Зондирование контактов ДНК-метилтрансфераз EcoRII и SssI с ДНК с помощью фотоактивных аналогов субстрата и молекулярного моделирования
Диссертация
В тех случаях, когда информация о ферменте ограничена, однако имеются данные РСА для родственных ферментов, широкое применение находит метод моделирования по гомологии, позволяющий предсказать пространственную структуру фермента на основании известных структур родственных ферментов. Существует два основных метода распознавания укладки белка. Один из них основан на анализе аминокислотных… Читать ещё >
Список литературы
- Jeltsch А. 2002. Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases. Chembiochem. 3, 274−293.
- Громова E.C., Хорошаев A.B. 2003. Прокариотические ДНК-метилтрансферазы: структура и механизм взаимодействия с ДНК. Молекуляр. биология. 37, 1−15.
- Goll M.G., Bestor Т.Н. 2005. Eukaryotic cytosine methyltransferases. Annu. Rev. Biochem. 74,481−514.
- Wilson G.G. 1991. Organization of restriction-modification systems. Nucleic Acids Res. 19, 2539−2566.
- Heitman J. 1993. On the origins, structures and functions of restriction-modification enzymes. Genet. Eng. (NY). 15, 57−108.
- Szyf M., Gruenbaum Y., Urieli-Shoval S., Razin A. 1982. Studies on the biological role of DNA methylation: V. The pattern of E. coli DNA methylation. Nucleic Acids Res. 10, 724 759.
- Лихтенштейн A.B., Киселева Н. П. 2001. Метилирование и канцерогенез. Биохимия. 66, 293−317.
- Newell-Price J., Clark A.J., King P. 2000. DNA methylation and silencing of gene expression. Trends Endokrinol. Metab. 11, 142−148.
- Baylin S.B., Herman J.G. 2000. DNA hypermethylation in tumorogenesis: epigenetics joins genetics. Trends Genet. 16, 168−174.
- Posfai J., Bhagwat A.S., Posfai G., Roberts R.J. 1989. Predictive motifs derived from cytosine methyltransferases. Nucleic Acids Res. 17, 2421−2435.
- Kumar S., Cheng X., Klimasauskas S., Mi S., Posfai J., Roberts R.J., Wilson G.G. 1994. The DNA (cytosine-5) methyltransferases. Nucleic Acids Res. 22, 1−10.
- Kagan R.M., Clarke S. 1994. Widespread occurrence of three sequence motifs in diverse S-adenosylmethyonine-dependent methyltransferases suggests a common structure for these enzymes. Arch. Biochem. Biophys. 310, 417−427.
- Smith H.O., Annau T.M., Chandrasegaran S. 1990. Finding sequence motifs in groups of functionally related proteins. Proc. Natl. Acad. Sci. U.S.A. 87, 826−830.
- Cheng X. 1995. DNA modification by methyltransferases. Curr. Opin. Struct. Biol. 5, 4−10.
- Cheng X., Roberts R.J. 2001. AdoMet-dependent methylation, DNA methyltransferases and base flipping. Nucleic Acids Res. 29, 3784−3795.
- Klimasauskas S., Nelson J.L., Roberts R.J. 1991. The sequence specificity domain of cytosine-C5 methylases. Nucleic Acids Res. 19, 6183−6190.
- Karyagina A.S., Lunin V.G., Levtchenko I.Ya., Labbe D., Brousseau R., Lau P.C., Nikolskaya I.I. 1995. The &oII and NlaX DNA methyltransferases: overproduction and functional analysis. Gene. 157, 93−96.
- Gopal J., Yebra M.J., Bhagwat A.S. 1994. DsaV methyltransferase and its isoschizomers contain a conserved segment that is similar to the segment in Hhal methyltransferase that is in contact with DNA bases. Nucleic Acids Res. 22, 4482−4488.
- Vilkaitis G., Dong A., Weinhold E., Cheng X., Klimasauskas S. 2000. Functional roles of -the conserved threonine 250 in the target recognition domain of Hhal DNA methyltransferase. J. Biol. Chem. 275, 38 722−38 730.
- Wu J.C., Santi D.V. 1987. Kinetic and catalytic mechanism of Hhal methyltransferase. J. Biol. Chem. 262,4778−4786.
- Chen, L. MacMillan A.M., Verdine G.L. 1993. Mutational separation of DNA binding from catalysis in a DNA cytosine methyltransferase J. Am. Chem. Soc. 115, 5318−5319.
- Lau E.Y., Bruice T.C. 1999. Active site dynamics of the Hhal methyltransferase: insights from computer simulation. J. Mol. Biol. 293, 9−18.
- Osterman D.G., DePillis G.D., Wu J.C. Matsuda A., Santi D.V. 1988. 5-Fluorocytosine in DNA is a mechanism-based inhibitor of Hhal methylase. Biochemistry. 27, 5204−5210.
- Cheng- X., Kumar, S., Posfai, J., Pflugrath, J.W., Roberts, RJ. 1993. Crystal structure of the Hhal DNA methyltransferase complexed with S-adenosyl-L-methionine. Cell. 74, 299 307.
- O’Gara, M., Zhang, X., Roberts, R.J., Cheng, X. 1999. Structure of a binary complex of Hhal methyltransferase with S-adenosyl-L-methionine formed in the presence of a short non. specific DNA oligonucleotide. J. Mol. Biol. 287, 201−209.
- O’Gara, M., Klimasauskas, S., Roberts, R.J., Cheng, X. 1996. Enzymatic C5-cytosine methylation of DNA: mechanistic implications of new crystal structures for Hhal methyltransferase-DNA-AdoHcy complexes. J. Mol. Biol. 261, 634−645.
- O’Gara, M., Roberts, R.J., Cheng, X. 1996. Astructural basis for the preferential binding of hemimethylated DNA by Hhal DNA methyltransferase. J. Mol. Biol. 263, 597−606.
- Shieh F-K., Youngblood B., Reich N.O. 2006. The role of Argl65 towards base flipping, base stabilization and catalysis in M.Hhal. J. Mol. Biol. 362, 516−527.
- O’Gara, M., Horton, J.R., Roberts, R.J., Cheng, X. 1998. Structures of Hhal methyltransferase complexed with substrates containing mismatches at the target base. Nat. Struct. Biol. 5, 872−877.
- Klimasauskas S., Kumar S., Roberts R.J., Cheng X. 1994. Hhal methyltransferase flips its target base out of the DNA helix. Cell. 76, 357−369.
- Kumar, S., Horton, J.R., Jones, G.D., Walker, R.T., Roberts, R.J., Cheng, X. 1997. DNA containing 4'-thio-2'-deoxycytidine inhibits methylation by Hhal methyltransferase. Nucleic Acids Res. 25, 2773−2783.
- Sheikhnejad, G., Brank, A., Christman, J.K., Goddard, A., Alvarez, E., Ford Jr.,
- H., Marquez, V.E., Marasco, C.J., Sufrin, J.R., O’Gara, M., Cheng, X. 1999. Mechanism of inhibition of DNA (cytosine C5)-methyltransferases by oligodeoxyribonucleotides containing 5,6-dihydro-5-azacytosine. J. Mol. Biol. 285, 2021−2034.
- Neely, R.K., Daujotyte, D., Grazulis, S., Magennis, S.W., Dryden, D.T., Klimasauskas, S., Jones, A.C. 2005. Time-resolved fluorescence of 2-aminopurine as a probe of base flipping in M. Hhal-DNA complexes. Nucleic Acids Res. 33, 6953−6960.
- Zhou, L., Cheng, X., Connolly, B.A., Dickman, M.J., Hurd, P.J., Hornby, D.P. 2002. Zebularine: A novel DNA methylation inhibitor that forms a covalent complex with DNA methyltransferases. J. Mol. Biol. 321, 591−599.
- Reinisch K.M., Chen L., Verdine G.L., Lipscomb W.N. 1995. The crystal structure of Haelll methyltransferase covalently complexed to DNA: an extrahelical cytosine and rearranged base pairing. Cell. 82, 143−153.
- Jia D., Jurkowska R.Z., Zhang X., Jeltsch A., Cheng X. 2007. Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature. 449, 248−251.
- Dong A., Yoder J.A., Zhang X., Zhou L., Bestor T.H., Cheng X. 2001. Structure of human DNMT2, an enigmatic DNA methyltransferase homolog that displays denaturant-resistant binding to DNA. Nucleic Acid Res. 29, 439−448.
- Goll M.G., Kirpekar F., Maggert K.A., Yoder J.A., Hsieh C.L., Zhang X., Golic K.G., Jacobsen S.E., Bestor T.H. 2006. Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science. 311, 395−398.
- Shieh F-K., Reich N.O. 2007. AdoMet-dependent methyl-transfer: Glul 19 is essential for DNA C5-cytosine methyltransferase M.Hhal. J. Mol. Biol. 373, 1157−1168.
- Youngblood B., Shieh F.K., Buller F., Bullock T., Reich N.O. 2007. S-adenosyl-L-methionine-dependent methyl transfer: observable precatalytic intermediates during DNA cytosine methylation. Biochemistry. 46, 8766−8775.
- Mi S., Alonso D., Roberts RJ. 1995. Functional analysis of Gln-237 mutants of Hhal methyltransferase. Nucleic Acids Res. 23, 620−627.
- Daujotyte D., Serva S., Vilkaitis G., Merkiene E., Venclovas C., Klimasauskas S. 2004. Hhal DNA methyltransferase uses the protruding Gln237 for active flipping of its target cytosine. Structure. 12, 1047−1055.
- Estabrook R.A., Lipson R., Hopkins В., Reich N. 2004. The coupling of tight DNA binding and base flipping. J. Biol. Chem. 279, 31 419−31 428.
- Bujnicki J.M. 2000. Homology modelling of the DNA 5mC methyltransferase M.BssHII. Is permutation of functional subdomains common to all subfamilies of DNA methyltransferases? Int. J. Biol. Macromol. 27, 195−204. '5
- Karyagina A.S., Alexeevski A.V., Golovin A.V., Spirin S.A., Vorob’eva O.V., Kubareva E.A. 2003. Computer modeling of complex of (C5-cytosine)-DNA methyltransferase SsoII with target and regulatory DNAs. Biophysics. 48, Suppl. l, 45−55.
- Schroeder S.G., Samudzi C.T. 1997. Structural studies of? coRII methylase: exploring similarities among methylases. Protein Eng. 10, 1385−1393.
- Subach O.M., Khoroshaev A.V., Gerasimov D.N., Baskunov V.B., Shchyolkina A.K., Gromova E.S. 2004. 2-Pyrimidinone as a probe for studying the EcoRII DNA methyltransferase-substrate interaction. Eur J Biochem. 271, 2391−2399.
- Кудан E.B., Бревнов М. Г., Субач O.M., Речкоблит O.A., Буйницкий Я. М., Громова Е. С. 2007. Зондирование контактов ДНК-метилтрансферазы EcoRII с ДНК с помощью аналогов субстрата и молекулярного моделирования. Молекуляр. биология. 41, 885 899.
- Nur I., Szyf M., Razin A., Glaser G., Rottem S., Razin S. 1985. Procaryotic and eukaryotic traits of DNA methylation in Spiroplasmas (Mycoplasmas). J. Bacteriol. 164, 19−24.
- Pradhan S., Roberts R.J. 2000. Hybrid mouse-prokaryotic DNA (cytosine-5) methyltransferases retain the specificity of the parental C-terminal domain. EMBO J. 19, 2103−2114.
- Дарий M.B., Кирсанова O.B., Друца B.JT., Кочетков С. Н., Громова Е. С. 2006. Выделение и сайт-направленный мутагенез ДНК-метилтрансферазы Sssl. Молекуляр. биология. 40, 1−10.
- Renbaum P., Razin А. 1992. Mode of action of the Spiroplasma CpG methylase M.SssI. FEBS Lett. 313, 243−247.
- Matsuo K., Silke J., Gramatikoff K., Schaffner W. 1994. The CpG-specific methylase Sssl has topoisomerase activity in the presence of Mg2+. Nucleic Acid Res. 22, 5354−5359.
- Renbaum P., Razin A. 1995. Interaction of M. SssI and M. Hhal with single-base mismatched oligodeoxynucleotide duplexes. Gene. 157, 177−179.
- Renbaum P., Razin A. 1995. Footprint analysis of M. SssI and M. Hhal methyltransferases reveals extensive interactions with the substrate DNA backbone. J. Mol. Biol. 248, 19−26.
- Marriott G., Ottl J., Heidecker M., Gabriel D. 1998. Light-directed activation of protein activity from caged protein conjugates. Methods Enzymol. 291, 95−116.
- Rathert P., Rasko T., Roth M., Slaska-Kiss K., Pingoud A., Kiss A., Jeltsch A. 2007. Reversible inactivation of the CG specific Sssl DNA (cytosine-C5)-methyltransferase with a photocleavable protecting group. Chembiochem. 8, 202−207.
- Gabbara S., Sheluho D., Bhagwat A.S. 1995. Cytosine methyltransferase from Escherichia coli in which active site cysteine is replaced with serine is partially active. Biochemistry. 34, 8914−8923.
- Reither S., Li F., Gowher H., Jeltsch A. 2003. Catalytic mechanism of DNA-(cytosine-C5)-methyltransferases revisited: covalent intermediate formation is not essential for methyl group transfer by the murine Dnmt3a enzyme. J. Mol.Biol. 329, 675−84.
- Buryanov Ya., Shevchuk T. 2005. The use of prokaryotic DNA methyltransferases as experimental and analytical tools in modern biology. Analyt. Biochem. 338, 1−11.
- Clark S.J., Harrison J., Paul C.L., Frommer M. 1994. High sensitivity mapping of methylated cytosines. Nucleic Acid Res. 22, 2990−2997.
- Kladde M.P., Xu M., Simpson R.T. 1996. Direct study of DNA-protein interactions in repressed and active chromatine in living cells. EMBO J. 15, 6290−6300.
- Kladde M.P., Simpson R.T. 1996. Chromatin structure mapping in vivo using methyltransferases. Methods Enzymol. 274, 214−233.
- Galm O., Rountree M.R., Bachman K.E., Jair K.W., Baylin S.B., Herman J.G. 2007. Enzymatic regional methylation assay: a novel method to quantify regional CpG methylation density. Genome Res. 12, 153−157.
- Xu G.L., Bestor T.N. 1997. Cytosine methylation targetted to predetermined sequences. Nat. Genet. 17, 376−378.
- Carvin C.D., Parr R.D., Kladde M.P. 2003. Site-selective in vivo targeting of cytosine-5 DNA methylation by zinc-finger proteins. Nucleic Acid Res. 31, 6493−6501.
- Kossykh V.G., Schlagman S.L., Hattman S. 1995. Studies on the function of conserved sequence motifs in the T4 Dam-N6-adenine] and EcoRII [C5-cytosine] DNA methyltransferases. Gene. 157, 125−126.
- Friedman S., Som S., Yang L.F. 1991. The core element of the? coRII methylase as defined by protease digestion and deletion analysis. Nucleic Acid Res. 19, 5403−5408.
- Веньяминов С.Ю., Косых В. Г., Холодков О. А., Бурьянов Я.И.* 1990. УФ- и КД-спектры рестрикционной эндонуклеазы? coRII и ДНК-метилазы ?coRII. Биоорг. химия. 16, 47−51.
- Venyaminov S.Y., GogiaZ.V. 1982. Optical characteristics of all individual proteins from the small subunit of Escherichia coli ribosomes. Eur. J. Biochem. 126, 299−309.
- Som S., Friedman S. 1990. Direct photolabeling of the EcoRII methyltransferase with S-adenosyl-L-methionine. J. Biol. Chem. 266, 2937−2945.
- Santi D.V., Garrett C.E., Barr P.J. 1983. On the mechanism of inhibition of DNA-cytosine methyltransferases by cytosine analogs. Cell. 33, 9−10.
- Gabbara S., Bhagwat A.S. 1995. The mechanism of inhibition of DNA (cytosine-5-)-methyltransferases by 5-azacytosine is likely to involve methyl transfer to the inhibitor. Biochem J. 307, 87−92.
- Zhou L., ChengX., Connolly B.A., Dickman M.J., Hurd P.J., Hornby D.P. 2002. Zebularine: a novel DNA methylation inhibitor that forms a covalent complex with DNA methyltransferases. J. Mol. Biol. 321, 591−599.
- Friedman S., Ansari N. 1992. Binding of the EcoRII methyltransferase to 5-fluorocytosine-containing DNA. Isolation of a bound peptide. Nucleic Acid Res. 20, 3241−3248.
- Wyszynski M.W., Gabbara S., Bhagwat A.S. 1992. Substitutions of a cysteine conserved among DNA cytosine methylases result in a variety of phenotypes. Nucleic Acid Res. 20,319−326.
- Kossykh V.G., Schlagman S.L., Hattman S. 1995. Function of Pro-185 in the ProCys of conserved motif IV in the EcoRII cytosine-C5]-DNA methyltransferase. FEBS Lett. 370, 7577.
- Kiss A., Posfai G., Zsurka G., Rasko T., Venetianer P. 2001. Role of DNA minor groove interactions in substrate recognition by the M. SinI and M. EcoRII DNA (cytosine-5) methyltransferases. Nucleic Acids Res. 29, 3188−3194.
- Som S., Friedman S. 1993. Autogenous regulation of the? coRII methylase gene at the transcriptional level: effect of 5-azacytidine. EMBO J. 12, 4297−303.
- Som S., Friedman S. 1994. Regulation of. EcoRII methyltransferase: effect of mutations on gene expression and in vitro binding to the promoter region. Nucleic Acid Res. 22, 5347−5353. 50].
- Shevchuk T.V., Buryanov Ya.I. 1999. DNA methyltransferase-based assayfor the cytosine methylation level in the DNA sequence CCWGG. Russian J. Bioorg. Chem. 25, 630−633.
- Selker E.U. 1990. Premeiotic instability of repeated sequences inNeurospora crassa. Annu. Rev. Genet. 24, 579−613.
- Zingg J.M., Shen J.C., Yang A.S., Rapoport H., Jones P.A. 1996. Methylation inhibitors can increase the rate of cytosine deamination by (cytosine-5)-DNA methyltransferase. Nucleic Acid Res. 24, 3267−3275.
- Sharath A.N., Weinhold E., Bhagwat A.S. 2000. Reviving a dead enzyme: cytosine deaminations promoted by an inactive DNA methyltransferase and an S-adenosylmethionine analogue. Biochemistry. 39, 14 611−14 616.
- Norris C.L., Meisenheimer P.L., Koch Т.Н. 1996. Mechanistic studies of the 5-iodouracil chromophore relevant to its use in nucleoprotein photo-cross-linking. J. Am. Chem. Soc. 118, 5796−5803.
- Meisenheimer K.M., Koch Т.Н. 1997. Photocross-linking of nucleic acids to associated proteins. Crit. Rev. Biochem. Mol. Biol. 32, 101−140.
- Коршунова Г. А., Сумбатян H.B., Топин A.H., Мчедлидзе М. Т. 2000. Фотоактивируемые реагенты на основе арил (трифторметил)дназиринов: синтез и использование для изучения нуклеиново-белковых взаимодействий. Молекулярн. биология. 34, 966−983.
- Laskowski R.A., MacArthur M.W., Moss D.S., Thornton J.M. 1993. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283 291.
- Morris A.L., MacArthur M.W., Hutchinson E.G., Thornton J.M. 1992. Stereochemical quality of protein structure coordinates. Proteins. 12, 345−364.
- Luthy R., Bowie J.U., Eisenberg D. 1992. Assessment of protein models with three-dimensional profiles. Nature. 356, 83−85.
- Kurowski M.A., Bujnicki J.M. 2003. GeneSilico protein structure prediction meta-server. Nucleic Acids Res. 31, 3305−3307.
- Rychlewski L., Jaroszewski L., Li W., Godzik A. 2000. Comparison of sequence profiles. Strategies for structural predictions using sequence information. Protein Sci. 9, 232−241.
- Shi J., Blundell T.L., Mizuguchi K. 2001. Fugue: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J. Mol. Biol. 310, 243−257.
- Karplus K., Karchin R., Barrett C., Tu S., Cline M., Diekhans M., Grate L., Casper J., Hughey R. 2001. What is the value added by human intervention in protein structure prediction? Proteins. 45, 86−91.
- Jones D.T. 1999. GenTHREADER: an efficient and reliable protein fold recognition method for genomic sequences. J. Mol. Biol. 287, 797−815.
- Kelley L.A., McCallum C.M., Sternberg M. J. 2000. Enhanced genome annotation using structural profiles in the program 3D-PSSM. J. Mol. Biol. 299, 501−522.
- Jones D.T. 1999. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292, 195−202.
- Ouali M., King R.D. 2000. Cascaded multiple classifiers for secondary structure prediction. Protein Sci. 9, 1162−1176.
- Raghava G.P.S. 2000. Protein secondary structure prediction using nearest neighbor and neural network approach. CASP4. 75−76.
- Pollastri G., Przybylski D., Rost B., Baldi P. 2002. Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles. Proteins. 47, 228−235.
- Sali A., Blundell T.L. 1993. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779−815.
- Guex N., Peitsch M.C. 1997. SWISS-MODEL and Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 18, 2714−2723.
- Surles M.C., Richardson J.S., Richardson D.C., Brooks F.P. Jr. 1994. Sculpting proteins interactively: continual energy minimization embedded in a graphical modeling system. Protein Sci. 3, 198−210.