Помощь в написании студенческих работ
Антистрессовый сервис

Свойства углеродных наноструктур и наноэлектромеханические системы на их основе

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Интенсивное развитие наномеханики в последнее десятилетие сделало возможным практическое изготовление НЭМС. Исследование взаимодействия и относительного движения слоев углеродных нанотрубок дает важную информацию не только для разработки принципиальных схем и принципов работы НЭМС на основе нанотрубок, но также и для понимания принципиальных отличий относительного движения нанообъектов… Читать ещё >

Свойства углеродных наноструктур и наноэлектромеханические системы на их основе (реферат, курсовая, диплом, контрольная)

Содержание

  • Введение
  • 2. Образование углеродных наноструктур
    • 2. 1. Моделирование образования углеродных наночастиц
    • 2. 2. Образование фуллеренов, наночастиц и наиотрубок
    • 2. 3. Отбор распространенных фуллеренов
  • 3. Адсорбция на поверхности с дефектами
    • 3. 1. Теория адсорбции на поверхности с дефектами
    • 3. 2. Расчет энергии адсорбции частицы в выемке
    • 3. 3. Моделирование процесса адсорбции частицы в выемку
    • 3. 4. Применение в нанотехнологии адсорбции частиц на поверхности с искусственными дефектами
  • 4. Ориентационное плавление углеродной наночастицы
    • 4. 1. Методика моделирования ориентационного плавления наночастицы
    • 4. 2. Энергетические характеристики наночастицы
  • Сб0@С
    • 4. 3. Результаты моделирования ориентационного плавления наночастицы
    • 4. 4. Определение температуры ориентационного плавления наночастицы
  • 5. НЭМС на основе нанотрубок
    • 5. 1. Классификация нанотрубок с соизмеримыми слоями
    • 5. 2. Диффузия и дрейф слоев нанотрубок
    • 5. 3. Барьеры для относительного движения слоев нанотрубок
    • 5. 4. Пара наноболт-наногайка на основе нанотрубки
    • 5. 5. Наноактуатор на основе нанотрубки
    • 5. 6. Нанореле на основе нанотрубки
    • 5. 7. Электромеханический панотермометр на основе нанотрубки
  • Благодарности

Последние десятилетия наблюдается значительный прогресс в развитии методов исследования физических свойств объектов со все меньшим пространственным разрешением. Новые возможности исследований привели к созданию повой отрасли технологии — на-нотехнологии, т. е. производству материалов и изделий, которые состоят из объектов с характерными размерами менее 100 нм, а также к развитию наноэлектроники и наноме-ханики, основанных на новых нанотехнологиях.

Тем не менее, несмотря на значительный практический прогресс, достигнутый в на-нотехнологии, до сих пор отсутствуют общепринятые концепции для механизмов образования и роста многих наноструктур. В частности, это относится к новым аллотропным модификациям углерода — фуллеренам, наночастицам и нанотрубкам. Исследование механизмов образования и роста углеродных наноструктур важно не только для определения оптимальных условий синтеза при промышленном получении этих наноструктур, по и для понимания физических принципов процессов самоорганизации в других наносистемах.

Развитие нанотехнологии привело также к возможности создания на поверхности искусственных нанолокальных дефектов с заданными свойствами и относительным положением. Теоретические исследования возможностей использования адсорбции частиц (в том числе селективной адсорбции заданных частиц) на поверхности с искусственными дефектами актуально для разработки новых методов создания поверхностных наноструктур и датчиков для обнаружения сверхмалых количеств заданных веществ.

В наносистемах (кластерах, наночастицах и т. д.) возможна иерархия различных термодинамических и структурных состояний системы при их нагреве или охлаждении. Исследование процессов образования и роста наноструктур, а также фазовых переходов в наносистемах актуально как для прогресса фундаментальной физики, так и для разработки новых методов нанотехнологии получения наноструктур и кластерных материалов.

Одними из самых интересных наноструктур являются нанотрубки. Ряд свойств углеродных нанотрубок: возможность слоев нанотрубок легко скользить относительно друг друга, модуль Юнга, в 5 раз больший, чем у стали, и металлическая проводимость большинства слоев делает углеродные нанотруСжи перспективными для использования в нано-электромеханических системах (НЭМС) одновременно в качестве подвижных элементов и элементов электрической цепи. В этой связи являются очень актуальными исследования относительного движения и взаимодействия слоев нанотрубок, разработка принципов работы и принципиальных схем НЭМС, основанных на таком движении.

В настоящей диссертации изложены результаты работы, которая была направлена на решение следующих фундаментальных и прикладных проблем физики наносистем:

1) Моделирование процесса адсорбции частиц на дефектах поверхности и анализ возможностей использования адсорбции частиц на искуственных дефектах для разработки новых методов нанотехнологии.

2) Объяснение фундаментальных физических процессов, приводящих к образованию нанообъектов, в частности, фуллеренов и наночастиц с оболочечной структурой.

3) Исследование специфики фазовых переходов в наносистемах.

4) Исследование взаимодействия и относительного движения слоев углеродных нанотрубок и разработка принципов работы и схем наноэлектромеханических систем, основанных на нанотрубках.

Следующие основные научные положения выносятся на защиту:

1. Развита теория и проведено моделирование адсорбции частиц на поверхности с на-нолокальными дефектами предназначенная для оценки эффективности применения адсорбции на та кой поверхности в различных методах нанотехнологии.

Показана возможность селективной адсорбции определенных молекул на налокальных дефектах поверхности.

2. С помощью моделирования методом молекулярной динамики показано, что послойный механизм роста углеродных наночастиц с оболочечной структурой не может быть реализован в тех условиях, в которых происходит образование этих наночастиц.

Предложен единый механизм образования всех углеродных наноструктур с оболоченой структурой — фуллеренов, наночастиц и нанотрубок: сначала образуется жидкий или аморфный кластер, а потом происходит отжиг оболочечной структуры.

3. На основе анализа экспериментальных фактов сделан вывод, что основной причиной преимущественного получения двух распространенных фуллеренов, Сбо и70, является отбор этих фуллеренов из смеси фуллеренов с помощью реакций поглощения и испускания 8 молекулы Сг.

4. Впервые проведено моделирование ориентационного плавления в слоистых углеродных наночастицах.

5. Разработана классификация двухслойных углеродных ыапотрубок (ДУНТ).

6. Развита теория, описывающая относительные диффузию и дрейф слоев углеродных нанотрубок вдоль винтовых линий, определяемых потенциальной энергией взаимодействия слоев. Для НЭМС, основанных на движении слоев нанотрубок вдоль винтовых линий, определены режимы управления движением и способы приложения управляющей силы.

7. С помощью полуэмпирических расчетов и расчетов из первых принципов определены барьеры для относительных вращения слоев и скольжения слоев вдоль оси для различных случаев ДУНТ. Полученные величины барьеров использованы для расчета пороговых сил и коэффициэнтов диффузии для относительных вращения и скольжения слоев.

8. Проанализированы структуры ДУНТ с локальными атомными дефектами, которые могут быть использованы в качестве пары «наноболт-наногайка». Для ДУНТ с различными типами дефектов рассчитаны барьеры и пороговые силы для относительного движения слоев вдоль «линии резьбы» и для срыва резьбы. Обнаружено, что тип дефекта не влияет на качественные характеристики резьбы.

9. Предложена концепция наноактуатора, основанного на углеродной нанотрубке и предназначенного для преобразования поступательной силы, направленной вдоль оси на-нотрубки, в относительное вращение слоев. Рассмотрены принципиальная схема и принципы работы наноактуатора, а также проведены численные расчеты, демонстрирующие принципы работы наноактуатора.

10. Предложена новая концепция и рассчитаны рабочие характеристики электромеханического нанотермометра, основанного на относительном движении компонентов на-носистем. Нанотермометр может применяться для точных измерений в пространственно локализованных областях размером в несколько сотен нанометров. Измерения температуры проводятся путем измереиий проводимости паноситемы при условии, что полная проводимость системы сильно зависит от температуры в результате относительных тепловых колебаний компонентов.

11. Предложены принципиальные схемы нанореле, основанных на относительном движении слоев углеродных нанотубок. Обсуждаются возможности использовать данное нанореле в качестве ячеек оперативной и памяти в зависимости от геометрических размеров и структуры слоев. Рассчитано напряжение переключения между положениями 11 включено «и «выключено» .

Глава 2.

Образование углеродных наноструктур

Открытие фуллеренов связано с интерпретацией следующего факта: при некоторых условиях абляции графита был получен масс-спектр, в котором пик, соответствующий Сбо, был в 40 раз больше, чем пики, соответствующие другим кластерам [115]. Для объяснения этого факта и было предложено существование стабильного кластера Сбо с формой усеченного икосаэдра, в котором все атомы располагаются на сферической поверхности в вершинах 12 правильных пятиугольников и 20 шестиугольников. Кластер с такой структурой был назван фуллереном. Исследования показали, что другие углеродные кластеры, состоящие из десятков атомов и образующиеся одновременно с фуллереном Ceo, также имеют похожую структуру с расположением атомов на сфероидальной поверхности в вершинах пятиугольников и шестиугольников. Одним из главных критериев адекватности модели образования фуллеренов является объяснение большей распространенности фуллерена Сбо по отношению к другим фуллеренам. Важнейшим достижением явилась разработка Кречмером, Хафманом и др. [114] метода получения фуллерена Сбо в макроскопических количествах с помощью испарения графитовых стержней в дуговом разряде. В дальнейшем, были предложены другие методы получения фуллеренов, множество экспериментов было посвящено исследованию условий и процессов при образовании фуллеренов. По мере получения новых экспериментальных фактов предлагались новые модели образования фуллеренов, объясняющие эти факты. Однако в этом вопросе до сих пор не достигнуто ясности. В настоящей главе мы анализируем модели образования фуллеренов, а также углеродных наночастиц и нанотрубок с со структурой вложенных графитовых слоев в рамках единого механизма. Мы рассматриваем, главным образом, образование фуллеренов в углеродной плазме, и почти не касаемся альтернативных возможностей получения фуллеренов (например в результате реакций между углеводородами).

Заключение

.

В заключении перечислим кратко основные результаты, представленные в диссертации.

1. Развита теория и проведены расчеты, которые показывают возможность селективной адсорбции определенных молекул на налокальных дефектах поверхности.

2. Методом молекулярной динамики проведено моделирование процесса локализации атома аргона, движущегося по поверхности графита, в выемку на этой повехности. Обнаружено что для температур, на порядок меньших, чем энергия адсорбции атома в выемке, вероятность локализации атома при столкновении с выемкой увеличивается с ростом температуры. Температурная зависимость вероятности локализации объясняется энергетическим барьером вокруг выемки.

3. Исследовано влияние формы оболочек на возможность относительного вращения оболочек углеродных наночастиц. Показано, что изменение формы оболочки от близкой к многограннику до сферической приводит к уменьшению барьера для относительного вращения оболочек на порядки величины.

5. Впервые показана возможность ориентационного плавления в углеродной наноча-стице с оболочечной структурой, а также исследован процесс этого плавления с помощью моделирования методом молекулярной динамики.

6. Предложено определение для температуры плавления наносистемы для случая, когда плавление имеет характер кроссовера и не сопровождается структурными переходами. Новое определение использовано для оценки температуры ориентационного плавления двухоболочечной углеродной напочастицы.

7. Проведено моделирование методом молекулярной динамики, показывающее невозможность последовательного роста слоев углеродных наночастиц с оболочечной структурой в экспериментальных условиях их образования. Предложен единый механизм образования фуллерепов, наночастиц и наиотрубок: сначала образуется жидкий или аморфный кластер, а потом происходит отжиг оболочечной структуры.

8. Построена классификация ДУНТ с соизмеримыми слоями, в соответствие с которой все такие ДУНТ разделены на семейства с одинаковыми структурными параметрами.

9. Показано, что для малых температур и малых сил, приложенным к слоям, относительные диффузию и дрейф слоев углеродных нанотрубок вдоль винтовых линий, опредеч ляемых потенциальной энергией взаимодействия слоев, описывается уравнением Фоккера-Планка. Определены режимы управления движением и способы приложения управляющей силы для НЭМС, основанных на движении слоев нанотрубок вдоль винтовой линии.

10. Барьеры для относительного движения слоев ДУНТ рассчитаны из первых принципов, а также с помощью полуэмпирических потенциалов. Полученные значения барьеров использованы для оценок коэффициентов диффузии и пороговых сил для относительного движения слоев. Экспериментальные измерения рассчитанных величин могут быть использованы для проверки адекватности различных методов расчетов.

11. Показано, что ДУНТ с соизмеримыми хиральными слоями, в одном из которых периодически расположены дефекты атомной структуры, могут быть парой наноболт-наногайка. С помощью расчетов, основанных на полуэмпирических потенциалах отобраны ДУНТ, перспективные для использования в НЭМС в качестве пары наноболт-наногайка.

12. Предложена принципиальная схема и рассмотрены принципы работы наноактуато-ра, основанного на четырехслойной углеродной нанотрубке и предназначенного для преобразования поступательной силы, направленной вдоль оси нанотрубки, в относительное вращение слоев. Проведены расчеты, демонстрирующие возможность работы наноактуа-тора для определенной структуры слоев.

13. Предложена концепция нанотермометра, основанная на изменение проводимости наносистемы в результате относительных тепловых колебаний компонентов, составляющих наносистсму. Проведены расчеты, показывающие возможность реализации предложенной концепции для нанотермометра на основе ДУНТ с соизмеримыми нехиральными слоями.

14. Предложены новые принципиальные схемы и рассчитаны рабочие характеристики нанореле, основанных на относительном движении слоев нанотрубок. Рассмотрены условия, при которых данные нанореле могут быть использованы в качестве ячеек оперативной и энергонезависимой памяти.

Обсудим возможности практического применения полученных результатов. Теория адсорбции молекул на поверхности, модифицированной наличием нанолокальпых дефектов в том числе селективной адсорбции определенных молекул) может быть использована для развития методов обнаружения малых количеств молекул (что важно для контроля за химическими производствами и мониторинга химического загрязнения окружающей среды) и методов разделения изомеров, и методов получения изображения на поверхности в результате самоорганизации поверхностных наноструктур.

Уникальные свойства углеродных наноструктур (фуллеренов, наночастиц и нанотру-бок) делают перспективным их использование в качестве элементов будущей наноэлетро-ники, для получения новых ианоматериалов, в том числе сверхтвердых и с нелинейными оптическими свойствами, в качестве наполнителей новых композитных материалов повышенной прочности, и в ряде других отраслей промышленности. По этой причине исследование механизмов образования и роста углеродных наноструктур, важное для определения оптимальных условий синтеза при промышленном получении этих наноструктур, является очень актуальной задачей.

Интенсивное развитие наномеханики в последнее десятилетие сделало возможным практическое изготовление НЭМС. Исследование взаимодействия и относительного движения слоев углеродных нанотрубок дает важную информацию не только для разработки принципиальных схем и принципов работы НЭМС на основе нанотрубок, но также и для понимания принципиальных отличий относительного движения нанообъектов и динамического поведения наносистем от движения частей макроскопических механических систем. В настоящей диссертации предложены принципиальные схемы трех НЭМС, основанных на взаимодействии и относительном движении слоев нанотрубок: нанотермометр, нанореле и наноактуатор. Бурное развитие методов нанотехнологии в настоящее время позволяет сделать вывод, что данные НЭМС могут быть изготовлены в ближайшем будущем.

Благодарности.

В заключение автор выражает особую благодарность моему научному руководителю Юрию Ефремовичу Лозовику за постановку задачи, научное руководство и постоянный контрольа так же моральную поддержку и взаимопонимание, которые создавали творческие условия для работы.

Часть работы была выполнена в сотрудничестве с университетами г. Брайтона, и г. Кембриджа, Великобритания, а также Волгоградского государственного университета. Автор благодарит профессора М. Хсггие, профессора Н. Г. Лебедева, доктора Е. Бичут-скую, Г. С. Иванченко, A.B. Миногина, A.B. Беликова, А. Г. Николаева, С. С. Кузнецова и A.C. Кулиша за интересное и плодотворное сотрудничество.

Показать весь текст

Список литературы

  1. , В.М. О модифицированном критерии Линдемана для двухмерного плавления /В.М. Беданов, Г. В. Гадяк, Ю. Е. Лозовик // ФТТ. 1985. — Т. 27. — С. 2207.
  2. , Н.С. Вычисление повышения энергии адсорбции в порах молекулярных размеров для модельного случая неспецифической иелокализованной адсорбции /Н.С. Гуфрейн, Д. Р. Добытчин, Л. С. Конленко // ЖФХ. 1970. -Т. 44. — С. 741.
  3. A.B. Кластер Сбо — новая форма углерода / A.B. Елецкий, Б. М. Смирнов // УФН. 1991. — Т. 161. — С. 173.
  4. , Г. С. Проводимость двухслойных нанотрубок в рамках модели Хаббарда /Г.С. Иванеченко, Н.Г.'Лебедев // ФТТ. 2007. — Т. 49. — С. 183.
  5. , Ю.Е. Ионные и электронные кластеры /Ю.Е. Лозовик // УФН. — 1987. — Т. 153. С. 356.
  6. У. Лозовик Ю. Е. Термодинамические и структурные свойства и ориентационное плавление наночастицы С60@С24о- Исследование методом молекулярной динамики, /Ю.Е.
  7. , A.M. Попов, A.B. Беликов // ФТТ. 2002. — Т. 44. — С. 180.139
  8. , Г. Н. Спектроскопические проявления фазовых переходов в кристаллическом циклопентане /Г.Н. Жижин, Ю. Е. Лозовик, М. А. Москалова и др. // ДАН. — 1970. Т. 190. — Р. 301.
  9. Abraham, F.F. Melting transition of submonolayer xenon, krypton, and argon films on graphite — a computer-simulation study /F.F. Abraham // Phys. Rev. B. — 1983. — Vol. 28. P. 7338.
  10. Abraham.son, J. Energies of graphite / J. Abrahamson // Carbon. — 1973. — Vol. 11. — P. 337.
  11. Abrahamson, J. Graphite sublimation temperatures, carbon arcs and crystalline erosion /J. Abrahamson // Carbon. 1974. — Vol. 12. — P. 111.
  12. Adams, G.B. Jahn-teller distortions in solid C20 and other fullerene structures /G.B. Adams, O.F. Sankey, J.B. Page et al. // Chem. Phys. 1993. — Vol. 176. — P. 61.
  13. Ahn, Y.O. Defect-induced nucleation of sputter-deposited gold on graphite /Y.O. Ahn, M. Seidl // J. of Appl. Phys. ~ 1995. Vol. 77. — P. 5558.
  14. Ajiayan, P.M. Distribution of pentagons and shapes in carbon nanotubes and nanoparticles /P.M. Ajiayan, T. Ichihashi, S. Iijima // Chem. Phys. Lett. 1993. — Vol. 202. — P. 384.
  15. Albrecht, T.R. Nanometer-scale hole formation on graphite using a scanning tunneling microscope /T.R. Albrecht, M.M. Dovek, M.D.
  16. Anderson, P. J. Heats of argon adsorption on microporous magnesium oxide powders /P.J. Anderson, R.F. Horlock // Trans. Faraday Soc. 1969. — Vol. 65. — P. 251.
  17. Astakhova, T. Yu. International Workshop Fullerenes and Atomic Clusters, Abstracts s of Invited Lectures and Contributed Papers /T.Yu. Astakhova, Sh.A. Shaginyan, G.A.
  18. Vinogradov. — St. Petersburg, Russia, 1995. —P. 80.
  19. Baum, R.M. Ideas on soot formation spark controversy /R.M. Baum // Chem. and Eng. News. 1990. — Vol. 68. — P. 30.
  20. Becker, R.S. Atomic-scale surface modifications using a tunneling microscope /R.S. Becker, J.A. Golovchenko, B.S. Swartzentruber // Nature. 1987. — Vol. 325. — P. 419.
  21. Bedanov, V.M. Ordering and phase- transitions of charged-particles in a classical finite 2-dimensional system /V.M. Bedanov, F.M. Peeters // Phys. Rev. B. — 1994. Vol. 49. — P. 2667.
  22. Benedict L.X. Microscopic determination of the interlayer binding energy in graphite /L.X. Benedict, N.G. Chopra, M.L. Cohen // Chem. Phys. Lett. 1998. — Vol. 286. — P. 490.
  23. Borrmann, P. Classification of phase transitions in small systems /Р. Borrmann, O. Mulken, J. Hurting // Phys. Rev. Lett. 2000. — Vol. 84. — P. 3511.
  24. Briddon P.R. LDA calculations using a basis of Gaussian orbitals/P.R. Briddon, R. Jones 11 Phys. Stat. Sol. 2000. — Vol. 217. — P. 131.
  25. Broyer, M. Experimental studies on the formation process of Сбо /М. Broyer, A. Goeres, M. Pellarin et al. // Chem. Phys. Lett. 1992. — Vol. 198. — P. 128.
  26. Burian A. Burian Structural studies of multiwall carbon nanotubes by neutron diffraction /А. Burian, J.C. Dore, H.E. Fisher et al. // Phys. Rev. B. 1999. Vol. 59. — P. 1665.
  27. Chelikowsky, J. R. Nucleation of C6o clusters /J.R. Chelikowsky // Phys. Rev. Lett. — 1992. Vol.67. — P. 2970.
  28. Chelikowsky, J. R. Formation of Сбо clusters via langevin molccular-dynamics /G.R. Chelikowsky // Phys. Rev. B. 1992. — Vol. 45. — P. 12 062.
  29. Chen, Z. Y. Reaction channels in a plasma reactor laser vaporization source — formation of carbon clusters and metal-carbon clusters /Z.Y. Chen, B.C. Guo, B.D. May et al. // Chem. Phys. Lett. 1992. — Vol. 198. — P. 118.
  30. Chen, L. Y. Diffusion and vibration of adatoms on a solid-surface /L.Y. Chen, S.C. Ying // Phys. Rev. Lett. 1993. — Vol. 71. — P. 4361.
  31. Clark, A. Theory of Adsorption and Catalysis / A. Clark. — Academic Press, New York, 1970.54| Crawford, B.L. The planar vibrations of benzene /B.L. Crawford, F.A. Miller // ./. Chem. Phys. 1949. — Vol. 17. — P. 249.
  32. Creasy, W.R. Large carbon cluster ion formation by laser ablation of polyimide and graphite /W.R. Creasy, J.T. Brenna // Chem. Phys. 1988. — Vol.126. — P. 453.
  33. Curl, R.F. On the formation of the fullerenes philosophical transactions of the royal society of london series a- mathematical /R.F. Curl // Phil. Trans. R. Soc. bond. A. — 1993. — Vol. 343. P. 19.
  34. Damnjanovic M. Full symmetry, optical activity, and potentials of single-wall and multiwall nanotubes /М. Damnjanovic, I. Milosevic, T. Vukovic et al. // Phys. Rev. B. — 1999. — Vol. 60. P. 2728.
  35. Damnjanovic M. Super-slippery carbon nanotubes — Symmetry breaking breaks friction /М. Damnjanovic, T. Vukovic, I. Milosevic // Eur. Phys. J. B. 2002. — Vol. 25. — P. 131.
  36. David, W.I.F. Crystal-structure and bonding of ordered C-60 /W.I.F. David, R.M. Ibberson, J.C. Matthewman et al. // Nature. 1991. — Vol. 353. — P. 147.
  37. Dias, J.R. Benzenoids to fullerenes and the circumscribing algorithm /J.R. Dias // Cherri. Phys. Lett. 1993. — Vol. 209. — P. 439.
  38. Ebbesen, T. W. The mechanistics of fullerene formation /T.W. Ebbcsen, J. Tabuchi, K. Tanigaki // Chern. Phys. Lett 1992. — Vol 191. — P. 336.
  39. G9| Ebert, L.B. Is soot composed predominantly of carbon clusters? /L.B. Ebert. // Science. 1989. — Vol 247. — P. 1468.
  40. Ehbrecht, M. C02-laser-driven production of carbon clusters and fullerenes from the gas. phase /М. Ebrecht, M. Faerber, F. Rohmund et al. // Chem. Phys. Lett. — 1993. Vol.214. P. 34.
  41. Eggen, B.R. Autocatalysis during fullerene growth /B.R. Eggen, M.I. Heggie, G. Jungnickel et al. // Science. 1996. — Vol. 272. — P. 87.
  42. Eigler, D.M. Positioning single atoms with a scanning tunneling microscope /D.M. Eiglcr, E.K. Schweizer // Nature. 1990. — Vol. 344. — P. 525.
  43. El-Hami K. Organo-halogen uses for controlled cutting of carbon nanotubes /К. El-Hami, K. Mitsushige, // Int. Journ. of Nanoscience. 2003. — Vol. 2. — P. 125.
  44. Ellis D.E. Modeling of copper-carbon solid solutions/D.E. Ellis, K.C. Mundimb, D. Fuksb // Mater. Sc. in Semicond. Processing. — 2000. — Vol. 3. — P. 123.
  45. Endo, M. Formation of carbon nanofibers /М. Endo, H.W. Kroto J. // Phys. Chem. — 1992. Vol. 96. — P. 6941.
  46. Engelke, F. Molecular electronics — observation of molecular rectification /F, Engelke, J.H. Hahn, W. Henke et al. // Anal. Chem. 1987. — Vol. 59. — P. 909.
  47. Fennimore A.M. Rotational actuators based on carbon nanotubes /A.M. Fennimore, T.D. Yuzvinsky, W.Q. Han et al. // Nature. 2003. — Vol. 424. — P. 408.
  48. Forro L. Beyond gedanken experiment /L. Forro // Science. — 2000. — Vol. 289. — P. 5479.
  49. Ge, M. Scanning-tunneling-microscopy of vapor- phase grown nanotubes of carbon /М. Ge, K. Sattler // J. Phys. Chem. Solids. 1993. — Vol. 54. — P. 1871.
  50. Girifalco L.A. Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential /L.A. Girifalco, M. Hodak, R.S. Lee 11 Phys. Rev. 2000. — Vol. 62. — P. 13 104.
  51. Goeres, A. On the nucleation mechanism of the effective fullerite condensation /А. Goeres, E. Sedlmayer // Chem. Phys. Lett. 1991. — Vol. 184. — P. 310.
  52. Grace, I.M. Electron transport in carbon nanotube shuttles and telescopes /1.М. Grace, S.W. Bailey, C.J. Lambert // Phys. Rev. B. 2004. — Vol. 70. — P. 153 405.
  53. Gregg, S.J. Adsorption, Surface Areas and Porosity / S.J. Gregg, K.S.W. Sing. — Academic s Press, New York, 1982.
  54. Gulseren 0. /0. Gulseren, T. Yildirim, S. Liraci // Phys. Rev. B. 2002. — Vol. 65. -P. 153 405.
  55. Guo, T. Uranium stabilization of C28 — a tetravalent fullerene /Т. Guo, M.D. Diener, Y. Chai et al. // Science. 1992. — Vol. 257. — P. 1661.
  56. Hahn, M. Y. Magic numbers in C+ and C~ abundance distribution /M.Y. Hahn, E.C. Honea, A.J. Paguia et al. // Chem. Phys. Lett. 1987. — Vol. 130. — P. 12.
  57. Heath, J.R. Lanthanum complexes of spheroidal carbon shells /J.R. Heath, S.C. O’Brien, O.L. Zhang et.al. // J. Am. Chem. Soc. 1985. — Vol. 107. — P. 7779.
  58. J.R. / Fullerenes: Synthesis, Properties and Chemistry of Large Carbon Clusters /J.R. Heath. — American Chemical Society, Washington, 1991. —P. 1−23.
  59. Helden, G. Do small fullerenes exist only on the computer — experimental results on C^ and Ca/" /G. Helden, M.T. Hsu, N.G. Gotts et al. // Chem. Phys. Lett. 1993. — Vol. 204. — P. 15.
  60. Howard, J.B. Fullerenes C60 and C70 in flames /J.B. Howard, J.T. Mckinnon, Y. Makarovsky et al. // Nature. 1991. — Vol.352. — P. 149.
  61. Huira, H. Role of sp (3) defect structures in graphite and carbon nanotubes /H. Huira, T.W. Ebbesen, J. Fujita et al. // Nature. 1994. — Vol. 367. — P. 148.
  62. Iijima, S. Direct observation of the tetrahedral bonding in graphitized carbon-black by, high-resolution elcctron-microscopy /S. Iijima //J. Crystal Growth. — 1980. — Vol. 50. —1. P. 675.
  63. Iijima, S. The 60-carbon cluster has been revealed /S. Iijima J. // Phys. Chem. — 1987. Vol. 91. — P. 3466.
  64. S. /S. Iijima // Nature. 1991. — Vol. 345. — P. 6348.
  65. Iijima, S. Growth-model for carbon nanotubes /S. Iijima, P.M. Ajayan, T. Ichihachi // Phys. Rev. Lett. 1992. — Vol. 69. — P. 3100.
  66. Jellinek, J. Solid-iiquid phase changes in simulated isoenergetic Аггз /J. Jellinek, T.L. Beck, R.S. Berry // J. Chem. Phys. 1980. — Vol. 84. — P. 2783.
  67. , Q. /Q. Jiang, H. Xia, Z. Zhang et al. // Chem.Phys.Lett. 1992. — Vol. 191. -P. 197.
  68. Jing, X. Nucleation of carbon clusters via an accretion model /X. Jing, J. R. Chelikowsky 11 Phys. Rev. B. 1992. — Vol.46. — P. 5028.
  69. King, A.D. Thermal desorption from metal- surfaces /A.D. King // Surf. Sei. — 1975. — Vol. 47. P. 384.
  70. Kis A. /A.Kis, K. Yensen, S. Aloni et al. // Phys. Rev. Lett. 2006. — Vol. 97. — P. 25 501.
  71. Kolmogorov A.N. Smoothest bearings: Interlaycr sliding in multiwallcd carbon nanotubes /A.N. Kolmogorov, V.H. Crespi// Phys. Rev. Lett. 2000. — Vol. 85. — P. 4727 .
  72. Kong J. Q-chem 2.0: A high-performance ab initio electronic structure program package/J. Kong, C. A. White, A. I. Krylov // J. Comput. Chem. 2000. — Vol. 21. — P. 1532.
  73. Koprinapov, N. Nanocarbons formed under ac arc- discharge /N. Koprinapov, M Marinov, G. Pchelerov et.al. // J. Phys. Chem. 1995. — Vol. 99. — P. 2042.
  74. Kratschmer, W. Solid Сбо — a new form of carbon /W. Kratschmer, L.D. Lamb, K. Fostiroupolos et al. // Nature. 1990. — Vol. 347. — P. 354.
  75. Kroto, H.W. C60 buckminsterfullerene /H.W. Kroto, J.R. Heath, S.C. O’Brien et al. // Nature. — 1985. — Vol. 318. — P. 162.
  76. Kwon, Y.K. Effect of intertube coupling on the electronic structure of carbon nanotube ropes /Y.K. Kwon, D. Tomanek // Phys. Rev. B. 1998. — Vol. 58. — P. R16001.
  77. Kwon, Y.K. Orientational melting in carbon nanotube ropes /Y.K. Kwon, D. Tomanek // Phys. Rev. Lett. 2000. — Vol. 84. — P. 1483.
  78. Li J.-Y/J.-Y. Li, J. Bernholc // Phys. Rev. B. 1993. — Vol. 47. — P. 1708.
  79. Lozovik, Yu.E. Coulomb clusters in a trap /Yu.E. Lozovik, V.A. Mandelshtam // Phys. Lett. A. 1990. — Vol. 145. — P. 269.
  80. Lozovik, Yu.E. Carbon spheric nanoparticles — possible formation mechanism /Yu.E. Lozovik, A.M. Popov // Phys. Let. A. 1994. — Vol. 189. — P. 127.
  81. Lozovik, Yu.E. The possibility of nanolocal reactions on surfaces /Yu.E. Lozovik, S.P. Merkulova, S.K. Sekatskii et al. // Phys. Lett. A. 1994. — Vol. 189. — P. 131.
  82. Lozovik, Yu.E. The Molecular Desing: a Formation of Fullcrenes, Spheric Nanoparticles and Nanotubes /Yu.E. Lozovik, A.M. Popov // Phys. Low-Dim. Str. — 1994. — Vol. 6. — P. 33.
  83. Lozovik, Yu.E. Properties of two-dimensional dusty plasma clusters /Yu.E. Lozovik, E.A. Rakoch // Phys. Lett. A. 1997. — Vol. 235. — P. 55.
  84. Lozovik, Yu.E. Orientational melting of carbon nanoparticles with shell structure /Yu.E. Lozovik, A.M. Popov // Physics of Low-Dim. Struct. 1997. — Vol. 8/9. — P. 63.
  85. Lozovik Yu.E. Orientational melting of two-shell carbon nanoparticles: molecular dynamics study /Yu.E. Lozovik, A.M. Popov // Chem. Phys. Lett. — 2000. Vol. 328.- P. 355.
  86. Lozovik Yu.E. Nanomachines based on carbon nanotubes/Yu.E. Lozovik, A.V. Minogin, A.M. Popov // Phys. Lett. A. 2003. — Vol. 313. — P. 112.
  87. Lozovik Yu.E. Possible nanomachincs: Nanotube walls as movable elements /Yu.E. Lozovik, A.V. Minogin, A.M. Popov // JETP Letters. 2003. — Vol. 77. — P. 631.
  88. Yu.E. /Yu. E. Lozovik, A. M. Popov // Fullerenes, Nanotubes and Carbon Nanostructures. 2004. — Vol. 12. — P. 485.
  89. Lozovik Yu.E. Atomic scale design of carbon nanotubes: the way to produce bolt-and-nut pairs /Yu.E. Lozovik, A.G. Nikolaev, A.M. Popov // Int. J. of Nanotechnology. — 2005.- Vol. 2. P. 255.
  90. Lu, J.P. The shape of large single-shell and multiple-shell fullerenes /J.P. Lu, W. Yang // Phys. Rev. B. 1994. — Vol.49. — P. 11 421.
  91. Lyo, I.W. Field-induced nanometer-scale to atomic-scale manipulation of silicon surfaces with the stm /I.W. Lyo, P. Avouris // Science. 1991. — Vol. 253. — P. 173.
  92. Maiti, A. Structure and energetics of single and multilayer fullerene cages /А. Maiti, C.J. Brabcc, J. Bernhole // Phys. Rev. Lett. 1993. — Vol. 70. — P. 3023.
  93. , А. /А. Maiti, C.J. Brabec, J. Bernhole // Mod. Phys. Lett. B. 1993. — Vol. 7.- P. 1883.142| Maiti, A. Structural defects and the shape of large fullerenes /А. Maiti, C.J. Brabec, J. Bernhole // Chem. Phys. Lett. 1994. — Vol 219. — P. 473.
  94. McCleland, J.J. Laser-focused atomic deposition /J.J. McCIeland, R.E. Scholten, E.C. Palm et al. 11 Science. 1993. — Vol. 262. — P. 877.
  95. McElvany, S. W. Cyclocarbon coalescence — mechanisms for tailor-made fullerene formation /S.W. McElvany, M.M. Ross, N.S. Goroff, et.al. 11 Science. 1993. — Vol. 259. — P. 1594.
  96. , S. 1 nm deep mechanical processing of muscovitc mice by atomic-force microscopy /S. Miyake // Appl. Phys. Lett 1995. — Vol. 67. — P. 2925.
  97. Mintmire, J.W. Fullerene formation and annealing /J.W. Mintmire // Science. — 1996. Vol. 272. — P. 45.
  98. Murry, R.L. Role of sp (3) carbon and 7-membered rings in fullerene annealing and fragmentation /R.L. Murry, D.L. Strout, G.K. Gregory et al. // Nature. — 1993. — Vol. 366. P. 665.
  99. O’Brien, S.C. Photophysics of buckminsterfullerene and other carbon cluster ions /S.C. O’Brien, J.R. Heath, R.F. Curl et al. // J. Chem. Phys. 1988. — Vol. 88. — P. 220.
  100. Perez-Garrido, A. Giant multilayer fullerene structures with symmetrically arranged defects /А. Perez-Garrido // Phys. Rev. B. 2000. — Vol. 62. — P. 6979.
  101. Porto, M. Molecular motor that never steps backwards /М. Porto, M. Urbakh, J. Klafter 11 Phys. Rev. Lett. 2000. — Vol. 84. — P. 6058.
  102. Radi, P.P. On the structure, reactivity and relative stability of the large carbon cluster ions Cg2i CJ0 and C58+ /P.P. Radi, M.T. Hsu, M.E. Eincon et al. // Chem. Phys. Lett. -1990. Vol. 174. — P. 223.
  103. Raghavachari, K. Structure, stability, and fragmentation of small carbon clusters /К. Raghavachari, J.S. Binkey // J. Chem. Phys. 1987. — Vol. 87. — P. 2191.
  104. Raghavachari, K. Theoretical-studies 011 carbon and silicon clusters comparison of the structures and stabilities of neutral and ionic forms /К. Raghavachari // Z. Phys. D. — 1989. — Vol. 12. — P. 61.
  105. Rohlfing, E.A. High-resolution time-of-flight mass-spectrometry of carbon and carbonaceous clusters /Е.А Rohlfing // J. Chem. Phys. 1990. — Vol. 93. — P. 7851.
  106. Schaeter, D.M. Fabrication of 2-dimensional arrays of nanometer-size clusters with the atomic-force microscope /D.M. Schaeter, R. Reifenberger, A. Pat. il et al. // Appl. Phys. Lett. 1995. — Vol. 66. — P. 1012.
  107. , G.E. /G.E. Scuceria // Chem. Phys. Lett. ~ 1995. Vol. 243. — P. 193.
  108. Z. /Z. Shen, S. Lie, Z. Xuc et al. // Int. Journ. of Nanoscience. 2002. — Vol. 1.- P. 575.175J Smalley, R.E. Self-assembly of the fullerenes /R.E. Smalley // Acc. Chem. Res. 1992.- Vol. 25. P. 98.
  109. Stone, A.J. Theoretical-studies of icosahedral Сбо and some related species /A.J. Stone, D.J. Wales // Chem. Phys. Lett. 1986. — Vol. 128. — P. 501.
  110. Strout, D.L. How unequivocally do ion chromatography experiments determine carbon cluster geometries /D.L. Strout, L.D. Book, J.M. Millam et al. // J. Phys. Chem. — 1994. Vol. 98. — P. 8622.
  111. Tans, S.J. Individual single-wall carbon nanotubes as quantum wires /S.J. Tans, M.H. Devoret, H. Dai, et al. // Nature. 1997. — Vol. 386. — P. 474.
  112. Tarnai, T. Geodesic domes and fullerenes /Т. Tarnai // Phil. Trans. R. Soc. Lond. A. — 1993. Vol. 343. — P. 145.187| Tenne R. /R. Tenne, L. Margulis, M. Genut et.al. /7 Nature. 1992. — Vol. 300. — P. 6403.
  113. Tibbetts, G.G. Why are carbon filaments tubular /G.G. Tibbers // J. Cristal Growth. -1984. Vol. 66. — P. 632.
  114. , G. /G. Timp, R.E. Behringer, P.M. Tennout et al. // Phys. Rev. Lett. 1992. -Vol. 69. — P. 1632.9
  115. Tomanek, D. Growth regimes of carbon clusters /D. Tomanek, M.A. Schluter // Phys. Rev. Lett. 1991. — Vol. 67. — P. 2331.
  116. Tom.anek, D. Stability of multishell fullerenes /D. Tomanek, W. Zhang, E. Krastev // Phys. Rev. B. 1993. — Vol. 48. — P. 15 461.
  117. Tsang S. C. Thinning and opening of carbon nanotubes by oxidation using carbon-dioxide /S.C. Tsang, P.J.F. Harris, M.L.H. Creen // Nature. 1993. — Vol. 362. — P. 520.
  118. S.C. /S.C. Tsang, Y. K Chen, P.J.F. Harris // Nature. 1994. — Vol. 372. — P. 159.
  119. Tunney, M.A. Effects of disorder and momentum relaxation on the intertube transport of incommensurate carbon nanotube ropes and multiwall nanotubes /М.А. Tunney, N.R. Cooper // Phys. Rev. B. 2006. — Vol. 74. — P. 75 406.
  120. Tuzun R.E. Dynamics of a laser-driven molecular motor /R.E. Tuzun, D.W. Noid, B.G. Sumpter // Nanotechnology. — 1995. — Vol 6. — P. 52.
  121. Ugaiie, D. Morphology and structure of graphitic soot particles generated in arc-discharge C60 production /D. Ugarte // Chem. Phys. Lett. 1992. — Vol. 198. — P. 596.
  122. Ugarte, D. Curling and closure of graphitic networks under electron-beam irradiation /D. Ugarte // Nature. 1992. — Vol. 359. — P. 707.
  123. Ugarte, D. Formation mechanism of quasi- spherical carbon particles induced by electron-bombardment /D. Ugarte // Chem. Phys. Lett. 1993. — Vol. 207. — P. 473.
  124. Ugarte, D. Canonical structure of large carbon clusters — C", n greater than 100 /D. Ugarte // Europhys. Lett. 1993. — Vol. 221. — P. 45.
  125. Ulmer, G. Laser mass spectroscopic investigations of purified, laboratory-produced C6o/C70 /G. Ulmer, E.E. Campbell, R. Kuhnle et al. // Chem. Phys. Lett. 1991. -Vol. 182. — P. 114.
  126. , D.H. /D.H. Waldeck, D.N. Bevatan 11 Science. 1993. — Vol. 261. — P. 576.
  127. Wang, C.Z. Disintegration and formation of Ceo /C.Z. Wang, C.H. Xu, C.T. Chan et al. // J. Phys. Chem. 1992. — Vol. 96. — P. 3563.
  128. Wang, X.K. Carbon nanotubes synthesized in a hydrogen arc-discharge /Х.К. Wang, X.W. Lin, V.P. Dravid et al. // Appl. Phys. Lett. 1995. — Vol. 66. — P. 2430.
  129. Winkler, R. G. Liquid benzene confined between graphite surfaces — a constant-pressure molecular-dynamics study /R.G. Winkler, R. Hentschke //J. Chem. Phys. — 1993. — Vol. 99. P. 5405.
  130. Yamada, K. Formation process of carbyne produced by shock compression /К. Yamada, H. Kunishige, A.B. Sawaoka // Naturwissenchaften. — 1991. — Vol. 78. — P. 450.
  131. Yang, S. UPS of 2−30-atom carbon clusters — chains and rings /S. Yang, K.J. Taylor, M.J. Craycraft et al. // Chem. Phys. Lett. 1988. — Vol. 144. — P. 431.
  132. Yeretzian, C. Coalescence reactions of fullerenes /С. Yeretzian, K. Hansen, A.F. Diederich et al. // Nature. 1992. — Vol. 359. — P. 44.
  133. Yi, .]. Reactivity, stability, and formation of fullerenes /J. Yi, J. Berhole // Phys. Rev. B. 1993. — Vol. 48. — P. 5724.
  134. York, D. Density-functional calculations of the structure and stability of C240 /D. York, J.P. Lu, W. Yang // hys. Rev. B. 1994. — Vol. 49. — P. 8526.215J Yoshida, М. /М. Yoshida, Е. Osawa // Ful. Sc. & Tech. 1993. — Vol. 1. — P. 54.
  135. Zerbetto, F. Annealing graphite-like structures — a monte-carlo quantum chemical study /F. Zerbetto // Chem. Phys. 1991. — Vol. 150. — P. 39.
  136. Zhang, O.L. Reactivity of large carbon clusters — spheroidal carbon shells and their possible relevance to the formation and morphology of soot /O.L. Zhang, S.C. O’Brien, J.R. Heath et al. // J. Phys. Chem. 1986. — Vol. 90. — P. 525.
  137. Zhang, X.P. Carbon nanotubes — their formation process and observation by electron-microscopy /Х.Р. Zhang, X.B. Zhang, G. Tendeloo, et al. // ./. Cristal Growth. 1993. -Vol. 130. — P. 368.
  138. Zheng Q. Multiwalled carbon nanotubes as gigahertz oscillators /Q. Zheng, Q. Jiang // Phys. Rev. Lett. 2002. — Vol. 88. — P. 45 503.2221 JANAF Thermochemical Tables, 2nd Edn, NSRDS- NBS37. Nat. Bur. Stand., Washington, 1970.
Заполнить форму текущей работой