. Т. 42. № 6. С. 1222−1225.
  44. Г. А., Дмитриев А. В., Николаевский В. А., Исаев П. П. Дескрипторы молекулярной формы в исследованиях местноанестезирующей активности производных фенилпропиофенона // Прикладные информационные аспекты медицины. 2000. Т. 3. № 2. С. 46−50.
  45. Г. А., Шмелев Р. В., Исаев П. П., Дмитриев А. В., Лапшина Н. П. Моделирование биологической активности местноанестезирующих и антиаритмических препаратов // 3-й Съезд биофизиков России: тезисы докладов. Воронеж: Изд-во ВГУ, 2004. с. 525−526.
  46. И.Г. Введение в теорию межмолекулярных взаимодействий. М.: Наука, 1982.312 с.
  47. Т. Компьютерная химия: пер. с англ. М.: Мир, 1990. 383 с.
  48. Компьютеры и суперкомпьютеры в биологии / Под ред. В. Д. Лахно и М. Н. Устинина. Москва-Ижевск: Институт компьютерных исследований, 2002. 500 с.
  49. И. Ионы, электроды, мембраны. М.: Мир, 1983. 264 с.
  50. Э.И. Явления переноса в живых системах. М.: Мир, 1977. 520 с.
  51. Л.Д., Лифшиц Е. М. Квантовая механика (нерелятивистская теория). М.: Наука, 1989. 768 с.
  52. Л.Д., Лифшиц Е. М. Теория поля. М.: Наука, 1973. 504 с.
  53. А. Биохимия. М.: Мир, 1974. с. 869, 655, 661.
  54. С.Е., Дмитриев А. В., Исаева Г. А., Исаев П. П. Теоретическое и экспериментальное исследование ионных потоков через мембрану // Биология наука 21-го века: Тезисы докладов 6-й Пущинской конференции молодых ученых. — Пущино: Изд-во ПНЦ, 2002.
  55. С.Е., Дарнелл Дж. Общая вирусология. М.: Мир, 1967. с. 367.
  56. B.C., Пастушенко В. Ф., Чизмаджев Ю. А. Теория возбудимых сред. М.: Наука, 1981. 275 с.
  57. И.В., Дмитриев А. В. Предсказание первичной и третичной структуры D-изомеров модельных белков функционально эквивалентных природным мембранным белкам // Международная конференция «Ломоносов-2005»: тезисы докладов. Москва, 2005. — С.42−44.
  58. И.В., Дмитриев А. В. Разделение дальних и ближних взаимодействий в расчетах распределения энергии в аксиально-симметричных мембранных каналах // Международная конференция «Ломоносов-2005″: тезисы докладов. Москва, 2005. С.40−41.
  59. Межмолекулярные взаимодействия: от двухатомных молекул до биополимеров / Под ред. Б. Пюльмана. М.: Мир, 1981. 592 с.
  60. Мембраны: ионные каналы / Сб. статей. Под ред. Ю. А. Чизмаджева. М.: Наука, 1981.320 с.
  61. В.И., Симкин Б. Я., Миняев P.M. Теория строения молекул (электронные оболочки): учебное пособие для университетов. М.: ВШ, 1979. 407 с.
  62. С. Л. Сравнение структуры селективных фильтров кальциевого и натриевого каналов в возбудимых мембранах // ДАН СССР. 1983. Т. 268. № 9. С. 731−735.
  63. Ю.В. Физико-химические детерминанты физиологической эволюции: от протоклетки к человеку // Российский физиологический журнал. 2006. Т. 92. С. 57−72.
  64. Дж.Г., Мартин А. Р., Валлас Б.Дж., Фукс П. А. От нейрона к мозгу. / Пер. с англ. П. М. Балабана и др. М.: Изд-во Едиториал УРСС, 2003. 600 с.
  65. М.И., Трифонов Е. Д. Применение теории групп к квантовой механике. М.: Наука, 1967. 400 с.
  66. А.Г., Русаков А. В., Погорелова В. Н. Цитоплазматический K/Na-баланс в мышечной клетке сердца при кислород-субстратномдефиците у молодых и старых крыс // Биофизика. 2006. Т. 51. № 5. С. 852−858.
  67. Полуэмпирические методы расчета электронной структуры. Т. 1. под ред. Дж. Сигала: пер. с англ. М.: Мир, 1980. 350 с.
  68. Полуэмпирические методы расчета электронной структуры. Т. 2. под ред. Дж. Сигала: пер. с англ. М.: Мир, 1980. 370 с.
  69. Рис Э., Стернберг М. Введение в молекулярную биологию: от клеток к атомам. М.: Мир, 2002. 350 с.
  70. А.Б. Биофизика. Т.1 и 2. М.: Изд-во МГУ, 1987. Т. 1. 319 с. Т. 2. 302 с.
  71. Ю.О. Антибиотики как ингибиторы биохимических процессов. М.: Наука, 1968. 265 с.
  72. А.С. Биосинтез белков, мир РНК и происхождение жизни // Вестник РАН. 2001. Т. 71. С. 320−328.
  73. Н.Ф., Пупышев В. И. Квантовая механика молекул и квантовая химия. М.: МГУ, 1991. 600 с.
  74. В.А., Сидорова В. В. Хиральная безопасность биосферы как биофизическая проблема // Биофизика. 2004. Т. 49. № 3. С. 510−520.
  75. В.А., Тихонов А. Н., Яковенко JI.B. Физические механизмы функционирования биологический мембран. М.: Изд-во МГУ, 1987. 350 с.
  76. А.Н., Погребная А. Ф., Романовский Ю. М. Электростатические взаимодействия в каталитических центрах F1-АТФазы // Биофизика. 2003. Т. 48. С. 1052−1070.
  77. Д.М., Шилдс Д. Молекулярная биология клетки. Руководство для врачей. М.: БИНОМ-Пресс, 2003. 272 с.
  78. С. Метод молекулярных орбиталей: пер. с японск. М.: Мир, 1983.461 с.
  79. Р.И. Кровообращение и старость. Киев: Здоровье, 1965. с. 235.
  80. Р.И. Материалы X научной конференции по возрастной морфологии, физиологии и биохимии. Т. 2, ч. II. М., АН СССР, АПН СССР, 1971. с. 291.
  81. Р.И. Роль асимметрии симметрии в процессах происхождения жизни на Земле // Журн. Всес. хим. общества им. Д. И. Менделеева. 1980. Т. 25. № 4. С. 418−425.
  82. Д.С. Проблема происхождения жизни и мышления с точки зрения современной физики // Успехи физических наук. 2000. Т. 170. № 2. С. 157−183.
  83. Ю.А., Черномордик JI.B., Пастушенко В. Ф., Абидор И. Г. / Итоги науки и техники. Биофизика мембран. Т. 2. М.: ВИНИТИ, 1982. С. 161−266.
  84. В., Андреас Э., Райнер Ф. Физика процессов эволюции. Пер. с нем. М.: Эдиториал УРСС, 2001. 328 с.
  85. JI.B., Твердислов В. А. Поверхность мирового океана и физические механизмы предбиологической эволюции // Биофизика. 2004. Т. 48. С. 1137−1146.
  86. Adcock С., Smith G.R., Sansom M.S.P. Electrostatics and the Ion Selectivity of Ligand-Gated Channels // Biophys. J. 1998. V. 75. P. 12 111 222.
  87. Aidley D.J., Stanfield P.R. Ion channels. Molecules in action. Cambridge University Press, 1996. 307 p.
  88. Allen T.W., Chung S.H. Brownian dynamics study of an open-state KcsA potassium channel // Biochim. Biophys. Acta. 2001. V. 1515. P. 83−91.
  89. Allen T.W., Kuyucak S., Chung S.H. Molecular Dynamics Study of the KcsA Potassium Channel // Biophys. J. 1999. V. 77. P. 2502−2516.
  90. Anderson D.G., Shirts R.B., Cross T.A., Busath D.D. Noncontact Dipole Effects on Channel Permeation. V. Computed Potentials for Fluorinated Gramicidin// Biophys. J. 2001. V. 81. P. 1255−1264.
  91. Aqvist J., Luzhkov V. Ion permeation mechanism of the potassium channel //Nature. 2000. V. 404. P. 881−884.
  92. Armstrong N., Gouaux E. Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: crystal structures of the GluR2 ligand binding core //Neuron. 2002. V. 28. P. 165−181.
  93. Armstrong N., Sun Y., Chen G.-Q., Gouaux E. Structure of a glutamate receptor ligand binding core in complex with kainite // Nature. 1998. V. 395. P. 913−917.
  94. A.S., Barsukov I.L., Bystrov V.F., Lomize A.L., Ovchinnikov Y.A. 1H-NMR Study of Gramicidin A Transmembrane Ion Channel // FEBS Letters. 1985. V. 186. P. 168−174.
  95. Ashkroft F.M. Ion Channels and Disease. San Diego: Academic Press, 2000. 293 c.
  96. Aswad D.W., Paranandi M.V., Schurter B.T. Isoaspartate in peptides and proteins: formation, significance, and analysis // J. Pharm. Biomed. Anal., 2000, V. 21, P. 1129−1136.
  97. Aswad, D.W. Deamidation and Isoaspartate Formation in Peptides and Proteins. CRC Press, Boca Raton, FL, 1995
  98. Bada J.L. In vivo racemization in mammalian proteins // Methods Enzymol. 1984, V. 106, P. 98−115.
  99. Bada J.L., Protsch R. Racemization reaction of aspartic acid and its use in dating fossil bones // Proc. Natl. Acad. Sci. USA, 1973, V. 70, P. 13 311 334.
  100. Bailey A.J. Molecular mechanisms of ageing in connective tissues // Mech. Ageing Dev., 2001, V. 122, P. 735−755.
  101. Baker O.S., Larsson H.P., Mannuzzu L.M., Isacoff E.Y. Three transmembrane conformations and sequence-dependent displacement of the S4 domain in Shaker K+ channel gating // Neuron. 1998. V. 20. P. 12 831 294.
  102. Balbuena P.B., Seminario J.M. Molecular Dynamics. V. 7. USA: Elsevier, 1999. 970 p.
  103. Berneche S., Roux B. Energetic of ion conduction through the K+ channel // Nature. 2001. V. 414. P. 73−77.
  104. Berneche S., Roux B. Molecular Dynamics of the KcsA K+ Channel in a Bilayer Membrane // Biophys. J. 2000. V. 78. P. 2900−2917.
  105. Bertrand D., Galzi J.L., Hussy N. Mutations in the Channel Domain of a Neuronal Nicotinic Receptor Convert Ion Selectivity from Cationic to Anionic //Nature. 1992. V. 359. P. 500−505.
  106. Bezanilla F. Voltage sensor movements // J. Gen. Physiol. 2002. V. 120. P. 465−473.
  107. S.K., Banerjee A.B. // Can. J. Microbiol. 1969. V. 15. P. 1107−1113.
  108. Biervert C., Schroeder B.C., Kubisch C., Berkovic S.F., Propping P., Jentsch T.J., Steinlein O.K. A potassium channel mutation in neonatal human epilepsy // Science. 1998. V. 279. V. 403−406.
  109. P.M., Sfrominger J.L. // Bacteriol. Rev. 1974. V. 38. P. 291−302.
  110. Bogusz S., Boxer A., Busath D. P-barrel structure for the voltage-activated potassium channel //Protein Engineering. 1992. V. 5. P. 285−293.
  111. Booth T.D., Wahnon D., Wainer I.W. Is chiral recognition a three-point process? // Chirality. 1997. V. 9. P. 96−98.
  112. Borhani D.W., Harter T.M., Petrash J.M. The crystal structure of the aldose reductase. NADPH binary complex // J. Biol. Chem. 1992. V. 267. P. 24 841−24 847.
  113. Brady J.D., Ju J., Robins S.P. Isoaspartyl bond formation within N-terminal sequences of collagen type I: implications for their use as markers of collagen degradation // Clin. Sci., 1999, V. 96, P. 209−215.
  114. Braun W. Local Deformation Studies of Chain Molecules: Differential Conditions for Changes of Dihedral Angles // Biopolymers. 1987. V. 26. P. 1691−1704.
  115. Brennan T.V., Clarke S. Spontaneous degradation of polypeptides at aspartyl and asparaginyl residues-effects of the solvent dielectric // Protein Sci., 1993, V. 2, P. 331−338.
  116. Brooks B.R., Bruccoleri R.E., Olafson B.D., States D.J., Swaminathan S., Karplus M. CHARMM: A Program for Macromolecular Energy Minimization and Dynamics Calculations // J. Comput. Chem. 1983. V. 4. P. 187−217.
  117. Brooks 111, Karplus C.M., Pettit B.M. Proteins: a theoretical perspective of dynamics, structure and thermodynamics. New York: John Willey & Sons, 1988. 543 p.
  118. Brown R.H. Ion channel mutations in periodic paralysis and related myotonic diseas // Annals of the New York Academy of Sciencees. 1993. V. 707. P. 305−316.
  119. Browne D.L., Brunt E.R., Griggs R.C., Nutt J.G., Gancher S.T., Smith E.A., Litt M. Identification of two new KCNA1 mutations in episodic ataxia’mvokvmia families // Hum Mol Genet. 1995. V. 4. P. 1671−1672.
  120. Browne D.L., Gancher S.T., Nutt J.C., Brunt E.R.P., Smith E.A. Episodic ataxia/myokomia syndrome is associated with point mutations in the human potassium channel gene // KCNA1. Nature Genetics. 1994. V. 8. P. 136−140.
  121. Brunauer L.S., Clarke S., Age-dependent accumulation of protein residues which can be hydrolyzed to d-aspartic acid in human erythrocytes // J. Biol. Chem, 1986, V. 261, P. 12 538−12 543.
  122. Bruner S. D, Norman D.P.G, Verdine G.L. Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA // Nature, 2000, v. 403, p. 859−866.
  123. Busath D.D. The Use of Physical Methods in Determining Gramicidin Channel Structure and Function // Annual Review of Physiology. 1993. V. 55. P. 473−501.
  124. Butler A, Wei A, Baker K, Salkoff L. A family of putative potassium channel genes in Drosophila// Science. 1989. V. 243. P. 943−947.
  125. Bycroft B.W. Comprehensive Organic Chemistry. Vol. 5. Oxford: Pergamon Press, 1979. p. 241.
  126. Cannon S.C. Sodium channel detects in myotonia and periodic paralysis // Annu RevNeurosci. 1996. V. 19. P. 141- 164.
  127. Capasso S. Estimation of the deamidation rate of asparagine side chains // Peptide Res, 2000, V. 55, P. 224−229.
  128. Capasso S, Di Cerbo P. Kinetic and thermodynamic control of the relative yield of the deamidation of asparagine and isomerization of aspartic acid residues // J. Peptide Res, 2000, V. 56, P. 382−387.
  129. Capasso S, Mazzarella L, Sica F, Zagari A, Salvadori S. Spontaneous cyclization of the aspartic acid side chain to the succinimide derivative // J. Chem. Soc. Chem. Comm., 1992, V. 12, P. 919−921.
  130. Capasso S, Mazzarella L, Zagari A. Deamidation via cyclic imide of asparaginyl peptides: dependence on salts, buffers and organic solvents // Peptide Res, 1991, V. 4, P. 234−238.
  131. Capasso S, Salvadori S. Effect of the three-dimensional structure on the deamidation reaction of ribonuclease A // J. Peptide Res, 1999, V. 54, P. 377−382.
  132. Cardenas A. E, Coalson R. D, Kurnikova M.G. Three-Dimensional Poisson-Nernst-Planck Theory Stidies: Influence of Membrane Electrostatics on Gramicidin A Channel Conductance // Biophys. J. 2000. V. 79. P. 80−93.
  133. Certain P. R, Bruch L.W. International review of science, Phys. Chem. Series 1. V. 1. Ch. 4. Butterworth. L, 1972. 450 p.
  134. Chandy K. G, Douglas J, Gutman G. A, Jan L, Joho R, Kalzmavek L, MacKinnon D, North R. A, Numa S, Philipson L, Ribera A.B. Simplified gene nomenclature // Nature. 1991. V. 352. P. 26.
  135. Charlier С., Singh N.A., Ryan S.G., Lewis T.B., Reus B.E., Leach R.J., Leppert M. A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family // Nat Genet. 1998. V. 18. P. 53−55.
  136. Chazin W.J., Kossiakoff A.A. The role of secondary and tertiary structures in intramolecular deamidation of proteins. In: Aswad, D.W. (Ed.), Deamidation and Isoaspartate Formation in Peptides and Proteins. CRC Press, Boca Raton, FL, 1995. pp. 193−206.
  137. Chen D.P., Xu L., Tripathy A., Meissner G., Eisenberg B. Selectivity and Permeation in Calcium Release Channel of Cardiac Muscle: Alkali Metal Ions // Biophys. J. 1999. V. 76. P. 1346−1366.
  138. Chiu S.W., Subramanian S., Jakobsson E. Simulation Study of a Gramicidin/Lipid Bilayer System in Excess Water and Lipid. I. Structure of the Molecular Complex//Biophys. J. 1999. V. 76. P. 1929−1938.
  139. Choi K.L., Mossman C., Aube J., Yellen G. The internal quaternary ammonium receptor site of Shaker potassium channel // Neuron. 1993. V. 10. P. 533−541.
  140. Chung S.H., Hoyles M., Allen Т., Kuyucak S. Study of Ionic Currents across a Model Membrane Channel Using Brownian Dynamics // Biophys. J. 1998. V. 75. P. 793−809.
  141. Clarke S. Propensity for spontaneous succinimide formation from aspartyl and asparaginyl residues in cellular proteins // Int. J. Peptide Protein Res., 1987, V. 30, P. 808−821.
  142. Clementy E. Computational aspects for large chemical systems. Berlin: Springer Verlag, 1980. 184 p.
  143. E., Habitz P. // J. Chem. Phys. 1983. V. 78. P. 6841−6848.
  144. Cloos P.A.C., Fledelius C. Collagen fragments in urine derived from bone resorption are highly racemized and isomerized: a biological clock of protein aging with clinical potential // Biochem. J. 2000, V. 345, P. 473−480.
  145. Coffey W.T., Kalmykov Y.P., Wladron J.T. The Langevin Equation, with Applications in Physics, Chemistry, and Electrical Engineering. New Jersey: World Scientific, 1996. 480 p.
  146. Collins M.J., Waite E.R., van Duin A.C.T. Predicting protein decomposition: the case of aspartic-acid racemization kinetics // Philos. Trans. R. Soc. London 354 (Ser. B), 1999, P. 51−64.
  147. Conway B.E. Ionic hydration in chemistry and Biophysics. New York: Elsewier Science, 1981. 301 p.
  148. Copeland R.A. Enzymes: a practical introduction to structure, mechanisms and data analysis. New York: John Wiley & Sons, 2000. p. 149−150.
  149. J.J., Srinivasan N.G. // Biochem. 1966. V. 5. P. 1185−1195.
  150. Corry В., Allen T.W., Kuyucak S., Chung S.H. Mechanism of Permeation and Selectivity in Calcium Channels // Biophys. J. 2001. V. 80. P. 195−214.
  151. Corry В., Allen T.W., Kuyucak S., Chung S.H. Mechanism of Permeation and Selectivity in Calcium Channels // Biophys. J. 2001. V. 80. P. 195−214.
  152. Corry В., Kuyucak S., Chung S. Tests of Continuum Theory as Models of Ion Channels. II. Poisson-Boltzmann Theory versus Brownian Dynamics // Biophys. J. 2000. V. 78. P. 2364−2381.
  153. CovaiTubias M., Wei A., Salkoff L. Shaker, Shal, Shab and Shaw express independent K+ current systems // Neuron. 1991. V. 7. P. 763−773.
  154. Cowan S.W., Schirmer Т., Rummel G., Steiert M., Ghosh R., Pauptit R.A., Rosenbusch J.P. Crystal Structure Explain Functional Properties of Two E. Coli Porins //Nature. 1992. V. 358. P. 727−733.
  155. Creighton Т.Е. Proteins. New York: John Willey & Sons, 1993. 505 p.
  156. Crozier P. S., Henderson D., Rowley R.L., Busath D.D. Model Channel Ion Currents in NaCl-Extended Simple Point Charge Water Solution with
  157. Applied-Field Molecular Dynamics // Biophys. J. 2001. V. 81. P. 30 773 089.
  158. Cull-Candy S., Brickley S. and Farrant M. NMDA receptor subunits: diversity, development and disease // Curr. Opin. Neurobiol. 2001. V. 11. P. 327−335.
  159. Curran M.E., Splawski I., Timothy K.W., Vincent G.M., Green E.D., Keating M.T. A molecular basis for cardiac arrhythmia: HERG mutations cause cause long QT syndrome // Cell. 1995. V. 80. P. 795−803.
  160. David C.L., Orpiszewski J., Zhu X.C., Reissner K.J., Aswad D.W. Isoaspartate in chrondroitin sulfate proteoglycans of mammalian brain // J. Biol. Chem., 1998, V. 273, P. 32 063−32 070.
  161. Davies J.S. In: Chemistry and Biochemistry of the Amino Acids. Peptides. Proteins. Vol. 4. New York, Dekker, 1977, p. 1.188. de Marco C.//Enzymologia. 1969. V. 36. P. 111−120.
  162. DeVry C.G., Clarke S. Polymorphic forms of the protein L-isoaspartate (D-aspartate) O-methyltransferase involved in the repair of age-damaged proteins // J. Hum. Genet., 1999, V. 44, P. 275−288.
  163. Di Salvo M.L., Delle Fratte S., Maras В., Bossa F., Wright H.T., Schirch V. Deamidation of asparagine residues in a recombinant serine hydroxymethyltransferase // Arch. Bioch. Biophys., 1999, V. 372, P. 271 279.
  164. Dittrich M., Daut J. Voltage-dependent K+ current in capillary endothelial cells isolated from guinea pig heart // Am. J. Physiol. 1999. V. 277. P. 119 127.
  165. Dmitriev A., Isaeva G., Isaev P. Analysis of residuals: statistical method in QSAR studies // Abstracts of the 7th Scandinavian Symposium on Chemometrics. 2001. — V.3. — P.20−22.
  166. Dmitriev A.V., Baryshnikov V.G., Markov I.V., Tverdislov V.A. Band and point statistical estimation of channelforming polypeptides potential /
  167. Progress in Chemometrics Research. 2005. USA, NY: Nova Science Publishers, P.30−45.
  168. Dobbs K. D, Hehre W.J. Molecular orbital theory of the properties of inorganic and organometallic compounds. 4. Extended basis sets for third-and fourth-row, main group elements // J. Comput. Chem. 1986. V. 7. P. 359−378.
  169. Dobbs K. D, Hehre W.J. Molecular orbital theory of the properties of inorganic and organometallic compounds. 5. Extended basis sets for first-row transition metals // J. Comput. Chem. 1987. V. 8. P. 861−879.
  170. Dobbs K. D, Hehre W.J. Molecular orbital theory of the properties of inorganic and organometallic compounds. 6. Extended basis sets for second-row transition metals // J. Comput. Chem. 1987. V. 8. P. 880−893.
  171. Dopico A.M., Widmer H, JWang-G.^Lemos J. R, Treistman S.N. Rat supraoptic magnocellular neurons show district large conductance, Ca2±activated K+ channel subtypes in cell bodies versus nerve endings // J. Physiol. (London). 1999. V. 519. P. 101−114.
  172. Doyle D. A, Morais C. J, Pfuetzer R. A, Kuo A, Gulbis J. M, Cohen S. L, Chait B. T, MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity // Science. 1998. V. 280. P. 69−77.
  173. Dunlop D. S, Neidle A, McHale D, Dunlop D. M, Lajtha A. The presence of free D-aspartic acid in rodents and man // Biochem. Biophis. Res. Commun. 1986. V. 141. P. 27.
  174. Dunning J.T.H, Hay P.J. Gaussian basis set for molecular calculation / Methods of electronic structure theory. Modern theoretical chemistry. Schaefer H.F. (Ed.) V. 3. Plenum Press. New York, 1977. pp. 1−27.
  175. Eisenberg R.S. Channels as Enzymes // J. Memb. Biol. 1990. V. 115. P. 112.
  176. Eisenberg R.S., Klosek M.M., Schuss Z. Diffusion as a Chemical Reaction: Stochastic Trajectories between Fixed Concentrations // J. Chem. Phys. 1995. V. 102. P. 1767−1780.
  177. Eisenman G. Cation selective electrodes and their mode of operation // Biophys. J. 1962. V. 2. P. 259−323.
  178. Eisenman G. The influence of Na, K, Li, Rb and Cs on cellular potentials and related phenomena // Bol. Inst. Estud. Med. Biol. 1963. V. 21. P. 155 183.
  179. Eisenman G., Horn R. Ionic selectivity revisited: The role of kinetic and equilibrium processes in ionic permeation through channels // J. Membr. Biol. 1983. V. 76. P. 197−225.
  180. Eisenman G., Krasne S. The ionic selectivity of carrier molecules, membranes and enzymes / MTP International Review of Science. V. 2. London: Butterworths, 1975. p. 27−59.
  181. Eyring H., Lumry R., Woodbury J.W. Some applications of modern rate theory to physiological systems // Record of Chemical Progress. 1946. V. 100. P. 100−114.
  182. Fabian H., Szendrei G.I., Mantsch H.H., Greenberg B.D., Otvos L. Synthetic posttranslationally modified human a-beta peptide exhibits a markedly increased tendency to form beta-pleated sheets in vitro // Eur. J. Biochem., 1994, V. 221, P. 959−964.
  183. Feller S.E., Yin D., Pastor R.W., MacKerell A.D. Molecular Dynamics Simulation of Unsaturated Lipids at Low Hydration: Parametrization and Comparison with Diffraction Studies // Biophys. J. 1997. V. 73. P. 22 692 279.
  184. Fisher G.H., Garcia N.M., Payan I.L., Cadilla-Perzrios R., Sheremata W.A., Man E.H. D-aspartic acid in purified myelin and myelin basic protein // Biochem. Biophys. Res. Comm., 1986, P. 683−687.
  185. Fu D., Libson A., Miercke L.J.W., Weitzman C., Nollert P., Krucinski J., Stroud R.M. Structure of a glycerol conducting channel and the basis for its selectivity// Science. 2000. V. 290. P. 481−486.
  186. Fu S.-J., Fan C.-C., Song H.-W., Wei F.-Q. Age estimation using a modified HPLC determination of ratio of aspartic acid in dentin // Forensic Sci. Int., 1995, V. 73, P. 35−40.
  187. Fujii N. D-Amino Acid in Elderly Tissues // Biol. Pharm. Bull. 2005. V. 28(9). P. 1585−1589.
  188. Fujii N., Momose Y., Harada K. Kinetic study of racemization of aspartyl residues in model peptides of aA-crystallin // Int. J. Peptide Protein Res., 1996, V. 48, P. 118−122.
  189. Fujii N., Momose Y., Ishibashi Y., Uemura Т., Takita M., Takehana M. Specific racemization and isomerization of the aspartyl residue of A-crystallin due to UV-B irradiation // Exp. Eye Res., 1997, V. 65, P. 99−104.
  190. Fujii N., Momose Y., Ishii N., Takita M., Akaboshi M., Kodama M. The mechanism of simultaneous stereoinversion, racemization, and isomerization at specific aspartyl residues of aged lens protein // Mech. Ageing Develop., 1999, V. 107, P. 347−358.
  191. Fujii N., Shimo-Oka Т., Ogiso M., Momose Y., Kodama Т., Kodama M., Akaboshi M. Localization of biologically uncommon d-beta-aspartate-containing alpha A-crystallin in human eye lens // Mol. Vis., 2000, V. 6, P. 1−5.
  192. Fujii N, Takemoto L. J, Momose Y, Matsumoto S, Hiroko K, Akaboshi M. Formation of four isomers at the Asp-151 residue of aged human aA-crystallin by natural aging // Biochem. Biophys. Res. Comm., 1999, V. 265, P. 746−751.
  193. Fujii N, Tamanoi I, Muraoka S, Joshima H, Kashima M, Harada K. D-aspartic acid in aged mouse skin and lens // J. Radiation Res, 1987, V. 28, P. 117−125.
  194. Furukawa H, Gouax E. Mechanisms of activation, inhibition and specificity: crystal structures of the NMDA receptor NR1 ligand-binding core // EMBO J. 2003. V. 22. P. 2873−2875.
  195. Galletti P, Ingrosso D, Manna C, Clemente G, Zappia V. Protein damage and methylationmediated repair in the erythrocyte // Biochem. J, 1995, V. 306, P. 313−325.
  196. Gandhi C. S, Isacoff E.Y. Molecular models of voltage sensing // J. Gen. Physiol. 2002. V. 120. P. 455−463.
  197. Gay L. A, Stanfield P.R. The selectivity of the delayed potassium conductance of frog skeletal muscle fibres // Pflugers Arch. 1978. V. 378. P. 177−179.
  198. Geiger T, Clarke S. Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides // J. Biol. Chem, 1987, V. 262, P. 785−794.
  199. George J. C, Bada J, Zeh J, Scott L, Brown S. E, O’Hara T, Suydam R. Age and growth estimates of bowhead whales (Balaena mysticetus) via aspartic acid racemization // Can. J. Zool. Rev. Can. Zool, 1999, V. 77, P. 571−580.
  200. Gineyts E, Cloos P.A.C, Borel O, Grimaud L, Delmas P. D, Garnero P. Racemization and isomerization of type I collagen C-telopeptides in human bone and soft tissues: assessment of tissue turnover // Biochem. J, 2000, V. 345, P. 48185.
  201. M.E., Sethy V.H., Davis T.L. // Mov. Disord. 1993. V. 8. P. 147 150.
  202. Glasstone S.K., Laidler K.J., Eyring H. The theory of Rate Processes. New York: McGraw-Hill, 1941. 403 p.
  203. Gray C.G., Gubbins K.E. Theory of molecular fluids. Oxford: Clarendon Press, 1984. V. 1. 626 p.
  204. Grayson P., Tajkhorshid E., Schulten K. Mechanisms of selectivity in channels and enzymes studied with interactive molecular dynamics // Biophys. J. 2003. V. 85. P. 36−48.
  205. Groenen P.J.T.A., van den Ijssel P.R.L.A., Voorter C.E.M., Bloemendal H., de Jong W.W. Site-specific racemization in aging A-crystalin // FEBS Lett., 1999, V. 269, P. 109−112.
  206. Guardia E., Rey R., Padro J.A. Na±Na+ and Cl-Cl- Ion Pairs in Water: Mean Force Potentials by Constrained Molecular Dynamics // J. Chem. Phys. 1991. V. 95. P. 2823−2831.
  207. Guidoni L., Torre V., Carloni P. Potassium and Sodium Binding to the Outer Mouth of the K+ channel // Biochemistry. 1999. V. 38. P. 8599−8604.
  208. Guidoni L., Torre V., Carloni P. Water and potassium inside the KcsA K+ channel // FEBS Lett. 2000. V. 477. P. 37−42.
  209. Hagivara S., Takanashi K. The anomalous rectification and cation selectivity of the membrane of a starfish egg cell // J. Membr. Biol. 1974. V. 18. P. 6180.
  210. ITagler A.T., Lifson S., Huler E. Peptides, Polypeptides and Proteins. Eds. E.R. Blout. New York: Willey, 1974. 323 p.
  211. Hamase K., Homma H., Takigawa Y., Fukushima Т., Santa Т., Imai K. Regional distribution and postnatal changes of d -amino acids in rat brain // Biochem. Biophis. Acta. 1997. V. 1334. P. 214.
  212. Hanna M.G., Wood N.V., Kullmann D.M. Ion channels and neurological disease: DNA based diagnosis is now possible, and ion channels may beimportant in common paroxysmal disorders // J Neurol Neurosurg Psychiatry. 1998. V. 65. P. 427−431.
  213. Hashimoto A., Oka T. Free D-aspartate and D-serine in the mammalian brain and periphery // Prog. Neurobiol. 1997. V. 52. P. 325.
  214. Heginbotham L., LeMasurier M., Kolmakova-Partensky L., Miller C. Single Streptomyces lividans K+ channels: functional asymmetries and sidedness of proton activation //J. Gen. Physiol. 1999. V. 114. P. 551−559.
  215. Helfand E. Flexible as Rigid Constraints in Statistical Mechanics // J. Chem. Phys. 1979. V. 71. P. 5000−5007.
  216. Helfman P.M., Bada J.L. Aspartic acid racemisation in dentine as a measure of ageing //Nature, 1976, V. 262, P. 279−281.
  217. Helfman P.M., Bada J.L. Aspartic acid racemization in tooth enamel from living humans // Proc Natl. Acad. Sci. USA, 1975, V. 72, P. 2891−2894.
  218. Helfman P.M., Bada J.L., Shou M.-Y. Considerations on the role of aspartic acid racemization in the aging process // Gerontology, 1977, V. 23, P. 419— 425.
  219. Hienmann S.H., Terlau H., Stuhmer W., Imoto K., Numa S. Calcium channel characteristics conferred on the sodium channel by single mutations // Nature. 1992. V. 356. P. 441−443.
  220. Hill T.L. Free energy transduction in biology. New York: Academic Press, 1977. 365 p.
  221. Hille B. Ionic channels of excitable membranes. 2nd ed. Sunderland: Sinauer Associates, 1992. 487 p.
  222. Hille B. Potassium channels in myelinated nerve. Selective permeability to small cations // J. Gen. Physiol. 1973. V. 61. P. 669−686.
  223. Hindley J. DNA Sequencing. V. 10. USA: Elsevier, 1983. 384 p.
  224. Hirsch J.R., Weber G., Kleta I., Schlatter E. A novel cGMP-regulated K+ channel in immortalized human kidney epithelial cells // J. Physiol. (London). 1999. V. 519. P. 645−655.
  225. Hirschberg В., Maylie J., Adelman J.P., Marrion N.V. Gating properties of single SK channels in hippocampal CA1 pyramidal neurons // Biophys. J. 1999. V. 77. P. 1905−1913.
  226. P.D. // J. Biol. Chem. 1965. V. 240. P. 1654−1663.
  227. Honorio K.M., Da Silva A.B.F. An AMI study on the electron-donating and electron-accepting character of biomolecules // Int. J. Quant. Chem. 2003. V 95. P. 126−132.
  228. Horn R. Coupled movements in voltage-gated ion channels // J. Gen. Physiol. 2002. V. 120. P. 449−453.
  229. Hymphreys D.D., Friesner R.A., Berne B.J. A Multiple-Time-Step Molecular Dynamics Algorithm for Macromolecules // J. Phys. Chem. 1994. V. 98. P. 6885−6892.
  230. Im W., Seefeld S., Roux B. A Grand Canonical Monte Carlo Brownian Dynamics Algorithm for Simulating Ion Channels // Biophys J. 2000. V. 79. P. 788−801.
  231. Inaba M., Gupta K.C., Kuwabara M., Takahashi Т., Benz E.J., Maede Y. Deamidation of human erythrocyte protein 4.1: possible role in ageing // Blood, 1992, V. 79, P. 3355−3361.
  232. Ingrosso D., Perna A.F. D-amino acids in aging erythrocytes // EXS. 1998. V. 85. P. 119−141.
  233. Ingrosso D., Perna A.F. D-amino acids in aging erythrocytes // EXS, 1998, V. 85, P. 119−141.
  234. Isacoff E, Y., Jan Y.N., Jan L.Y. Putative receptor for the cytoplasmic inactivation fgate in the Shaker K+ channel // Nature. 1991. V. 353. P. 8690.
  235. Isacoff E.Y., Jan Y.N., Jan L.Y. Evidence for the formation of heteromultimeric potassium channel in Xenopus oocytes // Nature. 1990. V. 345. P. 530−534.
  236. Jez J.M., Flynn T.G., Penning T.M. A new nomenclature for the aldo-keto reductase superfamily//Biochem. Pharmacol. 1997. V. 54. P. 639−647.
  237. Jiang Y. Crystal Structure and Mechanism of a Calcium-Gated Potassium Channel //Nature. 2002. V. 417. P. 515−520.
  238. Jiang Y. The Open Pore Conformation of Potassium Channel // Nature. 2002. V. 417. P. 523−526.
  239. Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait B. T, MacKinnon R. X-ray structure of a voltage-dependent K+ channel // Nature. 2003. V. 423. P. 33−41.
  240. Jiang Y, Ruta V, Chen J, Lee A, MacKinnon R. The principle of gating. charge movement in a voltage-dependent K+ channel // Nature. 2003. V. 423. P. 42−48.
  241. Johnson B. A, Aswad D.W. Identification and topography of substrates for protein carboxyl methylrransferase in synaptic membranes and myelin-enriched fractions of bovine and rat brain // J. Neurochem, 1985, V. 45, P. 1119−1127.
  242. Johnson B. A, Ngo S. Q, Aswad D.W. Widespread phylogenetic distribution of a protein methyltransferase that modifies L-isoaspartyl residues // Biochem. Int., 1991, V. 24, P. 841−847.
  243. Jurkat R. K, Lerche H, Mitrovic N, Lehmann H.F. Teaching course: ion channelopathies in neurology // J Neurol. 1999. V. 246. P. 758−763.
  244. Kagan R. M, McFadden H. J, McFadden P. N, Oconnor C, Clarke S. Molecular phylogenetics of a protein repair methyltransferase // Сотр. Biochem. Physiol. B, Biochem. Mol. Biol, 1997, V. 117, P. 379−385.
  245. Kagan R. M, Niewmierzycka A, Clarke S. Targeted gene disruption of the Caenorhabditis elegans L- isoaspartyl protein repair methyltransferase impairs survival of dauer stage nematodes // Arch. Biochem. Biophys, 1997, V. 348, P. 320−328.
  246. Karin N. J, Cook J.S. Turnover of the catalytic subunit of Na, K-ATPase in HTC cells //J. Biol. Chem. 1986. V. 261. P. 10 422−10 428.
  247. Karplus M, Petsko G.A. Molecular dynamics simulations in biology // Nature. 1990. V. 347. P. 631−639.
  248. Kebarle P. Modern aspects of electrochemistry. V. 11. Eds. Conway B.E. and Bockris J.O.M. New York: Plenum Publishing, 1974. 503 p.
  249. Kemp J.A., McKernan R.M. NMDA receptor pathways as drug targets // Nat. Neurosci. 2002. V. 5. P. 1039−1042.
  250. Kenessey A., Yen S.H., Liu W.K., Yang X.R., Dunlop D.S. Detection of d-aspartate in tau-proteins associated with Alzheimer paired helical filaments // Brain Res., 1995, V. 675, P. 183−189.
  251. Koch M.C., Steinmeyer K., Lorenz C., Ricker K., Wolf F., Otto M., Zoll В., Lehmann H.F., Grzeschik K. IL, Jentsch T.J. The skeletal muscle chloride channel in dominant and recessive human myotonia // Science. 1992. V. 257. P. 797−800.
  252. Kohler M., Burnashev N., Sakmann В., Seeburg P. H. Determinants of ca2+ permeability in both TM1 and TM2 of high affinity kainate receptor channels: Diversity by RNA editing // Neuron. 1993. V. 10. P. 491−500.
  253. Kohr G., Eckardt S., Luddens H., Monyer H., Seeburg P.H. NMDA receptor channels: subunit-specific potentiation by reducing agents // Neuron. 1994. V. 12. P. 1031−1040.
  254. Kossiakoff A.A. Tertiary structure is a principal determinant to protein deamidation // Science, 1988, V. 240, P. 191−194.
  255. Kraus J. E, McNamara J.O. Clinical relevance of defects in signalling pathways // Cur. Opin. Neur. 1995. V. 5. P. 358−366.
  256. Krupka R.M., Deves R. Kinetics of inhibition of transport systems // Int. Rev. of Cyt. 1983. V. 84. P. 303−352.
  257. Kuhn J, Somerville R.L. Uptake and utilization of aromatic в-amino acids in Escherichia coli K12// Biochem. et Biophys. Acta. 1974. V. 332. P. 298 400.
  258. Kuhn W. Advances in Enzymology. V. 20. New York, 1958. p. 1.
  259. Kuhn W. Katalytische Erzeugung optisch aktiver Stoffe und chemische Notwendigkeit eines einseitigen Ablaufs biochemischer Vorga’nge // Angew. Chem, 1936, V. 49, P. 215−219.
  260. Kuhn W. Mo» gliche Beziehungen der optischen Aktivita’t zum Problem des Alterns // Experientia, 1955, V. 11, P. 429−436.
  261. Kuhn W. Possible relation between optical activity and aging // Adv. Enzymol, 1958, V. 20, P. 1−29.
  262. Kurata Y, Sato R, Hisatome I, Imanishi S. Mechanisms of Cation Permeation in Cardiac Sodium Channel: Description by Dynamics Pore Model//Biophys. J. 1999. V. 76. P. 1885−1904.
  263. Kurnikova M. G, Coalson R. D, Graf P, Nitzan A. A Lattice Relaxation Algorithm for Three-Dimensional Poisson-Nernst-Planck Theory with Application to Ion Transport through the Gramicidin A Channel // Biophys. J. 1999. V 76. P. 642−656.
  264. Kuyucak S, Hoyles M, Chung S.H. Analytical Solutions of Poisson’s Equation for Realistic Geometrical Shapes of Membrane Ion Channels // Biophys. J. 1998. V. 74. P. 22−36.
  265. Kvenvolden K. A, Lawless J, Pering K, Peterson E, Flores J, Ponnamperuma C, Kaplan I. R, Moore C. Evidence for extraterrestrialamino acids and hydrocarbons in the Murchinson meteorite // Nature, 1970, V. 228, P. 923−926.
  266. Kyte J., Doolittle R.F. A simple method for displaying the hydropathic character of a protein // Journal Molecular Biology. 1982. V. 157. P. 105 132.
  267. Laio A., Torre V. Physical Origin of Selectivity in Ionic Channels of Biological Membrane // Biophys. J. 1999. V. 76. P. 129−148.
  268. Lara J., Acevedo J.J., Onetti C.G. Large-conductance Ca2±activated potassium channels in secretory neurons // J. Neurophysiol. 1999. V. 82. P. 1317−1325.
  269. Larsson H.P., Baker O.S., Dhillon D.S., Isacoff E.Y. Transmembrane movement of the Shaker K+ channel S4 //Neuron. 1996. V. 16. P. 387−397.
  270. Latorre R., Miller C. Conduction and selectivity in potassium channel // J. Membr. Biol. 1983. V. 71. P. 11−30.
  271. Latorre R., Oberhauser A., Labarca P., Alvarez O. Varieties of calcium-activated potassium channels // Annu. Rev. Physiol. 1989. V. 51. P. 385 399.
  272. Laube В., Hirai H., Sturgess M., Betz H., Kuhse J. Molecular determinants of agonist discrimination by NMDA receptor subunits: analysis of the glutamate binding site on the NR2B subunit //Neuron. 1997. V. 18. P. 493 503.
  273. Lauger P. Ion transport through pores: a rate theory analysis // Biochim. Biophys. Acta. 1973. V. 311. P. 423−441.
  274. Lauger P. Thermodynamic and kinetic properties of electrogenic ion pumps //Biochim. Biophys. Acta. 1984. V. 779. P. 307−341.
  275. Lehmann W.D., Schlosser A., Erben G., Pipkorn R., Bossemeyer D., Kinzel V. Analysis of isoaspartate in peptides by electrospray tandem mass spectrometry // Protein Sci., 2000, V. 9, P. 2260−2268.
  276. Lehrman S.R., Hamlin D.M., Lund M.E., Walker G.A. Identification and characterization of an anti-isoaspartic acid monoclonal antibody // J. Protein Chem., 1992, V. 11, P. 657−663.
  277. V.S. // Physics Letters. 1975. V. 53A. P. 275.
  278. Levitt D.G. Modeling of Ion Channels // J. Gen. Physiol. 1999. V. 113. P. 789−784.
  279. Li M., Jan Y.N., Jan L.Y. Specification of subunit assembly by the hydrophilic amino-terminal domain of the Shaker potassium channel // Science. 1992. V. 257. P. 1225−1230.
  280. Lian J.B., Gundberg C.M. Osteocalcin. Biochemical considerations and clinical applications // Clin. Orthop. Relat. Res., 1988, V. 226, P. 267−291.
  281. Liman E.R., Tytgat J., Hess P. Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs // Neuron. 1992. V. 9. P. 861−871.
  282. Lipton S.A., Choi Y.-B., Takahashi H., Zhang D., Li W., Godzik A., Bankston L.A. Cysteine regulation of protein function exemplisied by NMDA-receptor modulation // Trends Neurosci. 2002. V. 25. P. 474−480.
  283. Long S.B., Campbell E.B., MacKinnon R. Crystal Structure of a Mammalian Voltage-Dependent Shaker Family K+ Channel // Science. 2005. V. 309. P. 897−903.
  284. Long S.B., Campbell E.B., MacKinnon R. Voltage Sensor of Kvl.2: Structural Basis of Electromechanical Coupling // Science. 2005. V. 309. P. 903−908.
  285. Lowenson J., Clarke S. Does the chemical instability of aspartyl and asparaginyl residues in proteins contribute to erythrocyte aging? // Blood Cells, 1988, V. 14, P. 103−117.
  286. Lowenson J.D., Clarke S. Recognition of d-aspartyl residues in polypeptides by the erythrocyte L-Isoaspartyl/D-Aspartyl Protein Methyltransferase-implications for the repair hypothesis // J. Biol. Chem., 1992, V. 267, P. 5985−5995.
  287. Lowenson J.D., Kim E., Young S.G., Clarke S. Limited accumulation of damaged proteins in L-Isoaspartyl (D-Aspartyl) OMethyltransferase-deficient mice // J. Biol. Chem., 2001, V. 276, P. 20 695−20 702.
  288. Lura R., Schirch V. Role of peptide conformation in the rate and mechanism of deamidation of asparaginyl residues // Biochemistry US, 1988, V. 27, P. 7671−7677.
  289. MacDermott A.J., Tranter G.E., Trainor S. // J. Chem. Phys. 1992. V. 194. P. 152.
  290. MacKerell A.D., Wiorkeiwicz-Kuczera J., Karplus M. An All-Atom Empirical Energy Function for the Simulation of Nucleic Acids // J. Am. Chem. Soc. 1995. V. 117. P. 11 946−11 975.
  291. MacKerrell A.D., Wiorkeiwicz-Kuczera J., Karplus M. All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins // J. Phys. Chem. B. 1998. V. 102. P. 3586−3616.
  292. MacKinnon R. Determination of the subunit stoichiometry of a voltage-activated potassium channel //Nature. 1991. V. 350. P. 232−235.
  293. MacKinnon R., et al // Science. 1998. V. 280. P. 106−109.
  294. Madden D.R. The structure and function of glutamate receptor ion channels //Nat. Rev. Neurosci. 2002. V. 3. P. 91−101.
  295. Man E.H., Sandhouse M.E., Burg J., Fisher G.H. Accumulation of D-aspartic acid with age in the human brain // Science, 1983, V. 220, P. 14 071 408.
  296. Manning J.M., Soper T.S. Enzyme activated Irreveversible Inhibitors. Amsterdam: Elsevier, 1978. p. 163.
  297. Margenau H., Kestner N.R. Intermolecular forces. 2nd ed. L.: Pergamon Press, 1971. 560 p.
  298. Maroudas A., Bayliss M.T., Uchitel-Kaushansky N., Schneidermann R., Gilav E. Aggregan turnover in human articular cartilage: Use of aspartic acid racemization as a marker of molecular age // Arch. Biochem. Biophys., 1998, V. 350, P. 61−71.
  299. Maroudas A, Palla G, Gilav E. Racemization of aspartic acid in human articular cartilage // Connect. Tissue Res, 1992, V. 28, P. 161−169.
  300. Masaki R, Yamamoto A, Tashiro Y. Cytochrome P-450 and NADPH-cytochrome P-450 reductase are degraded in the autolysosomes in rat liver // J. Cell. Biol. 1987. V. 104. P. 1207−1215.
  301. Masters P.M. Amino acid racemization in structural proteins. Proc Conf. Non-lethal Biological Markers of Physiological Aging, 19−20 June 1981 (NIH Publication 82−2221), 1982, P. 120−137.
  302. Masters P.M., Bada J. L, Zigler J.S. Aspartic acid racemization in heavy molecular weight crystallins and water-insoluble protein from normal human lenses and cataracts // Proc. Natl. Acad. Sci. USA, 1978, V. 75, P. 12 041 208.
  303. Masters P.M., Bada J. L, Zigler Jr. J.S. Aspartic acid racemisation in the human lens during ageing and in cataract formation // Nature. 1977. V. 268. P. 71−73.
  304. Matsu’ura S, Ueta N. Fraction dependent variation of aspartic acid racemization age of fossil bone // Nature, 1980, V. 286, P. 883−884.
  305. Mazur A. K, Abagyan R.A. New Methodology for Computer-Aided Modeling of Biomolecular Structure and Dynamics. Non-cyclic Structure // J. Biomol. Struct. Dyn. 1989. V. 6. P. 815−832.
  306. McFadden P. N, Clarke S. Conversion of isoaspartyl peptides to normal peptides: Implications for the cellular repair of damaged proteins // Proc. Natl. Acad. Sci. USA, 1987, V. 84, P. 2595−2599.
  307. McFadden P. N, Clarke S. Methylation of D-aspartyl residues in erythrocytes: Possible step in the repair of aged membrane proteins // Proc. Natl. Acad. Sci. USA, 1982, V. 79, P. 2460−2464.
  308. McKerrow J.H. Non-enzymatic, post-translational, amino acid modifications in ageing // A brief review. Mech. Ageing Dev., 1979, V. 10, P. 371−377.
  309. Meister S. In: Biochemistry of the Amino Acids. Vol. 1, 2. New York -London, Academic Press. 1965. p. 113, 220, 297, 357, 619, 671.
  310. Miyazaki J., Nakanishi S., Jingami H. Expression and characterization of a glycine-binding fragment of the N-methyl-D-aspartate receptor subunit NR1 //Biochem. J. 1999. V. 340. P. 687−692.
  311. Molnar S.P., King J.W. Theory and applications of the integrated molecular transform and the normalized molecular moment structure descriptors: QSAR and QSPR paradigms // Int. J. Quant. Chem. 2001. V. 85. P. 662−675.
  312. Morais-Cabral J.H., Zhou Y., MacKinnon R. Energetic optimization of ion conduction rate by the K+ selectivity filter //Nature. 2001. V. 414. P. 27−42.
  313. Mornstad H., Pfeiffer H., Teivens A. Estimation of dental age using HPLC-technique to determine the degree of aspartic acid racemization // J. Forensic Sci., 1994, V. 39, P. 1425−1431.
  314. Moy G., Corry В., Kuyucak S., Chung S.H. Tests of Continuum Theories as Models of Ion Channels. I. Poisson-Boltzmann Theory versus Brownian Dynamics //Biophys. J. 2000. V. 78. P. 2349−2363.
  315. Murray R.K. Harper’s Biochemistry. 24th ed. Appleton & Long, 1996. p. 25.
  316. Najbauer J., Orpiszewski J., Aswad D.W. Molecular aging of tubulin: Accumulation of isoaspartyl sites in vitro and in vivo // Biochemistry, 1996, V. 35, P. 5183−5190.
  317. Nakamura Т., Sadakane Y., Fujii N. Kinetic study of racemization of aspartyl residues in recombinant human aA-crystallin // Biochim. Biophys. Acta. 2006. V. 1764. P. 800−806.
  318. Neuberger A. Stereochemistry of Amino Acids. In: Anson, M.L., Edsall, J.T., (Eds.), Advances In Protein Chemistry, Vol. IV., 1948, pp. 297−83.
  319. Newman J.S. Electrochemical Systems. New Jersey: Prentice-Hall, 1991. 560 p.
  320. Niewmierzycka A, Clarke S. Do damaged proteins accumulate in Caenorhabditis elegans Lisoaspartate methyltransferase (pcm-1) deletion mutants? //Arch. Biochem. Biophys, 1999, V. 364, P. 209−218.
  321. Noguchi S, Miyawaki K, Satow Y. Succinimide and isoaspartate residues in the crystal structures of hen egg-white lysozyme complexed with tri-iV-acetylchitotriose // J. Mol. Biol, 1998, V. 278, P. 231−238.
  322. Nonner W, Chen D. P, Eisenberg B. Progress and Prospects in Permeation // J. Gen. Physiol. 1999. V. 113. P. 773−782.
  323. Noulin J. F, Brochiero E, Lapointe J. Y, Laprade R. Two types of K+ channels at the basolateral membrane of proximal tubule: inhibitory effect of taurine // Am. J. Physiol. 1999. V. 277. P. 290−297.
  324. O’Connel A.M., Koeppe R. E, Andersen O.S. Kinetics of Gramicidin Channel Formation in Lipid Bilayers: Transmembrane Monomer Association // Proceeding of the National Academy of Sciences USA. 1990. V. 91. P. 1495−1499.
  325. Ogino T, Ogino H, Nagy B. Application of aspartic acid racemization to forensic odontology: post mortem designation of age of death // Forensic Sci. Int., 1985, V. 29, P. 259−267.
  326. Ohtani S. Estimation of age from dentin by using the racemization reaction of aspartic acid// Am. J. Forensic Med. Pathol, 1995, V. 16, P. 158−161.
  327. Ohtani S. Rate of aspartic acid racemization in bone // Am. J. Forensic Med. Pathol, 1998, V. 19, P. 284−287.
  328. Ohtani S, Matsushima Y, Kobayashi Y, Kishi K. Evaluation of aspartic acid racemization ratios in the human femur for age estimation // J. Forensic Sci, 1998, V. 43, P. 949−953.
  329. Ohtani S, Matsushima Y, Ohhira H, Watanabe A. Age-related changes in D-aspartic acid of rat teeth // Growth Dev Aging. 1995. V. 59(1−2) P. 55−61.
  330. Ohtani S, Sugimoto H, Sugeno H, Yamamoto S, Yamamoto K. Racemization of aspartic acid in human cementum with age // Arch. Oral Biol, 1995, V. 40, P. 91−95.
  331. Ohtani S., Yamamoto Т., Matsushima Y., Kobayashi Y. Changes in the amount of d-aspartic acid in the human femur with age // Growth Develop. Aging, 1998, V. 62 (4), P. 141−144.
  332. Ohtani S., Yamamoto Т., Sugimoto H., Sashima M., Satoh M. Age-related changes in the D-aspartic acid content of the teeth of the senescence-accelerated mouse // Arch. Oral Biol. 2000. V. 45(1) P. 13−18.
  333. Okazaki S., Touhara H., Nakanishi K. Computer experiments of aqueous solutions. V. Monte Carlo calculation on the hydrophobic interaction in 5 mol % methanol solution // J. Chem. Phys. 1984. V. 81. P. 890−894.
  334. Orpiszewski J., Benson M.D. Induction of beta-sheet structure in amyloidogenic peptides by neutralization of aspartate: A model for amyloid nucleation // J. Mol. Biol., 1999, V. 289, P. 413128.
  335. Orpiszewski J., Schormann N., Kluve-Beckerman В., Liepnieks J.J., Benson M.D. Protein aging hypothesis of Alzheimer disease // FASEB J. 2000, V. 14. P. 1255−1263.
  336. Papazian D.M., Schwartz T.L., Tempel B.L., Jan Y.N., Jan L.Y. Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila // Science. 1987. V. 237. P. 749−753.
  337. Paranandi M.V., Aswad D.W. Spontaneous alterations in the covalent structure of synapsin I during in vitro aging // Biochem. Biophys. Res. Commun. 1995. V. 212. P. 442148.
  338. Payan I.L., Chou S.J., Fisher G.H., Man E.H., Emory C., Frey W.H. Altered aspartate in alzheimer neurofibrillary tangles // Neurochemical Res. 1992. V. 17. P. 187−191.
  339. Perez-Garcia M.T., Lopez-Lopez J.R., Gonzalez C. Kvbl.2 subunit coexpression in HEK293 cells confers 02 sensitivity to Kv4.2 but not to Shaker channels // J. Gen. Physiol. 1999. V. 113. P. 897−907.
  340. Perez-Otano I., Schulteis C.T., Contractor A., Lipton S.A., Trimmer J.S., Sucher N.J., Heinemann S.F. Assembly with the NR1 subunit is required forsurface expression of NR3A-containing NMD A receptors // J. Neurosci. 2001. V. 21. P. 1228−1237.
  341. Perna A.F., Daniello A., Lowenson J.D., Clarke S, DeSanto N.G., Ingrosso D. D-Aspartate content of erythrocyte membrane proteins is decreased in uremia: Implications for the repair of damaged proteins // J. Am. Soc. Nephrol. 1997. V. 8. P. 95−104.
  342. Pfeiffer H, Mornstad H, Teivens A. Estimation of chronological age using the aspartic-acid racemization method. 1. On human rib cartilage. Int. J. Legal Med, 1995, 108, 19−23.
  343. Pfeiffer H, Mornstad H., Teivens A. Estimation of chronological age using the aspartic-acid racemization method. 2. On human cortical bone // Int. J. Legal Med. 1995. V. 108. P. 24−26.
  344. Pongs O. Molecular biology of voltage-dependent potassium channels // Physiological Reviews. 1992. V. 72. P. 69−88.
  345. Potter S. M, Henzel W.J., Aswad D.W. In vitro aging of calmodulin generates isoaspartate at multiple Asn-Gly and Asp-Gly sites in calcium-binding domains II, III and IV // Protein Sci. 1993. V. 2. P. 1648−1663.
  346. Powell J. T, Vine N, Crossman M. On the accumulation of d-aspartate in elastin and other proteins of the ageing aorta // Atherosclerosis. 1992. V. 97. P. 201−208.
  347. Powell J. T, Vine N, Crossman M. On the accumulation of D-aspartate in elastin and other proteins of the aging aorta // Atherosclerosis. 1992. V. 97. P. 201−208.
  348. Powell M.F. Peptide stability in aqueous parenteral formulations-prediction of chemical-stability based on primary sequence // ACS Symp. Ser. 1994. V. 567. P. 100−117.
  349. Ptacek L.J. Channelopathies: ion channel disorders of muscle as a paradigm for paroxysmal disorders of the nervous svstem // Neuromuscul Disord. 1997. V. 7. P. 250−255.
  350. Qi Z, Sokabe M, Donowaki K, Ishida H. Structure-Function of de Novo Synthetic Hydrophobic Ion Channel // Biophys. J. 1999. V. 76. P. 631−641.
  351. Qiu X. Q, Jakes K. S, Kienker P. K, Finkelstein A, Slatin S.L. Major transmembrane movement associated with colicin la channel gating // J. Gen. Physiol. 1996. V. 107. P. 313−328.
  352. Quane K. A, Healy J. M, Keatins K. E, Manning B. M, Couch F. J, Palmucci L. M, Doriguzzi C, Fagerlund Т.Н., Berg K, Ordine H. Mutations in the ryanodine receptor gene in central core disease and malignant hyperthermia // Nat Genet. 1993. V. 5. P. 51−55.
  353. Radkiewicz J. L, Zipse H, Clarke S, Houk K.N. Accelerated racemization of aspartic acid and asparagine residues via succinimide intermediates: An ab initio theoretical exploration of mechanism // J. Am. Chem. Soc. 1996. V. 118. P. 9148−9155.
  354. Rattan S.I.S, Derventzi A, Clark B.F.C. Protein synthesis, posttranslational modifications, and aging // Ann. New York Acad. Sci. 1992. V. 663. P. 4862.
  355. Reid G, Scholz A, Gostock H, Vogel W. Human axons contain at least five types of voltage-dependent potassium channels // J. Physiol. (London). 1999. V. 518. P. 689−696.
  356. Rettig J, Heinemann S. H, Wunder F, Lorra C, Parcej D. N, Dolly J. O, Pongs O. (1994). Inactivation properties of voltage-gated K1 channels altered by presence of beta-subunit // Nature. 1994. V. 369. P. 289−294.
  357. Reuter H, Stevens C.F. Ion conductance and ion selectivity of potassium channels in snail neurons // J. Membr. Biol. 1980. V. 57. P. 103−118.
  358. Ritz S., Schutz H.W. Aspartic acid racemization in intervertebral discs as an aid to post mortem estimation of age at death // J. Forensic Sci. 1993. V. 38. P. 633−640.
  359. Ritz S., Schutz H.W., Peper C. Postmortem estimation of age at death based on aspartic acid racemization in dentin: its applicability for root dentin // Int. J. Legal Med. 1993. V. 105. P. 289−293.
  360. Ritz S., Turzynski A., Schutz H.W. Estimation of age at death based on aspartic acid racemization in non-collagenous bone proteins // Forensic Sci. Int. 1994. V. 69. P. 149−159.
  361. Ritz S., Turzynski A., Schutz H.W., Hollmann A., Rochholz G. Identification of osteocalcin as a permanent aging constituent of the bone matrix: Basis for an accurate age at death determination // Forensic Sci. Int. 1996. V. 770. P. 13−26.
  362. Ritz-Timme S., Collins M.J. Racemization of aspartic acid in human proteins // Ageing Research Reviews. 2002. V. 1. P. 43−59.
  363. Robinson A.B., McKerrow J.H., Cary P. Controlled deamidation of peptides and proteins: An experimental hazard and a possible biological timer // Proc. Natl. Acad. Sci. USA. 1970. V. 66. P. 753−757.
  364. Robinson N.E., Robinson A.B. Molecular clocks // Proc. Natl. Acad. Sci. USA, 2001. V. 98. P. 944−949.
  365. Robinson N.E., Robinson A.B. Prediction of protein deamidation rates from primary and three-dimensional structure // Proc. Natl. Acad. Sci. USA. 2001. V. 98. P. 4367−4372.
  366. Roher A.E., Lowenson J.D., Clarke S., Wollcow C., Wang R., Cotter R.J., Reardon I.M., Zurcher-Neely H.A., Heinrikson R.L., Ball M.J., Greenberg
  367. B.D. Structural alteration in the peptide backbone of amyloid core protein may account for its deposition and stability in Alzheimerr’s disease // J. Biol. Chem. 1993. V. 268. P. 3072−3083.
  368. Rosenberger R.F. Senescence and the accumulation of abnormal proteins // Mutat. Res. 1991. V. 256. P. 255−262.
  369. Roux B. On the Potential Functions Used in Molecular Dynamics Simulations of Ion Channels// Biophys. J. 2002. V. 82. P. 1681−1684.
  370. Roux B. Theories of Ion Permeation: A Chaser // J. Gen. Physiol. 1999. V. 114. P. 605−608.
  371. Ruppersberg J.P., Schroter K.H., Sakmann В., Stocker M., Sewing S., Pongs O. Heteromultimeric channels formed by rat brain potassium channel proteins //Nature. 1990. V. 345. P. 535−537.
  372. Ruta V., Jiang Y., Lee A., Chen Y., MacKinnon R. Functional Analysis of an Archaebacterial Voltage-Dependent K±Channel // Nature. 2003. V. 422. P. 180−185.
  373. Saito M. Molecular Dynamics Simulations of Proteins in Solutions: Artifacts Caused by the Cutoff Approximation // J. Сотр. Chem. 1994. V. 101. P. 4055−4061.
  374. Sajdok J., Kozak A., Zidkova J., Kotrba P., Pilin A., Kas J. Protein modification during aging of organism // Chemicke Listy. 2001. V. 95. P. 98−101.
  375. Salkoff L. Genetic and voltage-clamp analysis of a Drosophila potassium channel // Cold Spring Harbor Symposium on Quantitative Biology. 1983. V. 48. P. 221−231.
  376. L., Baker K., Butler A., Covarrubias M., Рак M.D., Wei A. An essential «set» of K+ channels conserved in flies, mice, and humans // Trends in Neurosciences. 1992. V. 15. P. 161−166.
  377. Sandmeier E., Hunziker P., Kunz В., Sack R., Christen P. Spontaneous deamidation and isomerization of Asnl08 in prion peptide 106−126 and infull-length prion protein // Biochem. Biophys. Res. Comm. 1999. V. 261. P. 578−583.
  378. Sanguinetti M. C, Jiang C, Curran M. E, Keating M.T. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the Ikr potassium channel // Cell. 1995. V. 81. P. 299−307.
  379. Sarkadi L.S. Occurrence of D-amino acids in food. In: Progress in biological chirality. G Palyi, C. Zucchi, L. Caglioti, eds. — 2004. -Elsevier Ltd. -429 pp.-P. 339−354.
  380. Schmidt J. W, Catterall W.A. Palmitylation, sulfation, and glycosylation of the a-subunit of the sodium channel // J. Biol. Chem. 1987. V. 262, P. 13 713−13 723.
  381. Schrempf H, Schmidt O, Kummerlen R, Hinnah S, Muller D. Wagner R. A prokaryotic potassium ion channel with two predicted transmembrane segment from Streptomyces lividans //EMBO J. 1995. V. 14. P. 5170−5178.
  382. Schulz G.E. Bacterial Porins: Structure and Function // Current Opinion in Cell Biology. 1993. V. 5. P. 701−707.
  383. Scolnik Y, Portnaya I, Cogan U, Tal S. et al. Subtle differences in structural transitions between poly-L- and poly-D-amino acids of equal length in water // Phys. Chem. Chem. Phys, 2006, v. 8, p. 333−339.
  384. Seifert R, Eismann E, Ludwig J, Baumann A, Kaupp B.U. Molecular Determinants of a Ca2±Binding Site in the Pore of Cyclic Nucleotide-Gated Channels: S5/S6 Segments Control Affinity of Intrapore Gentamates // EMBO J. 1999. V. 18. P. 119−130.
  385. Shapira R, Jen Chou C.H. Differential racemization of aspartate and serine in human myelin and basic protein // Biochem. Biophys. Res. Comm. 1987. V. 146. P. 1342−1349.
  386. Shapira R, Wilkinson K. D, Shapira G. Racemization of individual aspartate residues in human myelin basic protein // J. Neurochemistry. 1988. V. 50. P. 649−654.
  387. Shen N.V., Chen X., Boyer M.M., Pfaffinger PJ. Delection analysis of K+ channel assembly //Neuron. 1993. V. 11. P. 67−76.
  388. Shen N.V., Pfaffinger P.J. Molecular recognition and assembly sequences involved in the subfamily-specific assembly of the voltage-gated K+ channel subunit proteins //Neuron. 1995. V. 14. P. 625−633.
  389. Sheng M., Liao Y.J., Jan Y.N., Jan L.Y. Presynaptic A-current based on heteromultimeric K+ channels detected in vivo // Nature. 1993. V. 365. P. 72−75.
  390. Shimizu Т., Watanabe A., Ogawara M., Mori H., Shirasawa T. Isoaspartate formation and neurodegeneration in Alzheimer’s disease // Arch. Biochem. Biophys., 2000. V. 381. P. 225−234.
  391. Shrivastava I.H., Sansom M.S.P. Simulations of Ion Permeation Through a Potassium Channel: Molecular Dynamics of KcsA in a Phospholipid Bilayer // Biophys. J. 2000. V. 78. P. 557−570.
  392. Sigworth F.J. Voltage Gating of Ion Channels // Q. Review of Biophysics. 1994. V. 27. P. 1−40.
  393. Singh N.A., Charlier C., Stauner D., DuPont B.R., Leach R.J., Metis R., Ronen G.M., Bjerre I., Qiiattlebaum Т., Murphy J.V. A novel potassium channel gene. KCNQ2 is mutated in an inherited epilepsy of newborns // Nat Genet. 1998. IS. P. 25−29
  394. Slatin S.L., Qiu X.Q., Jakes K.S., Finkelstein A. Identification of a translocated protein segment in a voltage-dependent channel // Nature. 1994. V. 371. P. 158−161.
  395. Slesinger P.A., Jan Y.N., Jan L.Y. The S4-S5 loop contributes to the ion-selective pore of potassium channel // Neuron. 1993. V. 11. P. 739−749.
  396. Smith G. R, Sansom M.S.P. Dynamic Properties of Na+ Ions in Models of Ion Channels: A Molecular Dynamics Study // Biophys. J. 1998. V. 75. P. 2767−2782.
  397. Stadtman E. R, Levine R.L. Protein oxidation // Ann. New York Acad. Sci. 2000. V. 899. P. 191−208.
  398. Stephenson R. C, Clarke S. Succinimide formation from aspartyl and asparaginyl peptides as a model for the spontaneous degradation of proteins //J. Biol. Chem. 1989. V. 264. P. 6164−6170.
  399. Stocker M, Stuhmer W, Wittka R, Wang S, Muller R, Ferrus A, Pongs O. Alternative Shaker transcripts express either rapidly inactivating or noninactivating K+ channels // Proc. Nat. Acad. Sc. USA. 1990. V. 87. P. 8903−8907.
  400. Strong M, Chandy K.G., Gutman G.A. Molecular evolution of voltage-sensitive ion channel genes: on the origins of electrical excitability // Mol. Biol. Evol. 1993. V. 10. P. 221−242.
  401. Sundaresan V, Abrol R. Biological Chiral Recognition: The Substrate’s Perspective// Chirality. 2005. V. 17. P. 30−39.
  402. Sundaresan V, Abrol R. Towards a general model for protein-substrate stereoselectivity // Prot. Sci. 2002. V. 11. P. 1330−1339.
  403. Swartz K. J, MacKinnon R. Mapping the receptor site for hanatoxin, a gating modifier of voltage-dependent K+ channels //Neuron. 1997. V. 18. P. 675−682.
  404. Syganow A, Kitzing E. (In)validity of the Constant Field and Constant Currents Assumptions in Theories of Ion Transport // Biophys. J. 1999. V. 76. P. 768−771.
  405. Szymanska G, Leszyk J. D, O’Connor C.M. Carboxyl methylation of deamidated calmodulin increases its stability in Xenopus oocyte cytoplasm —Implications for protein repair // J. Biol. Chem. 1998. V. 273. P. 2 851 628 523.
  406. Takats Z., Nanita S.C., Cooks R.G. Serine Octamer Reactions: Indicators of Prebiotic Relevance // Angewandtle Chemie Int. Edition. 2003. V. 42. P. 3521−3523.
  407. Tamkun M.M., Fambrough D.M. The Na/K-ATPase of chick sensory neurons: studies on biosynthesis and intracellular transport // J. Biol. Chem. 1986. V. 261. P. 1009−1019.
  408. Tempel B.L., Paparazian D.M., Schwarz T.L., Jan L.Y., Jan Y.N. Sequence of a Probable Potassium Channel Component Encoded at Shaker locus of Drosophila// Science. 1987. V. 237. P. 770−775.
  409. Thompson N., Thompson G., Cole C.D., Cotten M., Cross T.A., Busath D.D. Noncontact Dipole Effects on Channel Permeation. IV. Kinetic Model of 5F-Trpl3 Gramicidin A Currents // Biophys. J. 2001. V. 81. P. 12 451 254.
  410. Thornally P.J. The clinical significance of glycation // Clin. Lab. 1999. V. 45. P. 263−273.
  411. Tieleman D.P., Berendsen H.J.C., Sansom M.S.P. An Alamethicin Channel in a Lipid Bilayer: Molecular Dynamics Simulations // Biophys. J. 1999. V. 76. P. 1757−1769.
  412. Tikhonova I.G., Baskin I.I., Palyulin V.A., Zefirov N.S. A spatial model of the glycine site of the NR1 subunit of NMDAreceptor ligand docking // Dokl. Biochem. Biophys. 2002. V. 382. P. 67−70.
  413. Tomiyama Т., Asano S., Furiya Y., Shirasawa Т., Endo N., Mori N. Racemization of Asp23 residue affects the aggregation properties of Alzheimer amyloid protein analogues // J. Biol. Chem. 1994. V. 269. P. 10 205−10 208.
  414. Tricarico D, Servidei S, Tonali P, Jurkal R. K, Camerino D.C. Impairment of skeletal m'.bde adenos-ne triphosphate-sensitive K+ channels in patients with hApok. ilemic periodic paralysis // J Clin. Invest. 1999. V. 103. P. 675 -682.
  415. Van Duin A.C.T, Collins M.J. The effects of conformational constraints on aspartic acid racemization // Org. Geochem. 1998. V. 29. P. 1227−1232.
  416. Van Gunsteren W. F, Berendsen H.J.C. Algorithms for Macromolecular Dynamics and Constraint Dynamics // Mol. Phys. 1977. V. 34. P. 13 111 327.
  417. Vandenoetelaar P.J.M, Hoenders H.J. Racemization of aspartyl residues in proteins from normal and cataractous human lenses-an aging process without involvement in cataract formation // Exp. Eye Res. 1989. V. 48. P. 209−214.
  418. Verzijl N, De Groot J, Thorpe S. R, Bank R. A, Shaw J. N, Lyons T. J, Bijlsma J.W.J, Lafeber F, Baynes J. W, Те Koppele J.M. Effect of collagen turnover on the accumulation of advanced glycation end products // J. Biol. Chem. 2000. V. 275. P. 39 027−39 031.
  419. Visick J.E., Cai H., Clarke S. The L-isoaspartyl protein repair methyltransferase enhances survival of aging Escherichia coli subjected to secondary environmental stresses // J. Bacteriol. 1998. V. 180. P. 26 232 629.
  420. Von Kitzing E. Forces Determining Ion Permeation // J. Gen. Physiol. 1999. V. 114. P. 593−595.
  421. Wallace B.A. Gramicidin Channels and Pores // Annual Review of Biophysics. 1990. V. 19. P. 127−157.
  422. Wang H., Kunkel D.D., Martin T.M., Schwartzkroin P.A., Tempel B.L. Heteromultimeric K+ channels in terminal and juxtaparanodal regions of neurons //Nature. 1993. V. 365. P. 75−79.
  423. Warmke J.W., Ganetzky B. A family of potassium channel genes related to eag in Drosophila and mammals // Proc. Nat. Ac. Sci. USA. 1994. V. 91. P. 3438−3442.
  424. Watanabe A., Takio K., Ihara Y. Deamidation and isoaspartate formation in smeared tau in paired helical filaments — Unusual properties of themicrotubule-binding domain of tau // J. Biol. Chem. 1999. V. 274. P. 73 687 378.
  425. Weber D.J., McFadden P.N. Injury-induced enzymatic methylation of aging collagen in the extracellular matrix of blood vessels // J. Protein Chem. 1997. V. 16. P. 269−281.
  426. Wei A., Covarrubias M., Butler A., Baker К., Рак M., Salkoff L. K+ current diversity is produced by an extended gene family conserved in Drosophila and the mouse // Science. 1990. V. 248. P. 599−603.
  427. W.R., Neims A.H. // J. Neurochem. 1977. V. 29. P. 649−663.
  428. Weiss M.S., Abele U., Weckesser J., Welte W., Schulz G.E. Molecular Architecture and Electrostatic Properties of a Bacterial Porin // Science. 1991. V. 254. P. 1627−1630.
  429. Weiss M.S., Wacker Т., Weckesser J., Welte W., Schulz G.E. The Three-Dimensional Structure of Porin from Rhodobacter capsulatus at ЗА Resolution // FEBS Letters. 1990. V. 267. P. 268−272.
  430. White A., Handler P., Smith E.L. Principles of Biochemistry. New York, 1968. p. 248.
  431. Williams K., Chao J., Kashiwagi K., Masuko Т., Igarashi K. Activation of N-methyl-D-aspartate receptors by glycine: role of an aspartate residue in the M3-M4 loop of the NR1 subunit // Mol. Pharmacol. 1996. V. 50. P. 701 708.
  432. Wilson S. Basis sets / Ab initio methods in quantum chemistiy. Part I. Advances in chemical physics. V. 67. Wiley-Interscience. Chichester, 1987. pp. 439−500.
  433. Wolosker H., Sheth K. N., Takahashi M., Mothet J.-P., Brady R. O., Jr., Ferris C. D., Snyder S. H. Purification of serine racemase: Biosynthesis of the neuromodulator D-serine // Proc. Natl. Acad. Sci. USA. 1999. V. 96. P. 721.
  434. Wong J.T. A coevolution theory of the genetic code // Proc. Natl. Acad. Sci. USA. 1975. V. 72. P. 1909−1912.
  435. Wood M. W, VanDongen H.M.A, VanDongen A.M.J. A mutation in the glycine binding pocket of the N-methyl-D-aspartate receptor NR1 subunit alters agonist efcacy // Mol. Brain Res. 1999. V. 73. P. 189−192.
  436. Wright H.T. Nonenzymatic deamidation of asparaginyl and glutaminyl residues in proteins // Crit. Rev. Biochem. Mol. Biol. 1991. V. 26. P. 1−52.
  437. Xie M. L, Schowen R.L. Secondary structure and protein deamidation // J. Pharm. Sci. 1999. V. 88. P. 8−13.
  438. Yusaf S. P, Wray D., Sivaprasadarao A. Measurement of the movement of the S4 segment during the activation of a voltage-gated potassium channel // Pflugers Arch. 1996. V. 433. P. 91−97.
  439. Zhao Z. Y, Chang D.C. Ion selectivity of delayed rectifier K±channel in squid axon // Biophys. J. 1987. V. 51a. P. 52.
  440. Zheng F, Errenger K, Low C. M, Banke T.G., Lee C.J., Conn P. J, Traynelis S.F. Allosteric interaction between the amino terminal domain and the ligand-binding domain of NR2A // Nat. Neurosci. 2001. V. 4. P. 894 901.
  441. Zhong Q, Jiang Q, Moore P. B, Newns D. M, Klein M.L. Molecular Dynamics Simulation of a Synthetic Ion Channel // Biophys. J. 1998. V. 74. P. 3−10.
  442. Zhou Y, Morais-Cabral J.H., Kaufman A, MacKinnon R. Chemistry of ion coordination and hydration revealed by a K±channel Fab complex at 2.0 angstrom resolution // Nature. 2001. V. 414. P. 43−48.
  443. Zioupos P, Currey J. D, Hamer A.J. The role of collagen in the declining mechanical properties of aging human cortical bone // J. Biomed. Mater. Res. 1999. V. 45. P. 108−116.
Заполнить форму текущей работой