Теоретическое исследование механизмов функционирования и регуляции цикла Кребса митохондрии и Escherichia coli
Диссертация
Таким образом, на примере сегмента цикла Кребса митохондрии и цикла Кребса Escherichia coli в работе продемонстрированы возможности подхода кинетического моделирования. Предлагается способ теоретического изучения механизмов побочных эффектов лекарств с помощью кинетического моделирования. Представленный подход, включающий детальное описание ферментов с учетом регуляторных связей и определение… Читать ещё >
Список литературы
- Edwards J.S., Ibarra R.U., Palsson B.O. In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data // Nat. Biotechnol.2001.-V. 19. P. 125−130.
- Krebs H.A., Johnson W.A. The role of citric acid in intermediate metabolism in animal tissues // Enzymologia. 1937. — N.4. — P.148−156.
- Кондрашова M.H. Структурно-кинетическая организация цикла трикарбоновых кислот при активном функционировании митохондрий // Биофизика. 1989. — Т. 34, вып. 3. — С.450−457.
- Kondrashova M.N., Gogvadze V.G., Medvedev B.I., Babsky A.M. Succinic acidoxidation as the only energy support of intensive Ca2+ uptake by mitochondria // Biochem. Biophys. Res. Commun. 1982. — V. 109. — N. 2 — P. 376−381.
- Кондрашова M.H. // Митохондрии. M.: Наука. — 1972. — С. 151.
- Кондрашова M.H., Маевский Е. И., Бабаян Г. В. и др. // Митохондрии. М.:1. Наука. 1973. — С. 112.
- Siess Е.А., Wieland О.Н. Early kinetics of glucagon action in isolatedhepatocytes at the mitochondrial level // Eur. J. Biochem. 1980. — V. l 10 — N. l -P. 203−210.
- Robinson J.B., Srere P. A. Organization of Krebs tricarboxylic acid cycle enzymesin mitochondria // J. Biol. Chem. 1985. — V. 260. — N. l9. — P. 10 800−10 805.
- Parlo R.A., Coleman P. S. Enhanced Rate of Citrate Export from Cholesterol-rich
- Hepatoma Mitochondria. 1984. // J. Biol. Chem. V. 259. — N.16. — P. 999 710 003.
- Reitzer L.J., Wice B.M., Kennell D. Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells // J. Biol. Chem. 1979. — V. 254. -P. 2669−2676.
- Yudkoff M., Nelson D., Daikhin Y., Erecinska M. Tricarboxylic acid cycle in ratbrain synaptosomes. Fluxes and interactions with aspartate aminotransferase and malate/aspartate shuttle // J. Biol. Chem. -1994. V. 269. — N. 44. — P. 27 414−27 420.
- Cronan J.E., LaPorte D. Tricarboxylic acid cycle and glyoxylate bypass // E. coliand Salm.typhimurium: Cellular and Molecular Biology. ASM Press. — 1996. -P. 206−216.
- Peng L., Shimizu K. Global metabolic regulation analysis for Escherichia coli K12 based on protein expression by 2-dimensional electrophoresis and enzyme activity measurement // Appl. Microbiol. Biotechnol. 2003. — V. 61. — P. 163 178.
- Машковский М.Д. // Лекарственные средства. 2000. — T.l. — C.163.
- Temple A.R. Acute and chronic effects of aspirin toxicity and their treatment // Archives of Internal Medicine. -1981. -V. 141. P. 364−369.
- Prescott L.F. Effects of non-narcotic analgesics on the liver // Drugs. 1986. -V. 32. — P. 129−147.
- Benson G.D. Hepatotoxicity following the therapeutic use of antipyretic analgesics // American Journal of Medicine. 1983. — V. 75 (5 A). — P. 85−93.
- Iancu Т., Elan E. Ultrastructural changes in aspirin hepatotoxicity // American Journal of Clinical Pathology. 1976. -V. 66. -N. 3, — P. 570−575.
- Майоре А.Я., Дудник Л. Б., Копылова Е. И., Варганова Е. И., Кузнецова А.В.,
- Fromenty В., Pessayre D. Inhibition of mitochondrial beta-oxidation as a mechanism of hepatotoxicity // Pharmacological Therapeutics. 1995. — V. 67. -P. 101−154.
- Forman W.B., Davidson E.D., Webster L.T. Enzymatic Conversion of Salicylateto Salicylurate // Molecular Pharmacology. 1971. — V. 7. — P. 247−259.
- Vessey D.A., Hu J., Kelly M. Interaction of salicylate and ibuprofen with the carboxylic acid: CoA ligases from bovine liver mitochondria // Journal of Biochemical Toxicology. 1996. — V. 11. — P. 73−78.
- Kaplan E.H., Kennedy J., Davis J. Effects of salicylate and other benzoates on oxidative enzymes of the tricarboxylic acid cycle in rat tissue homogenates // Archives of Biochemistry. 1954. — V. 51. — P. 47−61.
- Haas R., Parker W.D., Stumpf Jr.D., Erugen L.A. Salicylate-induced loose coupling: protonmotive force measurements // Biochemical Pharmacology. -1985.-V. 34.-P. 900−902.
- Schwartz R., Landy G., Taller D., et al. Organic acid excretion in salicylate intoxication // Journal of Pediatrics. -1965. V. 66. — P. 658.
- Bohnensack R., Sel’kov E.E. Stoichiometric regulation in the citric acid cycle. I.1.near interactions of intermediates // Studia biophysica. 1977. — B.65. — C. 61−173.
- Bohnensack R., Sel’kov E.E. Stoichiometric regulation in the citric acid cycle. II. Non-linear interactions // Studia biophysica. 1977. — B.66. — C. 47−63.
- Дынник B.B., Темнов A.B. Математическая модель окисления пирувата в митохондриях печени. Регуляция цикла Кребса адениновыми и пиридиновыми нуклеотидами // Биохимия. 1977. — Т. 42. — В. 6. — С. 10 301 044.
- Kohn М.С., Achs M.J., Garfinkel D. Computer simulation of metabolism in pyruvate-perfused rat heart. II. Krebs cycle // 1979. Am. J. Physiol. — V. 273. -N. 3. P. R159-R166.
- Дынник В.В., Хайнрих Р., Сельков Е. Е. Математическая модель углеводного энергетического обмена. Взаимодействие гликолиза, циклом Кребса и Н-транспортных челноков при изменении нагрузки АТРазы // Биохимия. 1980. — Т. 45. — В. 5. — С. 771−782.
- Дынник В.В. Механизмы регуляции мышечного энергетического обмена при окислении глюкозы и жирных кислот. Математическая модель // Биохимия. 1982. — Т. 47. — В. 8. — С. 1278−1288.
- Дынник В.В., Маевкий Е. И., Григоренко Е. В., Ким Ю.В. Субстратное ингибирование в цикле трикарбоновых кислот // Биофизика. 1984. — Т. 29. -В. 6.-С. 954−958.
- Джафаров Р.Х. Теоретическое исследование механизмов ингибирования цикла трикарбоновых кислот избытком субстратов // Диссертация на соискание ученой степени кандидата физико-математических наук. -Пущино. 1988.
- Edwards J.S., Palsson B.O. How will bioinformatics influence metabolic engineering? // Biotechnol. Bioeng. 1998. — V. 58. — N. 2−3. — P. 162−169.
- Cortassa S., Aon M.A., Marban E., Winslow R.L., O’Rourke B. An integrated Model of cardiac mitochondrial energy metabolism and calcium dynamics // Biophysical Journal. 2003. — V. 84. — P. 2734−2755.
- K.Yugi, M. Tomita. A general computational model of mitochondrial metabolism in a whole organelle scale // Bioinformatics. 2004. — V. 20. — N. 11. -P. 1795−1796.
- El-Mansi E.M.T., G.C.Dawson and C.F.A.Bryce. Steady-state modelling of metabolic flux between the tricarboxylic acid cycle and the glyoxylate bypass in Escherichia coli // Comput. Applic. Biosci. 1994. — V. 10. — N. 3. — P. 295−299.
- Walsh К., Koshland DE. Determination of flux through the branch point of two metabolic cycles // J. Biol. Chem. 1984. — V. 259. — N. 15. — P. 9646−9654.
- Singh V. K., Ghosh I. Kinetic modeling of tricarboxylic acid cycle and glyoxylate bypass in Mycobacterium tuberculosis, and its application to assessment of drug targets // Theoretical Biology and Medical Modelling. 2006. -V.3.-P. 27.
- Демин O.B., Горянин И. И., Холоденко Б. Н., Вестерхофф X.B. Кинетическое моделирование энергетического метаболизма и генерации активных форм кислорода в митохондриях гепатоцита // Молекулярная биология.-2001.-Т. 35. В. 6. — С. 1095−1104.
- Borst P. The pathway of glutamate oxidation by mitochondria isolated from different tissues // Biochim. Biophys. Acta. 1962. — V. 57. — P. 256−269.
- Wilson D.F., Nelson D., Erecinska M. Binding of the intramitochondrial ADP and its relationship to adenine nucleotide translocation // FEBS Letters. 1982. -V. 143.-N. 2.-P. 228−232.
- Kornberg H.L., Krebs H.A. Synthesis of cell constituents from C2-units by a modified tricarboxylic acid cycle // Nature. 1957. — V. 179. — P. 988−991.
- Miller S.P., Chen R., Karschnia E.J., Romfo C., Dean A., LaPorte D.C. Locations of regulatory sites for Isocitrate Dehydrogenase Kinase/Phosphatase // J. Biol. Chem. 2000. — V. 275. — N. 2. — P. 833−839.
- Корниш-Боуден Э. Основы ферментативной кинетики. // Изд-во «Мир». -М.-1979.
- Huang C.Y. Derivation of Initial Velocity and Isotope Exchange Rate Equations // Methods in Enzymology. 1979. — V. 63. — P. 54−84.
- King E.L., Altman C. // Journal of Physical Chemistry. 1956. — V. 60. — P. 1375−1378.
- Goryanin I., Hodgman T.C., Selkov, E. Mathematical simulation and analysis of cellular metabolism and regulation // Bioinformatics. 1999. — V. 15. — P. 749 758.
- Hook R., T.A. Jeeves. «Direct search» solution of numerical and statistical problems // J. ACM. 1961. — V. 8. — P. 212−229.
- Dierks T., Kramer R. Asymmetric orientation of the reconstituted aspartate/glutamate carrier from mitochondria // Biochimica et Biophysica Acta. 1988.-V. 937.-P. 112−126.
- La Noue K.F., Duszynski J., Watts J.A., McKee E. Kinetic properties of aspartate transport in rat heart mitochondrial inner membranes // Archives of Biochemistry and Biophysics. 1979. — V. 195. — P. 578−590.
- Cascante M., Cortes A. Kinetic studies of chicken and turkey liver mitochondrial aspartate aminotransferase // Biochem. J. 1988. — V. 250. — P. 805−812.
- Kuramitsu S., Inoue K., Kondo K., Aki K., Kagamiyama H. Aspartate aminotransferase isozymes from rabbit liver. Purification and properties // J. Biochem. 1985. -V. 97. — P. 1337−1345.
- Garber A.J., Hanson R.W. The interrelationships of the various pathways forming gluconeogenic precursors in guinea pig liver mitochondria // J. Biol. Chem. 1971.-V. 246. — P. 589−598.
- Siess E.A., Kientsch-Engel R.I., Wieland O.H. Concentration of free oxaloacetate in the mitochondrial compartment of isolated liver cells // Biochem. J.- 1984.-V. 218.-P. 171−176.
- McCormack J.G., Denton R.M. The effects of calcium ions and adenine nucleotides on the activity of pig heart 2-oxoglutarate dehydrogenase complex // Biochem. J. 1979. — V. 180. — P. 533−544.
- Massey V. The composition of the ketoglutarate dehydrogenase complex // Biochim. Biophys. Acta. 1960. — V. 38. — P. 447−460.
- Smith C.M., Bryla J., Williamson J. R Regulation of mitochondrial a-ketoglutarate metabolism by product inhibition of a-ketoglutarate dehydrogenase // J. Biol. Chem. 1974. — V. 249. — P. 1497−1505.
- Hamada M., Koike K., Nakaula Y., Hiraoka Т., Koike M., Hashimoto Т. A kinetic study of the a-keto acid dehydrogenase complexes from pig heart mitochondria // J. Biochem. 1975. — V. 77. — P. 1047−1056.
- Cha S., Parks R.E. Succinic thiokinase. II. Kinetic studies: initial velocity, product inhibition, and effect of arsenate // J. Biol. Chem. 1964. — V. 239. — P. 1968−1977.
- Cha S., Parks R.E. Succinic thiokinase.I.Purification of the enzyme from pig heart. // J. Biol. Chem. 1964. — V. 239. — P. 1961−1967.
- Kaufman S., Alivisatos S.G.A. Purification and properties of the phosphorilating enzyme from spinach// J. Biol. Chem. 1955. — V. 216. — P. 141−152.
- Kotlyar A.B., Vinogradov A.D. Dissociation constants of the succinate dehydrogenase complexes with succinate, fumarate and malonate // Biokhimiya. 1984.-V. 49.-P. 511−518.
- Grivennikova V.G., Gavrikova E.V., Timoshin A.A., Vinogradov A.D. Fumarate reductase activity of bovine heart succinate-ubiquinone reductase. New assay system and overall properties of the reaction // Biochim. Biophys. Acta. -1993.-V. 1140.-P. 282−292.
- Виноградов А.Д. Сукцинат-убихинон редуктазный участок дыхательной цепи // Биохимия. 1986. — Т. 51. — Вып. 12. — С. 1944−1973.
- Alberty R.A. Fumarase // The Enzymes. 1961. — V. 5(B). — P. 531−544.
- Greenhut J., Umezawa H., Rudolph F.B. Inhibition of Fumarase by S-2,3-Dicarboxyaziridine // J. Biol. Chem. 1985. — V. 260. — P. 6684−6686.
- Heyde E., Ainsworth S. Kinetic Studies on the Mechanism of the Malate Dehydrogenase Reaction // J. Biol. Chem. 1968. — V. 243. — P. 2413−2423.
- Indiveri C., Dierks T., Kramer R., Palmieri F. Reaction mechanism of the reconstituted oxoglutarate carrier from bovine heart mitochondria // Eur. J. Biochem. -1991. V. 198. — P. 339−347.
- Ricks C.A., Cook R.M. Regulation of volatile fatty acid uptake by mitochondrial acyl CoA synthetases of bovine liver // J Dairy Sei. 1981. — V. 64. — P. 23 242 335.
- Fox D.K., Roseman S. Isolation and characterization of homogeneous acetate kinase from Salmonella typhimurium and Escherichia coli // J. Biol. Chem. -1986. V. 261. — N. 29. — P. 13 487−13 497.
- Cleland W.W. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations // Biochim. Biophys. Acta. 1963.-V. 67.-P. 104−137.
- D.S. Pereira, L.J. Donald, D.J. Hosfield, H.W. Duckworth. Active site mutants of Escherichia coli citrate synthase. Effects of mutations on catalytic and allosteric properties // J. Biol. Chem. 1994. — V. 269. -N. 1. — P. 412−417.
- Guynn R.W., Gelberg H.J., Veech R.L. Equilibrium Constants of the Malaie Dehydrogenase, Citrate Synthase, Citrate Lyase, and Acetyl Coenzyme A Hydrolysis Reactions under Physiological Conditions // J. Biol. Chem. 1973. -V. 248.-N. 20.-P. 6957−6965.
- Wright J.A., Sanwal B.D. Regulatory Mechanisms involving nicotinamide adenine nucleotides as allosteric effectors // J. Biol. Chem. 1971. — V. 246. -N. 6.-P. 1689−1699.
- Jangaard N.O., Unkeless J., Atkinson D.E. The inhibition of Citrate Synthase by adenosine triphosphate // Biochim. Biophys. Acta. 1968. — V. 151. — P. 225 235.
- Faloona G.R., Srere P.A. Escherichia coli citrate synthase. Purification and the effect of potassium on some properties // Biochemistry. 1969. — V. 8. — N. 11.-P. 4497−4503.
- Donald L.J., Crane B.R., Andersone D.H., Duckworth H.W. The role of cysteine 206 in allosteric inhibition of Escherichia coli citrate synthase // J. Biol. Chem. -1991.-V. 266.-N. 31.-P. 20 709−20 713.
- Jordan P.A., Tang Y., Bradbury A.J., Thomson A.J., Guest J.R. Biochemical and spectroscopic characterization of E. coli aconitases (AcnA and AcnB) // Biochem. J. 1999.-V. 344.-P. 739−746.
- Nimmo H.G. Kinetic mechanism of Escherichia coli isocitrate dehydrogenase and its inhibition by glyoxylate and oxaloacetate // Biochem. J. 1986. — V. 234. -P. 317−323.
- Dean A.M., Koshland D.E. Kinetic mechanism of E. coli Isocitrate Dehydrogenase // Biochemistry. 1993. — V. 32. — P. 9302−9309.
- Stoddard B.L., Dean A., Koshland D.E. Structure of isocitrate dehydrogenase with isocitrate, nicotinamide adenine dinucleotide phosphate, and calcium at 2.5-A resolution: a pseudo-Michaelis ternary complex // Biochemistry. 1993. — V. 32.-P. 9310−9316.
- Uhr M.L., Thompson V.W., Cleland W.W. The kinetics of pig heart triphosphopyridine nucleotide-isocitrate dehydrogenase. I. Initial velocity, substrate and product inhibition, and isotope exchange studies // J. Biol. Chem. -1974.-V. 249.-P. 2920−2927.
- Stueland C.S., Eck K.R., Stieglbauer, LaPorte D.C. Isocitrate dehydrogenase kinase/phosphatase exhibits an intrinsic adenosine triphosphatase activity // J. Biol. Chem. 1987. — V. 262. — P. 16 095- 16 099.
- Stueland C.S., Gorden K., LaPorte D.C. The isocitrate dehydrogenase phosphorylation cycle. Identification of the primary rate-limiting step // J. Biol. Chem. 1988. — V. 263. — P. 19 475−19 479.
- Lowry O.H., Carter J., Ward J.B., Glaser L. The effect of carbon and nitrogen sources on the level of metabolic intermediates in Escherichia coli // J. Biol. Chem. -1971. -V. 246. P. 6511−6521.
- Waskiewicz D.E., Hammes G.G. Elementary steps in the reaction mechanism of the alpha-ketoglutarate dehydrogenase multienzyme complex from Escherichia coli: kinetics of succinylation and desuccinylation //Biochemistry. 1984.-V. 23.-N. 14.-P. 3136−3143.
- Amarasingham C.R., Davis B.D. Regulation of alpha-ketoglutarate dehydrogenase formation in Escherichia coli // J. Biol. Chem. 1965. — V. 240. -N. 9. — P. 3664−3668.
- Grinnell F.L., Nishimura J.S. Succinic Thiokinase of Escherichia coli. Purification, phosphorylation of the enzyme, and exchange reactions catalyzed by the enzyme // Biochemistry. -1969. -V. 8. N. 2. — P. 562−568.
- Kim I.C., Bragg P.D. Some properties of the Succinate Dehydrogenase of Escherichia coli // Canadian journal of biochemistry. -1971. -V. 49. P. 1098.
- Hirsch C.A., Rasminsky M., Davis B.D., Lin E.C. A fumarate reductase in Escherichia coli distinct from succinate dehydrogenase // J. Biol. Chem. 1963. -V. 238.-P. 3770−3774.
- Flint D.H. Initial kinetic and mechanistic characterization of Escherichia coli fumarase A // Arch. Biochem. Biophys. 1994. — V. 311. — N. 2. — P. 509−516.
- Wright S.K., Zhao F.J., Rardin J., Milbrandt J., Helton M., Furumo N.C. Mechanistic studies on malate dehydrogenase from Escherichia coli // Arch. Biochem. Biophys. 1995. — V. 321. -N. 2. — P. 289−296.
- Murphey W.H., Kitto G.B. Malate Dehydrogenase from E. coli // Methods in Enzymology. -1969. V. 13. — P. 145−147.
- MacKintosh C., Nimmo H.G. Purification and regulatory properties of isocitrate lyase from Escherichia coli ML308 // Biochem. J. 1988. — V. 250. — N. 1. — P. 25−31.
- Howard B.R., Endrizzi J.A., Remington S.J.Crystal structure of Escherichia coli malate synthase G complexed with magnesium and glyoxylate at 2.0 A resolution: mechanistic implications // Biochemistry. 2000. — V. 39. -N. 11. -P. 3156−3168.
- Falmagne P., Wiame J.M. Purification and partial characterization of two malate synthases of Echerichia coli // Eur. J. Biochem. 1973. — V. 37. — P. 415−424.
- Sundaram T.K., Chell R.M., Wilkinson A.E. Monomeric malate synthase from a thermophilic Bacillus. Molecular and kinetic characteristics // Arch. Biochem. Biophys.- 1980.-V. 199.-P. 515−525.
- Beeckmans S., Khan A.S., Kanarek L., Van Driessche E. Ligand binding on to maize (Zea mays) malate synthase: a structural study // Biochem. J. 1994. — V. 303.-P. 413−421.
- Padan E., Zilberstein D., Schuldiner S. pH homeostasis in bacteria // Biochim. Biophys. Acta. 1981. — V. 650. — P. 151−166.
- Gene-protein database of Escherichia coli K-12 // In E. coli and Salm. typhimurium:Cellular and Molecular Biology (Neidhardt FC, ed.). -1996. -Edition 6. ASM Press, Washington. — P. 2067.
- Teller J.K., Fahien L.A., Valdivia E. Interactions among mitochondrial aspartate aminotransferase, malate dehydrogenase, and the inner mitochondrial membrane from heart, hepatoma, and liver // J. Biol. Chem. 1999. — V. 265. -N. -32.-P. 19 486−19 494.
- Robinson J.B., Inman J.L., Sumegi B., Srere P.A. Further characterization of the Krebs Tricarboxylic Acid Cycle Metabolon // J. Biol. Chem. 1987. — V. 262.-N. 4.-P. 1786−1790.
- Fahien L.A., Kmiotek E.H., MacDonald M.J., Fibich В., Mandic M. Regulation of malate dehydrogenase activity by glutamate, citrate, a-ketoglutarate, and multienzyme interaction. // J. Biol. Chem. 1988. — V. 263. — N. 22. — P.10 687−10 697.
- Panov A.V., Scaduto R.C. Jr. Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles // Arch. Biochem. Biophys. -1995.-V. 316.-N. 2.-P. 815−820.
- Скулачев В.П. Энергетика биологических мембран // 1989. Москва. -«Наука».
- Wright В.Е., Butler М.Н., Albe K.R. Systems analysis of the tricarboxylic acid cycle in Dictyostelium discoideum. I. The basis for model construction // J. Biol. Chem. 1992. -V. 267. -N. 5. — P. 3101−3105.
- Hoek J.B. GDH and the oxidoreduction state of nicotinamide nucleotides in rat-liver mitochondria. 1971. Ph. D. Thesis.
- Garber AJ, Hanson RW. The interrelationships of the various pathways forming gluconeogenic precursors in guinea pig liver mitochondria. 1971. J. Biol. Chem., 246, 589−598.
- Williamson DH, Lund P, Krebs HA. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. 1967. Biochem. J., 103,514−527.
- Hansford RG, Johnson RN. The steady state concentrations of coenzyme A-SH and coenzyme A thioester, citrate, and isocitrate during tricarboxylate cycle oxidations in rabbit heart mitochondria. 1975. J. Biol. Chem., 250, 8361−8375.
- Vallari DS, Jackowski S, Rock CO. Regulation of pantothenate kinase by coenzyme A and its thioesters. 1987. J. Biol. Chem., 262, 2468−2471.
- Lakshmi TM, Helling RB. Acetate metabolism in Escherichia coli. 1978. Can. J. Microbiol., 24(2), 149−153.
- Varghese S, Tang Y, Imlay JA (2003) Contrasting sensitivities of Escherichia coli aconitases A and B to oxidation and iron depletion. J. Bacterid., 185, 221 230.
- Walsh K., Koshland DE. Branch point control by the Phosphorylation state of isocitrate dehydrogenase. 1985. J. Biol. Chem., 260(14), 8430−8437.
- LaPorte D.C., Koshland D.E.Jr. Phosphorylation of isocitrate dehydrogenase as a demonstration of enhanced sensitivity in covalent regulation. 1983. Nature. 305(5932), 286−290.121. http://redpoll.pharmacy.ualberta.ca/CCDB/cgi-bin/STAT NEW. cgi
- Andersen K. B., K. von Meyenburg. Charges of nicotinamide adenine nucleotides and adenylate energy charge as regulatory parameters of the metabolism in Escherichia coli. 1977. J. Biol. Chem., 252(12), 4151−4156.
- S.L. Miller, D. Smith-Magowan. The thermodynamics of the Krebs cycle and related compounds. 1990. J. Phys. Chem., 19(4), 1049−1073.
- Krebs A, Bridger WA. The kinetic properties of phosphoenolpyruvate carboxykinase of Escherichia coli. 1980. // Can journal of biochemistry, 58, 309−318.
- Rose IA, Grunberg-Manago M, Korey SR, Ocho A S. Enzymatic phosphorylation of acetate. 1954. J. Biol. Chem., 211, 737−756.
- Suzuki T. Phosphotransacetylase of Escherichia coli B, activation by pyruvate and inhibition by NADH and certain nucleotides. 1969. Biochim. Biophys. Acta, 191, 559−569.
- Jordan PA, Tang Y, Bradbury AJ, Thomson AJ, Guest JR. Biochemical and spectroscopic characterization of E. coli aconitases (AcnA and AcnB). 1999. Biochem. J., 344, 739−746.
- Sakamoto N, Kotre AM, Savageau MA. Glutamate dehydrogenase from Escherichia coli: purification and properties. 1975. J. Bacterid., 124(2), 775−783.
- Thuma E., Schirmer R.H., Schirmer I. Preparation and characterization of a crystalline human ATP: AMP phosphotransferase // Biochim. Biophys. Acta.-1972.-V. 268. -N. 1. -P. 81−91.