Помощь в написании студенческих работ
Антистрессовый сервис

Взаимодействие бактериальных липополисахаридов с белками и полисахаридами. 
Модификация физиологической активности липополисахаридов

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Изучение антигена Буавена начато еще в 30-е годы, однако его дальнейшее исследование к середине прошлого столетия было фактически приостановлено. Это связано с появлением новых методов выделения из бактериальных клеток чистого ЛПС, в связи, с чем внимание ученых было сосредоточено на исследовании именно этого компонента антигена. Изучением структуры ЛПС были заняты десятки групп исследователей… Читать ещё >

Взаимодействие бактериальных липополисахаридов с белками и полисахаридами. Модификация физиологической активности липополисахаридов (реферат, курсовая, диплом, контрольная)

Содержание

  • I. ЛИТЕРАТУРНЫЙ ОБЗОР
    • 1. 1. Клеточная стенка грамотрицательных бактерий
    • 1. 2. Липополисахарид (ЛПС) — структурный компонент наружной 11 мембраны бактерий 1.2.1. Строение ЛПС
      • 1. 2. 2. Микрогетерогенность ЛПС
      • 1. 2. 3. Макромолекулярная организация ЛПС. Поведение ЛПС в растворах
    • 1. 3. Комплексы ЛПС с белками наружной мембраны
    • 1. 4. Взаимодействие ЛПС с растворимыми белками макроорганизма
      • 1. 4. 1. Взаимодействие ЛПС с липопротеинами, с ЛПС-связывающими белками и белками, увеличивающими бактерицидную проницаемость
      • 1. 4. 2. Взаимодействие ЛПС с гемоглобином, альбумином, лактоферинами, лизоцимом
    • 1. 5. Детоксикация ЛПС
  • Взаимодействие ЛПС с катионными антибиотиками
    • 1. 6. Связь структуры и биологической активности ЛПС
    • 1. 7. Полисахариды — хитозан и каррагинан
  • 11. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ
  • Введение
    • 2. 1. ЛПС и ЛПС-белковые комплексы (ЛПБК) из псевдотуберкулезного микроба Yersinia pseudotuberculosis
      • 2. 1. 1. Экстракция и очистка ЛПБК
      • 2. 1. 2. Сравнительная характеристика ЛПБК и ЛПС, выделенных последовательной экстракцией
      • 2. 1. 3. Влияние условий культивирования бактерий псевдотуберкулеза на ЛПБК и ЛПС

В процессе своей жизнедеятельности бактериальные клетки активно взаимодействуют с окружающей средой, а патогенные бактерии — с организмом хозяина. В последнем случае это взаимодействие осуществляется, со стороны макроорганизма на уровне клеток и гуморальных факторов — компонентов иммунной системы, а со стороны бактерий — на уровне макромолекул и их комплексов, расположенных на поверхности бактериальных клеток.

Липополисахарид (ЛПС), специфический компонент наружной мембраны грамотрицательных бактерий, занимает около 45% ее поверхности и представляет собой амфифильную молекулу, содержащую гидрофобный липидный компонент (так называемый липид А) и ковалентно связанную с ним гидрофильную полисахаридную часть [1]. В наружной мембране клетки ЛПС специфически взаимодействуют с белками, образуя устойчивые к химическим воздействиям ЛПС-белковые комплексы (ЛПБК) [2, 3,4, 5,]. Эти комплексы играют важную роль в организации и функционировании бактериальной мембраны и в значительной степени определяют ее свойства [2, 4, 6, 7, 8, 9]. Специфическое взаимодействие ЛПС с белком обеспечивает формирование пространственной структуры последнего и закрепление его в мембране [8, 10]. Важным доказательством существования связи между белком и ЛПС является функциональная активность комплекса, которая проявляется только при наличии обоих компонентов [3, 6, 11, 12].

ЛПБК представляет собой так называемый полный О-соматический антиген Буавена [3] и является нативным иммуногеном грамотрицательных бактерий. При попадании в организм ЛПБК вызывают картину полного иммунного ответа и обеспечивают формирование иммунитета к бактериальному возбудителю.

Изучение антигена Буавена начато еще в 30-е годы [13], однако его дальнейшее исследование к середине прошлого столетия было фактически приостановлено. Это связано с появлением новых методов выделения из бактериальных клеток чистого ЛПС, в связи, с чем внимание ученых было сосредоточено на исследовании именно этого компонента антигена. Изучением структуры ЛПС были заняты десятки групп исследователей в разных странах мира, и в этом направлении достигнуты существенные успехи [1, 5, 14,15, 16], что особенно важно для практической медицины, так как полисахаридная часть ЛПС часто является характерным антигеном патогенных бактерий, узнаваемым иммунной системой макроорганизма. Долгое время считалось, что все основные свойства ЛПБК, как антигена, определяются ЛПС [17], пока не была установлена важная роль белкового компонента в модификации биологической активности ЛПС [3]. Комплекс обладает особыми биологическими свойствами, которые отсутствуют у отдельно взятых ЛПС и белка, но характерны для бактериальной клетки в целом [5, 11, 12]. ЛПС и ЛПБК играют важную роль во взаимодействии микро — и макроорганизма и являются мощными токсинами, которые получили название эндотоксины.

Способность ЛПС образовывать с белками наружной мембраны комплексы, подтверждена многими экспериментальными фактами, как in vitro, так и in vivo, однако данные о надмолекулярной структуре и свойствах ЛПБК, их поведении в водных средах весьма ограничены. В то же время, проявление физиологической активности эндотоксинов во многом определяется их третичной структурой. Поэтому лишь располагая соответствующими данными о макромолекулярной организации ЛПС и ЛПБК, можно достаточно полно решить основную задачу биохимии эндотоксинов — установить молекулярные механизмы их биологического действия.

Взаимодействие ЛПС с белком не ограничивается только наружной мембраной бактерий. При попадании в макроорганизм ЛПС взаимодействуют с белками сыворотки и бактерицидными белками организма хозяина и являются мишенью для антибактериальных веществ поликатионной природы, используемых при лечении бактериальных инфекций [1, 9, 18, 19, 20, 22]. В этом случае комплексы ЛПБК, выделенные из бактериальной мембраны, могут служить удобной моделью для изучения ЛПС — белковых взаимодействий.

Среди широкого спектра биологической активности ЛПС и ЛПБК, особое внимание исследователей привлекает их токсичность и способность активировать клетки иммунной системы. В настоящее время механизм проявления активности эндотоксина в макроорганизме достаточно понятен. Результатом специфического взаимодействии ЛПС или ЛПБК с клетками макроорганизма является биосинтез активных медиаторов — цитокинов, которые при низкой концентрации регулируют работу иммунной системы организма, а при высокой — вызывают развитие сложной гаммы токсических эффектов, таких как пирогенность, лейкопения, септический шок, объединяемых понятием «бактериальный эндотоксикоз» [1, 13, 21, 24, 25, 26]. В связи с этим разрабатываются способы нейтрализации токсического действия ЛПС и использования его ценных свойств. Для этих целей активно исследуются антибиотики или синтезированные на их основе пептиды [27 — 31]- моно-клональные антитела к ЛПС [32]- ингибиторы цитокинов [33, 34]- малотоксичные ЛПС, обладающие свойствами антагонистов [35, 36, 37]- липосомальные вакцины [38, 39], а также вещества, нейтрализующие действие ЛПС за счет образования с ними комплексов.

Среди последних веществ наиболее перспективными являются поликатионные антибактериальные белки, пептиды и их синтетические аналоги, как новые потенциальные антисептические препараты [40, 41, 42, 43, 44, 45], для которых ЛПС является важной мишенью благодаря высокому отрицательному заряду за счет фосфатных, пирофосфатных и карбоксильных групп, локализованных во внутренней части кора и липиде, А — токсическом центре ЛПС. Особый интерес вызывают липополиамины, проявляющие высокую аффиность к ЛПС и нейтрализующие in vitro его эндотоксическую активность [40,41].

Несмотря на значительные успехи, достигнутые при изучении взаимодействий ЛПС с различными белками, многие биохимические и биофизические факторы, лежащие в их основе, остаются до конца неизученными. Основные трудности, с которыми сталкиваются исследователи при решении этих вопросов, обусловлены самой природой эндотоксинов — их гетерогенностью и способностью образовывать в водных растворах полидисперсные высокомолекулярные агрегаты. В этом случае изучение физико-химических характеристик ЛПС и ЛПБК приобретает особую важность.

Таким образом, изучение комплекса ЛПС с белком, физико-химические свойства и макромолекулярная организация ЛПБК, а также и его ЛПС составляющей, до сих пор остается актуальной и важной проблемой. Это обусловлено и тем, что достаточно полно понять молекулярные механизмы биологического действия эндотоксинов и их взаимодействие с антибактериальными веществами различной природы, можно лишь располагая данными о макромолекулярной структуре ЛПС и ЛПБК.

При выборе препаратов антибактериального действия, важно отсутствие их побочных эффектов на макроорганизм. Такому требованию могут отвечать природные вещества, если они способные повышать резистентность организма к действию бактериальных эндотоксинов и восстанавливать работу его иммунной системы.

Среди веществ, способных нейтрализовать токсическое действие эндотоксинов, перспективными представляются полисахариды морского происхождения благодаря их разносторонней биологической активности, в том числе бактерицидной и иммуностимулирующей, биосовместимости, безопасности и доступности. Особого внимания заслуживают два таких полисахарида: хитозан и каррагинан, первый — в силу его поликатионной природы [46], благодаря чему он может рассматриваться в качестве потенциального лиганда для ЛПС, а второйкак представитель класса пищевых волокон, играющих важную роль в гомеостазе и широко используемый в составе различных пищевых продуктов [47, 48, 49]. Механизм специфического и неспецифического взаимодействия ЛПС с полисахаридами на молекулярном уровне, как и их влияние на биологические свойства эндотоксинов, не исследованы.

Изучение взаимодействия бактериальных ЛПС с белками и полисахаридами может внести определенный вклад в понимание механизма биологического действия ЛПС, осуществляемого на уровне гуморальных и клеточных факторов макроорганизма, молекулярные основы которого еще не достаточно понятны.

В методическом плане такая работа важна для разработки методов исследования широко распространенных в природе макромолекулярных комплексов, которые лежат в основе большинства устойчивых структур живой клетки.

Прикладное значение этих исследований заключается в перспективе создания новых терапевтических препаратов при лечении септических осложнений грамотрицательных инфекций. Модификация биологических свойств ЛПС и ЛПБК предполагает их активное использование для создания вакцин и других биологически-активных препаратов биохимического и медицинского назначения.

ЛИТЕРАТУРНЫЙ ОБЗОР.

ВЫВОДЫ.

1. Из бактерий Y. pseudotuberculosis выделены два эндотоксина — ЛПС и ЛПС — белковый комплекс (ЛПБК). Установлено, что в составе комплекса ЛПС имеет в среднем более длинную О-специфическую углеводную цепь, по сравнению с ЛПС, свободным от белка. Эта закономерность становится более выраженной при низкой температуре культивирования бактерий Y. pseudotuberculosis .

2. Показано, что в водных растворах ЛПС и ЛПБК формируют высокомолекулярные и полидисперсные агрегаты, размеры, форма, ультраструктура и молекулярно-массовое распределение которых зависят от концентрации полимера, ионной силы и температуры раствора. Определены их физико-химические характеристики и изучено поведение в растворах. В надмолекулярной организации ЛПС и ЛПБК участвуют ионы двухвалентных металлов, водородные связи и гидрофобные взаимодействия.

3. Физико-химические и биологические свойства ЛПБК в основном определяются ЛПС-составляющей. Белковому компоненту также принадлежит важная роль в структурной организации комплекса и проявлении его физиологической активности. Надмолекулярные структуры ЛПС и ЛПБК оказывают заметное влияние на их физиологическую активность.

4. Впервые изучено взаимодействие в растворах ЛПС с хитозаном на молекулярном уровне и показана важная роль надмолекулярной структуры ЛПС в этом процессе. Установлено влияние температуры, рН, ионной силы раствора, а также структурных особенностей ЛПС и степени полимеризации хитозана на их взаимодействие.

5. Определены параметры связывания ЛПС с хитозаном. Установлено, что ЛПС образуют с хитозаном комплексы различной стехиометрии и показано, что в образовании комплексов, наряду с электростатическим взаимодействием, принимают участие водородные связи.

6. Установлено, что токсичность ЛПС существенно снижается при образовании им комплекса с хитозаном. Показано, что хитозан модифицирует иммунобиологические свойства ЛПС.

7. Проведено комплексное изучение сульфатированных полисахаридов: каррагинанов, выделенных из красных водорослей семейств Gigartinaceae и Tichocarpaceae. Установлена структура и изучены физико-химические свойства различных типов каррагинанов. Впервые определена зависимость структуры каррагинанов от стадии развития этих водорослей.

8. Показано, что каррагинаны взаимодействуют с ЛПС и изменяют его надмолекулярную организацию. Этот процесс зависит от структурного типа каррагинана.

9. Установлено, что каррагинаны уменьшают токсическое действие ЛПС в экспериментах in vivo и in vitro и изменяют его биологические свойства. Показано, что проявление физиологической активности ЛПС зависит от структуры каррагинана.

10. Впервые получен положительный эффект при применении каррагинана в терапии больных пищевыми токсикоинфекциями сальмонеллезной этиологии. Показано, что на фоне стандартной терапии пероральное ведение каррагинана более активно, по сравнению с контрольной группой, восстанавливает параметры системы гемостаза, гомеостаза и показатели иммунной системы больных.

11. Показано, что каррагинан и хитозан повышают неспецифическую резистентность организма при ЛПС-индуцированной эндотоксинемии в опытах in vivo.

12. Результаты, полученные при изучении взаимодействия ЛПС с полисахаридами, позволяют рассматривать хитозан и каррагинан как перспективные вещества, которые могут быть использованы в специфической и вспомогательной терапии эндотоксинемии и эндотоксического шока.

Заключение

.

Макромолекулярная организация эндотоксинов псевдотуберкулезного микроба, а также то, представляют ли они чистый ЛПС или его комплекс с белком (ЛПБК), играют существенную роль в проявлении некоторых показателей физиологической активности. ЛПБК и ЛПС отличаются высокой токсичностью, показатели которой для обоих препаратов близки. Изучение влияния эндотоксинов на тромбоциты крови выявило повреждающее действие как ЛПС, так и ЛПБК. Однако для ЛПБК это свойство проявлялось в меньшей степени. ЛПС, по сравнению с ЛПБК, показывает меньшую иммуногенность.

ЛПБК с разной, но достаточно высокой молекулярной массой обладают одинаковой иммуногенностью для кроликов, в то время как субъединица ЛПБК проявляет очень низкую иммуногенность. Уменьшение молекулярной массы ЛПБК на два порядка приводит к падению токсичности ЛПБК в 4,5 раза.

Макромолекулярное строение агрегатов ЛПС и ЛПБК оказывает существенное влияние на их связывание с антителами и, как можно предположить, с иммуноглобулиновыми рецепторами на иммунокомпетентных клетках и другими ЛПС-связывающими белками хозяина. Следовательно, активность эндотоксинов зависит от их физического состояния и может регулироваться факторами, влияющими на надмолекулярную организацию антигенов.

Глава 2.4. СТРУКТУРА и СВОЙСТВА ПОЛИСАХАРИДОВ.

Как было сказано выше проявление той или иной формы биологического действия эндотоксинов, а значит и исход его взаимодействия с различными клетками зависит от концентрации ЛПС. При низких дозах ЛПС вызывает активацию клеток и систем организма, тогда как увеличение концентрации ЛПС может привести к развитию диссеминированного внутрисосудистого свертывания, эндотоксинового шока. Нормализация концентрации ЛПС и показателей антиэндотоксинового иммунитета может быть достигнута с помощью веществ, которые сочетали бы максимальную активность по нейтрализации токсического действия ЛПС за счет взаимодействия или образования с ними макро-молекулярных комплексов и, в то же время, обладали бы минимальным повреждающим эффектом на макроорганизм и его нормальную флору.

Поиск веществ, способных повышать устойчивость организма к бактериям и выделяемым им токсинам, оставаясь при этом безвредными для организма, является одной из актуальных задач. Полисахариды морского происхождения, в частности хитозан и каррагинан, могут быть перспективными кандидатами для таких целей, в виду, безопасности и разносторонней биологической активности.

Так как изучение взаимодействия биополимеров в растворах требует тщательной характеристики взаимодействующих компонентов, в данной работе две главы посвящены получению, установлению структуры и изучению физико-химических характеристик полисахаридов, используемых для нейтрализации ЛПС.

2.4.1. Сравнительное изучение хитозанов различной степени полимеризации в водных растворах.

Хитозан, как известно, представляет собой полностью или частично N-дезацетилированное производное природного полисахарида — хитина. Обычно получают хитозан при обработке хитина концентрированным раствором щелочи в жестких условиях. В данной работе были использованы два образца хитозана различной степени полимеризации, полученные последовательной деполимеризацией хитина. Хитин получали из панциря камчатского краба и обрабатывали раствором щелочи в жестких условиях. Выход хитозана составил 75% и он был обозначен как высокомолекулярный хитозан- (Х-ВМ). Для получения второго образца была проведена деполимеризация Х-ВМ с использованием 2,5% раствора Н202. Полученный полисахарид осаждали спиртом, и очищали методом гель-хроматографии. В результате был получен низкомолекулярный хитозан (Х-НМ) с выходом 35%.

Для характеристики образцов хитозанов были использованы методы ЯМР и ИК-спектроскопии. Согласно данным ИК-спектроскопии содержание N-ацетильных групп в обоих образцах хитозана составляет 4%. В, 3СЯМР спектрах присутствуют 6 основных сигналов атомов углерода с химическими сдвигами 98,5 (С1), 78,0 (С4) — 76,0 (С5), 71,1 (СЗ), 61,4(С6), 57ДС2) м.д. и минорный сигнал метильной группы ацетамидного атома углерода при 23,4 м.д. Эти данные подтверждают, что исследуемые полисахариды представляют собой полимеры (3- 1,4 Д-глюкозамина.

Сравнительное изучение гидродинамических характеристик двух образцов хитозанов проводили методами аналитического центрифугирования-скоростной и равновесной седиментацией, а также вискозиметрии. Наличие единственной границы седиментации как в случае Х-ВМ, так и Х-НМ свидетельствует об отсутствии каких либо примесных компонентов в обоих образцах, а б.

Рис. 2.21. Седиментограмма ХНМ (а) и ХВМ (б) в растворе 0,01 М Na-фосфатного буфера /0,15 М NaCl (рН 6,0). п= 12 000 об/мин., Т=25°С, С=10 мг/мл. Время — 20 мин.

Значения констант седиментации, а также молекулярных масс Х-ВМ и Х-НМ, определенных методом неустановившегося равновесия по Арчибальду, представлены в таблице. 2.15. Как видно, молекулярная масса ХВММ более чем в 4 раза больше, чем Х-НММ, в то время как их коэффициенты седиментации, приведенные к стандартным условиям, отличаются незначительно. Анализ концентрационных зависимостей коэффициентов седиментации и молекулярных масс хитозанов, представленных на рис 2.22,.

Показать весь текст

Список литературы

  1. Lugtenberg В., Van Alphen L. Molecular architecture and functioning of the outer membrane of Escherichia coli and other gram-negative bacteria //Biochim. Biophys. Acta. 1983. V. 737, N 1. P.51−115.
  2. Hitchcock P.J., Morrison D.C. The protein component of bacterial endotoxins // In: Handbook of endotoxin / Eds. R.A.Proctor. Elsevie: Amsterdam-New York- Oxford. 1984. P.339−375.
  3. Freudenberg M.A. Meier-Dieter U., Staehelin Т., Galanos C., Analysis of LPS released from Salmonella abortus equi in human serum // Microb. Pathogen. 1991. V.10, N.l. P.93−104.
  4. Ю.С. Химия иммунитета. 1997. Сыктывкар. 159 С.
  5. Benz R., Bauer К. Permeation of hydrophilic molecules through the outer membrane og gram-negative bacteria. Review on bacterial porins // Eur. J. Biochem. 1988. V.176, N.l. P. l-19.
  6. Sen K. and Nikaido H. Lipopolysaccharide structure required for in vitro trimerization of Escherichia coli OmpF porin // J.Bacteriol. 1991. V. 173, N.2. P. 926 928.
  7. Nikaido H. Molecular basis of bacterial outer membrane permeability revisited // Microbiol. Mol. Bio. Rev. 2003. V. 67, N.4. P. 593−656
  8. Brandenburg К and Wiese A. Endotoxin: Relationships between Structure, Function and Activity // Curr. Top. Med. Chem. 2004. V.4, N. l 1. P. 1127−1146.
  9. Arockiasamy A., Kumar P.D., Baalaji N.S., Rukmini M.R., Krishnaswamy S. Folding and structural stability of OmpC from Salmonella typhi: Role of LPS and environment // Curr.Sci. 2004. V.87, N.2. P. 197−202.
  10. Boivin A., Messrobeanu J., Messrobeanu L. Technique pour la preparation des polysaccharides microbiens specifiques // C. R. Soc. Biol. 1933.V.113. P.490−492.
  11. Ю.А. Липополисахариды грамотрицательных бактерий // В кн.: Прогресс химии углеводов. Под. ред. И. В. Торгова. М.: Наука. 1984. С. 222−308. .
  12. Knirel Y. A and Kochetkov N.K. The structure of lipopolysaccharides of gram-negative bacteria. III. The structure of O-antigens: A review // Biochemistry (Moscow) 1994. V.59, N.12. P.1325−1383.
  13. Tobias P. S., Soldau K., Iovine N.M., Elsbach P., Weiss J. Lipopolysaccharide (LPS)-binding proteins BPI and LBP form different types of complexes with LPS // J. Biol. Chem. 1997. V.272, N.30. P.18 682−18 685.
  14. Kaca W., Roth R., Levin J. Hemoglobin, a newly recognized Lipopolysaccharides (LPS)-binding protein that enhances LPS biological activity // J. Biol. Chem. 1994 V. 269, N.40. P.25 078−25 084.
  15. Gustmann Т., Hagge S.O., David A., Roes S., Bohling A., Hammer M.U., Seydel U. Lipid-mediated resistance of Gram-negative against various pore-forming antimicrobial peptides // J. Endotoxin Res. 2005. V. l 1, N.3. P. l67−173.
  16. Galanos C., Rietschel R.T., Luderitz 0., Westphal 0. Biologic activities of lipid A complexed with bovine serum albumin // Eur. J. Biochem. J. 1972. V.31, N.l. P.230−233.
  17. Galanose C., and Luderits 0. Lipopolysaccharide: properties of an amphipathic molecule // In: handbook of Endotoxin. Ed. E. T RietscheL. Amsterdam-N.Y.- Oxford. 1984.V. 1. P.46- 58.
  18. М.Ю. " Эндотоксиновая агрессия" как предболезнь или универсальный фактор патогенеза заболеваний человека и животных // Успехи соврем, биол. 2003. Т.123, № 1. С. 31−40.
  19. Е.В., Веткова Л. Г., Бондаренко В. М. Молекулярные аспекты повреждающего действия бактериальных липополисахаридов // Журн. микробиол.2004. № 3. С. 98−105.
  20. Brandenburg К., Jurgens G., Muller М., Fukuoka S. Koch M. Biophysical characterization of lipopolysaccharide and lipid A inactivation by lactoferin // Biol.Chem. 2001. V.382, N.l. P. 15−25.
  21. Japelj В., Pristovsek P., Majerle A., Jerala R. Strucrtural origin of endotoxin neutralization and antimicrobial activity of a lactoferrin-based peptide // J. Biol.Chem.2005. V.280, N.17. P. 16 955−16 961.
  22. Bland J.M., De Lucca A.J., Jacks T.J. Vigo C.B. All-D-cecrolin B: Synthesis, conformation, lipopolysaccharide binding, and antibacterial activity // Mol.Cell.Biochem. 2001. V.218, N. l/2. P. 105−111.
  23. Fujihara Y., Lei M-G., Morrison D.C. Characterization of specific binding of a human immunoglobulin M monoclonal antibody to lipopolysaccharide and its lipid A domain //Infect. Immun. 1993. V.61, N.3. P.910−918.
  24. Kovacs E.J., Radzioch D., Young H.A., Varesio L. Differential inhibition of IL-1 and TNF-a mRNa expression by agents which block second messenger pathways in murine macrophages // J. Immunol. V. 141, N. 16. P.3110−3105
  25. Natanson C., Hoffman W.D. Suffredini A.F. Eichacker P.Q. Danner R.L. Selected treatment strategies for septic shock based on proposed mechanisms of pathogenesis // Ann. Untern. Med. 1994. V.120, N.3. P.771−783.
  26. Kutuzova G.D., Albrecht R.M., Erickson C.M., Qureshi N. Diphosphoryl lipid A from Rhodobacter sphaeroides blocks the binding and internalization of lipopolysaccharide in RAW 264.7 cells // J.Immunol. 2001. V.167, N.l. P. 482−489.
  27. Bennett-Guerrero E., Mcintosh T.J., Barclay G.R., Snyder D.S., Gibbs R.J., Mythen M.G., Poxton I.R. Preparation and preclinical evaluation of a novel liposomal complete core lipopolysaccharide vaccine // Infect. Immun. 2000. V.68, N. 11. P.6202−6208.
  28. Velucchi M., Rustici A., Meazza X., Villa P., Ghezzi P., Tsai C-M., Porro M. A model of Neisseria meningitidis vaccine based on LPS micelles detoxified by synthetic anti-endotoxin peptides // J. Endotoxin Res. 1997. V.4, N.4. P.261−272.
  29. David S.A., Silverstein R., Amura C., Kielian Т., Morrison D.C. Lipopolyamines: Novel antiendotoxin compounds that reduce mortality in experimental sepsis caused by gram-negative bacteria // Antimicrob. Agents Chemother. 1999. V.43, N.4. P.912−919.
  30. Blagbrough I.S., Geall A.J., David S.A. Lipopolyamines incorporating the tetraamine spermine, bound to an alkyl chain, sequester bacterial lipopolysaccharide // Bioorg. Med. Chem. 2000. V.10, N.4. P. 1959−1962.
  31. Zasloff M. Antimicrobial peptides of multicellular organisms // Nature. 2002. V.415, N.l. P.389−395.
  32. Schroder-Born H., Willumeit R., Brandenburg K., Andra J. Molecular basis for membrane selectivity of NK-2, a potent peptide antibiotic derived from NK-lysin // Biochim. Biophys. Acta. 2003. V. 1612, N.l. P. 164−171.
  33. Andra J., Koch M., Bartels R., Brandenburg K. a-. Biophysical characterization of endotoxin of endotoxin inactivation by NK-02, an antimicrobial peptide derived from mammalian NK-lysin // Antimicrob. Agents and Chemother. 2004. V.48, N.5. P. 1593−1599.
  34. Andra J., Lohner K., Blondelle S.E., Jeralas R., Moriyoni I., Koch M., Garidel P., Brandenburg K. Enhancement of endotoxin neutralization by coupling of a C12-alkyl chain to a lactoferricin-derived peptide // Bichem. J. 2005. V.385, N1. P.135−143.
  35. Kumar M.N. Muzzarelli R.A., Muzzarelli C., Sashiva H., Domb A.J. Chitosan chemistry and pharmacceutical persspective // Chem. Rew. 2004. V.104, N.12. P.6017−6084
  36. Lahaye, M., Kaeffer, B. Seaweed dietary fibres: structure, physico-chemical and biological properties relevant to intestinal physiology // Sciences and Aliments. 1997 V.17, N.2. P.563−584.
  37. Kilpatrick D.C. Immunological aspects of the potential role of dietary carbohydrates and lectins in human health // Eur. J. Nutr.1999. V.38, N.l. P. 107−117.
  38. Nikaido N, Nakae T. The outer membrane of gram-negative bacteria // Adv. Microb. Physiol. 1979. V.20, N.2. P. 163−250. ,
  39. Nakae T. Outer membrane of Salmonella. Isolation of protein complex that produces transmembrane channales // J. Biol. Chem. 1976. V.251, N.21. P.2176−2178.
  40. Benz R., Bauer K. Permeation of hydrophilic molecules through the outer membrane of gram-negative bacteria. Review on bacterial porins // Eur. J. Biochem. 1988. V.176, N.l. P. l-19.
  41. Nikaido H., Nikaido K., Harayama S., Identification and characterization of porins in Pseudomonas aeruginosa II J. Biol.Chem. 1991 V.266, N.3. P.770−779.
  42. Conlan S., Zhang Y., Cheley S., Bayley H. Biochemical and biophysical characterization of OmpG: monomeric porin // Biochemistry. 2000. V.39,.N.32. P. l 184 511 854.
  43. Cowan S.W., Garavito R.M., Jansonius J.N., Jerkins J.A., Karlsson R., Konig N., Oai E. F., Rizkallish P.J., Rusenbusch J.P., Rummel G., Schurmer T. The structure of OMpF porin in a tetragonal crystal form // Structure. 1995. V.3, N10. P.1041−1050.
  44. Forst D., Welte W., Wacker T. Dicderichs K. Structure of the sucrose-spesific porins Ser Y from Salmonella typhimurium and its complex with sucrose // Nat. Struct. Biol. 1998. V.5, N.l. P.37−46.
  45. Koebnik R., LocherX.P., Van Gelder P. Structure and function of bacterial outer membrane proteins: barrels in a nutshell // Mol. Microbiol .2000. V.37, N.2. P.239−253.
  46. Zhang C., Walker L.M., Hinson J.A., Mayeux P.R. Oxidant stress in rat liver after lipopolysaccharide administration: effect of inducible nitric-oxide syntheses inhibition // J. Pharmacol. Exp. Ther. 2000. V.293, N.3. P. 968 972.
  47. Westphal O., Luderitz O., Bister F. Uber die Extraction von bacterien mit phenol/wasser // Z. Naturforsch 1952. V.76, N.3. P. 148−155.
  48. Wilkinson S.G. Bacterial lipopolysaccharides-themes and variations // Prog. Lipid Res., 1996. V.35, N.3. P.283−343.
  49. В.И., Красикова И. Н. Липид, А как центр эндотоксической активности грамотрицательных бактерий. Структура, свойства, синтез аналогов // В кн.: Успехи в изучении природных соединений. Под ред. Стоник В. А. Дальнаука: Владивосток. 1999. С.209- 222.
  50. Batley M., Packer N.H., Redmond J.W. Configurations of the glycoside phosphates of lipopolysacharide from Salmonella minesota R 595 // Biochemistry 1982. V.21, N 25. P.6580−6583.
  51. Brade L., Schramek S., Schade U., Brade H. Chemical, biological, and immunochemical properties of the Chlamydia psittaci lipopolysaccharide // Infect. Immun. 1986. V.54, N.3. P.568−574.
  52. Krasikova I.N., Luk’yanov P.A., Gorbach V.I., Solov’eva T.F., Ovodov Yu.S. D-3-Dodecanoyltetradecanoic acid as a constituent of lipid A from the lipopolysaccharide of Yersinia pseudotuberculosis // Experientia 1984.V.40, N. l 5. P.709−710.
  53. Krasikova I.N., Gorbach V.I., Isakov V.V., Solov’eva T.F., Ovodov Yu.S. The application of 13C-NMR spectroscopy to study lipid A from Yersinia pseudotuberculosis lipopolysaccharide // Eur.J. Biochem 1982. V.126, N2. P.349−351.
  54. Krasikova I.N., Gorbach V.I., Solov’eva T.F., Ovodov Yu.S. Studies on lipid A from Yersinia pseudotuberculosis lipopolysaccharide. Isolation and general characterization //EurJ. Biochem. 1978. V. 89, N.l. P.289−290.
  55. Seydel U., Hawkins L. Schramm A.B. Heine H., Scheel 0., Koch M.H.J. Brandenburg K. The generalized endotoxic principle // Eur.J.Immunol. 2003. V.33, N.6. P. 1586−1992.
  56. Schromm A.B., Brandenburg K., Loppnow H., Moran A.P., Koch M.H., Rietschel E.T., Seydel U. Biological activities of lipopolysaccharides are determined by the shape of their lipidA portion // Eur. J. Biochem. J. 2000. V.267, N12. P.2008- 2013
  57. Knirel Y. A. Rietschel E. T. Marre R., Zahringer U. The structure of the 0-specific chain of Legionella pneumophia serogroup 1 lipopolysaccharide // Eur. J. Biochem. 1994. V.221, N.2. P.239−245.
  58. C.B., Горшкова Р. П., Командрова H.A., Зубков В. А., Назаренко E.JI. Структура О- специфических полисахаридов рода YERSINIA // В кн- Успехи в изучении природных соединений. Под. ред. В. А. Стоника.-Дальнаука: Владивосток. 1999. С.202−208.
  59. Gorshkova R.P., Zubkov V.F., Isakov V.V., Ovodov Yu.S. Yersiniose, a New Branched-Chain Sugar // Carbohydr. Res. 1984. V.126, N.4. P.308−312.
  60. Novotny A. Heterogeneity of endotoxin // In: handbook of Endotoxin Ed. E. T Rietschel. Amsterdam-N.Y.- Oxford. 1984.V.l. P.308−338.
  61. Morrison D.C., Leive L. Fractions of lipopolysaccharide from Escherichia colli 0111: B4 prepared by two extraction procedures // J.Biol.Chem. 1975.V. 250, N.8. P. 2911−2919.
  62. Goldman R.C., Leive L. Heterogeneity of antigen-side-chain length in lipopolysaccharide from Escherichia coli 0111 and Salmonella typhimurium LT2 // Eur. J.• Biochem. 1980. V.107, N 1. P.145−153.
  63. Langley S., Beverridge T.J. Effect of O-side-chain -lipopolysaccharide chemistry on metal binding //Appl. Environ. Microbiol. 1999. V.65, N. 2. P. 489−498.
  64. Dezelic G.J., Dezelic N., Jusic D., Pends В., Sinkovic D., Nebec M. A gel-chromatographic and light scattering study of the Salmonella typhimurium II Croat. Chem. Acta 1977. V.49, N.l. P. 149−162.
  65. Mclntire F.C., Barlow G.h., Siever H.W., Finley R.A. Yoo A/L. Studies on a lipopolysaccharide from Escherichia coli. Heterogeneity and mechanism of reversible inactivation by sodium deoxycholate // Biochemistry. 1969. V.8, N.23. P.4063−4067.
  66. Muck A., Ramm M., Hamburger M. Efficient method for preparation of highly purified lipopolysaccharides by hydrophobic interaction chromatography // J. Chromatog. 1999. V.732, N.l. P.39−46.
  67. Snyder S., Kim. D., Mcintosh T.J. Lipolysaccharide bilayer structure: Effect of chemotype, core mutation, divalent cations, and temperature // Biochemistry 1999. V.38, N.33. P.10 758−10 767.
  68. Vaara M. and N.Nikaido. Molecular organization of bacterial outer membrane // In: Handbook of Endotoxin/ Ed. E. Rietschel. Elsevier: Amsterdam-New York-Oxford 1984. V.l. P. 1−33.
  69. Munford R.S., Hall C.L. Rick P.D. Size heterogeneity of Salmonella typhimurium in the lipopolysaccharides in outer membranes and culture supernatant membrane fragments // J.Bactirio.1980. V.144, N.2. P.630−640.
  70. Dirienzo J.M., Macleod R.A. Composition of the fractions separated by polyacrylamide gel electrophoresis of the lipopolysaccharides of marine bacterium //J. Bacteriol. 1978. V. l36, N.l. P. 158−167.
  71. Rietschel, E.T., Brade H., Brandenburg K., Flad H.D. de Jong-Leuveninck, Kawahara K., Lidner В., Loppnow H., Luederitz. Chemical sctructure and biologic activity of bacterial and synthetic lipid A // Rev.Infect. Dis. 1987. Suppl. 5. P.527−536.
  72. Leive L. Release of lipopolysaccharide by EDTA-treatment of E. coli // Biochem. Biophys. Com. 1965. V.21, N1. P.290−296.
  73. Goodman M.G., Morrison D.C., Weigle W.D. Modulation of lipopolysaccharide (LPS)-mediated function by structural differences of two physically distinct fractions of Escherichia coli K-235 // J. Immunol.1977. V. l 18, N5. P.1852−1857.
  74. Tsang J.C., Wang C.S., Alaupovic P. Degradative effect of phenol on endotoxin and lipopolysaccharide preparations from Serratia marcescens // J. Bacteriol.1974. V. l 17, N.2. P.786−795.
  75. Brandenburg K., Seydel U. Physical aspects of structure and function of membranes made from lipopolysaccharides and free lipid A // Biochim. Biophys. Acta. 1984. V.775, N.2. P.225−238.
  76. Brandenburg K., Mayer H., Koch M.H.J. Weckesser J., Rietschel E.T., Seydel U. В/ Influence of the supramolecular structure of free lipid A on the its biological activity.// Eur. J. Biochem. 1993. V.218, N.2. P.555−563.
  77. Kitchens R.L., Munford R.S. CD14-dependent internalization of bacterial lipopolysaccharide (LPS) is strongly influenced by LPS aggregation but not by cellular responses to LPS //J. Immunol. 1998. V. l 60, N.15. P. 1920−1928.
  78. Shands J.W., Graham J.A., Nath K. The morphologic structure of isolated bacterial lipopolysaccharide//J. Mol. Biol. 1967. V.25, N.l. P. 15−21.
  79. Wistrom C.A., Jones G.M., Tobias P. S., Sklar L.A. Fluorescence resonance energy transfer analysis of lipopolysaccharide in detergent micelles // Biophys. J. 1996. V.70, N.8 P. 988−997.
  80. Olins A.L., Marner R.C. Physicochemical studies on a lipopolysaccharide from cell wall of Azotobacter vinelandii // J. Biol. Chem. 1967. V.242, N.21. P.4994−5001.
  81. Lorinczy D., Kocsis B. Interaction between lipopolysaccharide and detergents detected by differential scanning calorimetry // Therm. Acta. 2001. V. 372, N.l. P.19−23.
  82. Moriyon I., Berman D.T., Effects of nonionic, ionic, and dipolar ionic detergents and EDTA on the Brucella cell envelope // J. Bacteriol. 1982. V. l52, N. 2. P. 822−828.
  83. Brandenburg К, Andra J, Muller M, Koch MHJ, Garidel P Physicochemical properties of bacterial glycopolymers in relation to bioactivity // Carbohydr. Res. 2003. V.338, N. 23: P.2477−2489 .
  84. Aurell C.A., Wistron A.O. Critical aggregation concentrations of gram-negative bacterial lipopolysaccharides (LPS) //Biochem. Biophys. Res. Commun. 1998. V.235, N.l. P. l 19−123.
  85. Santos N.C., Silva A.C., Castanho M.A., Martina-Silva J., Salanha C. Evaluation of lipopolysaccharide aggregation by lithg sckattering spectroscopy // Chem. Biochem. J. 2003. V.4, N.l. P.96−100.
  86. Coughlin R.T., Haug A. McGroarty E.J. Physical properties of defined lipopolysaccharide salts //Biochemistry. 1983. V.22, N.8. P.2007−2013.
  87. Oh E.T., Yun H.S., Heo T.R., Koh S.C., Oh K.H., So J.S. Involvement of lipopolysaccharide of Bradyrhizobium japonicum in metal binding // J. Microbiol. Biotechnol. 2002. V.12, N.2. P.296−300.
  88. Brandenburg K., Seydel U. Investigation into the fluidly of lipopolysaccharide and free lipid A membrane systems by Fourief-transform interied spectroscopy and differential scanning calorimetry // Eur. J. Biochem. 1990. V. 191, N. 1. P. 229−236.
  89. Brandenburg K., Funari S.S., Koch M.H., Seydel U. Investigation into the acyl chain packing of endotoxins and phospholipids under near physiological conditions by WAXS and FTIRspectroscopy // J. Struct. Biol. 1999. V.128, N.l. P.175- 186.
  90. Brandenburg K., Seydel U. Orientation measurements on membrane systems made from Iipopolysaccharides and free lipid A by FT-IR spectroscopy // Eur. Biophys. J. 1988. V. 16, N.l. P. 83−94.
  91. Brandenburg K., Seydel U. Thermodynamic investigations on mono- and bilayer membrane systems made from lipid components of gram-negative bacteria // Therm. Acta. 1985. V.85, N.3. P.437−476.
  92. Brandenburg K., Kusumoto S., Seydel U. Conformational studies of synthetic lipid A analogues and partial structures by infrared spectroscopy // Biochim. Biophys. Acta. 1997. V.132, N.l. P. 193−201.
  93. Israelachvili J. N., Marcelja S., Horn R.G. Physical principles of membrane organization //Biochim. Biophys. Acta. 1984. V.775, N.2. P.225−238.
  94. Brandenburg K., Koch M.H., Seydel U. Fhase diagram of deep rough mutant lipopolysaccharide from salmonella minesota R 595 // J. Struct. Biol. 1992. V.108, N.2. P.93−106.
  95. Mariani P., Luzzati V. Delacreix H. Cubic phases of lipid-containing systems. Structure analysis and biological implications // J. Mol. Biol. 1993. V.204, N.l. P.165−189.
  96. Peterson A.A., Haug A., McGroarty E.J. Physical properties of short- and long-O-antigen-containing fractions of lipopolysaccharide from Escherichia coli0111: B4 // J. Bacteriol. 1986. V. l65, N. 1. P.116−122.
  97. Т.Ф., Оводов Ю. С. Физические свойства липопо-лисахаридов грамотрицательных бактерий // Биолог, мембраны 1992. Т.9, Вып.З. С.245−258.
  98. Coughlin R.T., Peterson A.A. Haug A., Pownall H.J., McGroarty E.J. A pH titration study on the ionic bridging within lipopolysaccharide aggregates // Biochim. Biophys. Acta. 1985. V.821, N.3. P.404−412.
  99. Като N., Ohta M., Kido N., Ito H., Natio S., In vitro hexagonal assembly of R-form lipopolysaccharides: effect of pH on the Mg+2- mediated hexagonal assembly // Microbiol. Immunol. 1988. V.32, N.2. P. 151−160.
  100. Kislyuk V.V., Varbanets L.D., Kosenko L.D., Vasiliev V.N., Vinarskaya N.V., Pahuta I.M., Lozovski V.Z. The laser spectroscopy of glycopolymers // Synthetic metals 2002. V.127, N.l. P. 23−28.
  101. Kastowsky M., Sabisch A., Gutberlet Т., Bradaczek H. Molecular modeling of bacterial deep rough mutant lipopolysaccharide of Escherichia coli //Eur. J. Biochem. 1991. V.197, N.3. P.707−716.
  102. Kastowsky M., Gutberlet Т., Bradaczek H. Molecular modeling of the three -dimensional structure and conformational flexibility of bacterial lipopolysaccharide // J. Bacteriol. 1992. V.174, N.14. P.4798−4806.
  103. Lins R.D., Straatsma T.P. Computer simulation of the rough lipopolysaccharide membrane of Pseudomonas aeruginosa II Biophys. J. 2001. V.81, N.2. P. l037−1046.
  104. Beer H., Staehelin Т., Douglas H., Braude A.I. Relationship between particle size and biologic activity of Escherichia coli endotoxin // J. Clin. Invest. 1965. V.44, N. 6. P.592−602.
  105. Brogden K.A., Philips M. The ultrastructural morphology of endotoxins and lipopolysaccharides // Electron. Microsc. Rev. 1988. V. 1, N. 1. P.261 -277.
  106. Като N., Ohta M., Kido N. Ito H., Natio S., Kuno T. Formation of a hexagonal lattice structure by an R-form lipopolysaccharide of Klebsiella sp. II J. Bacteriol. 1985c. V.162, N.3. P. l 142−1150.
  107. Okuda K., Fukumoto Y., Takazoe I. Structure of lipopolysaccharide from bacteroides gingivalis//Bull.TokyaDent.Coll. 1985. V.26, N.l. P.197−203.
  108. Amano К., Fukushi К Amano. Chemical and ultrastructural differences in endotoxic glycolipids from Salmonella minnesota Re- mutant extracted with various solvent systems // Micribiol. Immunol. 1984. V. 28, N.2. P.135−148.
  109. Amano K., Fukushi K. Electron microscopic studies of endotoxins treated with alkaline and acid reagent // Microbiol. Immunol. 1984d. V.28, N.2. P.161−168.
  110. Amano K., Fukushi K., Willams J. Electron microscopic studies of lipopolysaccharides from phase 1 and phase 11 Coxiella burnetti И J. General Microbiol. 1985a. V.131, N. l 1. P.3127−3130.
  111. Moriyon I., Montanes M. In vitro interactions between lipopolysaccharides and heterologous outer membrane porin proteins // Curr. Microbiol. 1985. V.12, N.l. P. 229−234.
  112. Като N., Ohta M., Kido N., Ito H., Natio S., Kuno T. In vitro hexagonal assembly of lipopolysaccharide of Escherichia coli K-12. // Microbiol. Immunol. 1986 c. V.30, N1. P.25−33.
  113. Amano K., Fukushi K. Chemical and ultrastructural composition of endotoxins extracted from Salmonella minnesita wild type and R-mutant // Microbiol. Immunol. 1984 b. V.28, N.2. P.149−159.
  114. Като N., Ohta M., Kido N., Ito H., Natio S., Kuno T. Stability of the hexagonal lattice formed by an R- form lipopolysaccharide of Klebsiella: Study of long range stability // Micribiol. Immunol. 1986b V.30, N.l. P.13−23.
  115. Risco C., Pinto da Silva P. J. Binding of bacterial endotoxins to the macrophages surface: visualization by fracture-flip and immunocytochemistry II J. Histochem. Cytochem. 1993. V.41, N.4. P.601−608.
  116. Cox S.T., Eagon R.G. Action of ethylendiaminnetraacetic acid, tris (hydroxyl-methyl)-aminomethane and lysozyme on cell walls of Pseudomonas aeruginosa II Can. J. Microbiol. 1968. V.14, N.8. P.913−922.
  117. Rogers S.W., Gilleland H.E., Eagon R.G. Characterization of a protein-Iipopolysaccharide complex released from cell walls of Pseudomonas aeruginosa by ethylendiaminnetraacetic acid // Can. J. Microbiol. 1969. V. l5, N.7. P.743−748.
  118. Gmeiner J., Bergman H. and Schlecht S. Molecular organization of the outer membran of Salmonella typhimurium. Different release of lipopolysaccharide mutant cells by EDTA treatment//Arch. Microbiol. 1980.V.124, N. 1.Р. 69−71.
  119. Matora L., Serebrennikova O.B., Shchyogolev S.Yu. Structural effects of the Azospirillium lipopolysaccharides in cell suspensions // Biomacromolecules. 2001. V.2. P.402−406.
  120. Novotny A. M., Thomas S., Duron O.S., Relation of structure to function in bacterial O-antigens. 1/ Isolation methods // J. Bacteriol. 1963. V. 85, N. 2. P.418−426.
  121. О.Д., Соловьева Т. Ф., Оводов Ю. С. Исследование белкового компонента липополисахарид-белкового комплекса Yersinia pseudotuberculosis II Химия природ, соедин. 1980. № 1. С. 92−97.
  122. Wu А.М., MacKenzie N.E., Adams G., Pugh R. Structural and immunochemical aspects of Brucella abortus endotoxins // Adv. Exp. Med. Biol. 1988. V.228, N.4. P.551−576.
  123. Brade H. and Galanos G. Isolation, purification, and chemical analysis of the lipopolysaccharide and lipid A of Acinobacter calcoaceticus TCTC 10 305 // Eur. J. Biochem. 1982. V.122, N 2. P. 233−237.
  124. Perera V.Y., Winter A.J., Ganem B. Evidence for covalent bonding of native hapten protein complexes to smooth lipopolysaccharide of Brucella abortus II FEMS Microbiol.Lett. 1984. V.21. N.2. P. 263−266.
  125. Strittmatter W., Galanos C. Characterization of protein coextracted together with LPS in Escherichia coli, Salmonella Minnesota and Yersinia enterocoMtica И Microb.Pathog. 1987. V.2, N.l. P. 29−36.
  126. JI.И., Соловьева Т. Ф., Оводов ЮС. Изучение комплекса липидА-белок из эндотоксина Yersinia pseudotuberculosis II Биоорган, химия. 1984. Т. 10, № 1 С. 93−99.
  127. Helenius A., Simons К. Solubilization of membrane by detergents // Biochim.Biophys.Acta. 1975.V.415, N.l. P.29−79.
  128. Л.И., Соловьева Т. Ф., Оводов ЮС. Выделение и физико-химическая характеристика белка, входящего в состав эндотоксина из Yersinis pseudotuberculosis.И Биоорган, химия. 1989. Т.15, № 6. С.737−745.
  129. Yamada Н., Mizushima S. Interaction between major outer membrane protein (0−8) and lipopolysaccharide in Escherichia coli K-12 // Eur. J. Biochem. J. 1980. V. l03, Nl.P. 209−218.
  130. Hedstrom R.C., Schockley P.K., Eagon R.C. Ethylendiamine-tetraacetate -extractable protein -lipopolysaccharide complex of Pseudomonas aeruginosa: characterization of protein components // J. Bacteriol. 1981. V. 148, N.3. P. 995−997.
  131. Rocque W.J., Coughlin R.T., McGroarty E.J. Lipopolysaccharide tightly bound to porin monomers and trimers from Escerichia coli K-12 // J. Bacteriol. 1987. V. l69, N.3. P.4003−4010.
  132. Rosenbusch J.P. Structural and functional properties of porin channels in E. coli outer membranes // Experientia 1990. V.46, N.2. P.167−173
  133. Bornelit p., Bleschmidt D., Kleber H. P Lipopolysaccharide-protein interactions: Determination of dissociation constants by affinity electrophoresis // Electrophoresis. 1989 V.10, N. 12. P. 848−852.
  134. Г. А., Хоменко В. А., Красикова И. Н., Ким Н.Ю., Соловьева Т. Ф. Кооперативное взаимодействие между белком-порином и липополисахаридом. // Биоорган, химия. 1996. Т. 22, Вып. 9. С. 671−677 .
  135. Stinnett J.D., Eagon R.G. A model system for studing protein-lipopolysaccharide synthesis, assembly, and insertion in the outer membrane of Pseudomonas aeruginosa//Can. J. Micribiol.1975.V21, N.7. P. 1834−1841.
  136. Ried G., Henning U. A unique amino acid substitution in the outer membrane protein OmpA causes conjugation deficiency in Escharichia coli K-12 // FEBS Lett. 1987. V.223, N.2. P.3 87−390.
  137. De Cock H., van Blakland S., Tommassen J., In vitro insertion and assembly of outer membrane protein PhoE of Escherichia coli X-12 into the outer membrane // J. Biol. Chem. 1996. V.271, N.22. P.12 885−12 890.
  138. Hagge S.J., De Cock H., Gotsmann Т., Beckers F., Seydel U., Wiese A. Pore formation and function of phosphoporin PhoE of Escherichia coli are determined by the core sugar moiety of lipopolysaccharide // J. Biol.Chem. 2002. V. 277, N.37. P.34 247−34 253.
  139. Brandenburg K., Jurgens G., Andra J., Lindner В., Koch M., Blume A., Garide P. Biophysical characterization of the interaction of high-density lipoprotein (HDL) with endotoxins // Eur.J. Biochem. 2002. V. 269, N.23. P.5972−5981.
  140. Pajkrt D., Doran J.W. Van de Poll Т., ten Cate J.W., Van Deventer S.J. Antiinflammatory effects of reconstituted high-density lipoprotein during human endotoxemia // J. Exp. Med. 1996. V.184, N.10.P. 1601−1608.
  141. Tobias P. S., Ulevitch R.J. Lipopolysaccharide binding protein and CD 14 in LPS-dependent macrophage activation // Immunobiology. 1993. V.187, N 1. P. 227−232.
  142. Little R.G., Kelner D.N., Lim E., Burke D.J., Conlon P.J. Functional domains of recombinant bactericida/permeability increasing protein (rBPL23) // J. Biol. Chem. 1994. V. 269, N.6. P. 1865−1872.
  143. Fray E.A., Miller D.S., Jahr T.G., Sundun A., Bazil V., Espevik Т., Finlay B.B. and Wright S.D. Soluble CD 14 participates in the response of cell to lipopolysaccharide //J. Exp. Med. 1992. V.176, N.6. P.1665−1671.
  144. Yu В., and Wtight S.D. Catalytic properties of lipopolysaccharide (LPS) binding protein //J. Biol. Chem. 1996. V.271, N.8. P. 4100−4105.
  145. Tobias P. S., Soldau K., Gegner J.A., Mintz D., Ulevitgh RJ. Lipopolysaccharide binding protein-mediated complexation of lipopolysaccharide with soluble CD 14//J. Biol. Chem. 1995. V. 270, N.18.P. 10 482−10 488.
  146. Gegner J.A., Ulevitch R.J., Tobias P. S. Lipopolysaccharide (LPS) signal transduction and clearance //J. Biol. Che.m. 1995. V.270, N. 10. P.5320−5325.
  147. Wurfel M.M., Wright S.D. Lipopolysaccharide-binding protein and soluble CD 14 transfer lipopolysaccharide to phospholipid bilayers. Preferential interaction with particular classes of lipid//J. Immunol. 1997. V.158, N.8. P.3925−3934.
  148. Helmann D., Adachi Y. Le ., Ohno N., Yadomae Т., Glauser M.P., Calandra T. Role of plasma, lipopolysaccharide-binding protein, and CD 14 in response of mouse peritoneal exudates macrophages to endotoxin // Infect. Immun. 2001. V.69, N.l. P.378−385.
  149. Wurfel M.M., Kunitake S.T., Lichenstein H.S., Kane J.P. and Wright S.D. Lipopolysaccharide (LPS) — binding protein is carried on lipoproteins and acts as cofactor in the neutralization of LPS //J. Exp. Med. 1994. V.180, N.3.P. 1025−1035.
  150. Scott M.G. Vreugdenhil A.C., Buurman W.A., Hancock R.E. Gold M. Cationic antimicrobial peptides block the binding of lipopolysaccaharide 9 LPS) to LPS binding protein // J. Immunol. 2000. V. l64. N.2, P.549- 553.
  151. Vreugdenhil A.C. Rousseau C.H., Hartung Т., Greve J.W.M., van’t Veer C., Buurman W.A. Lipopolysaccharide (LPS) — binding protein mediates LPS detoxification by chylomicrons //J. Immunol. 2003. V. l 70, N.3. P.1399−1405.
  152. Massamiri Т., Tobias P. S., Curtiss L.K. Structural determinants for the interaction of lipopolysaccharide binding protein with purified density lipoproteins: Role of apolipoprotein A-l //J. Lipid Res. 1997. V.38, N.3. P.516−525.
  153. Heinzelmann M., Bosshart H. Heparin binds to lipopolysaccharide (LPS) -binding protein, facilitates the transfer of LPS to CD 14, and enhances LPS-induced activation of peripheral blood monocytes // J. Immunology. 2005. V.174, N.4. P.2280−2287.
  154. Iovin N., Eastvold J., Elsbach P., Weiss J.P., Gioannini T.L. The carboxyl-terminal domain of closely related endotoxin-binding proteins determines the target of protein-lipopolysaccharide complexes // J.Biol. Chem. 2002. V. 277, N.10. P.7970−7978.
  155. Elsbach P., Weiss J. The bactericida/permeability-increasing protein (BPI), a potent element in host-defense against gram-negative bacteria and lipopolysaccharide // Immunobiology. 1993. V.187. N.3, P.417−429.
  156. Kellogg T.A., Lazaron V., Wasiluk K.R., Dunn D.L. Binding specificity of polymyxin B, BPI, LALF, and anti-deep core/Iipid a monoclonal antibody to lipopolysaccharide partial structures //J. Biochem. 2001. V.15. N.2. P.124−129.
  157. Yoshida M., Roth R. I, Levin J. The effect of cell-free hemoglobin on intravascular clearance and cellular, plasma, and organ distribution of bacterial endotoxin in rabbits //J. Lab. Clin. Med. 1995. V. 126, N 2. P.151−160.
  158. Amberson W., Jennings J., Rhode C. Clinical experience with hemoglobin-saline solutions//J. Appl. Physiol. 1949. V. l, N.2. P.469−489.
  159. Marks D.H., Cooper Т., Makovec Т., Okerberg C., Lollini L.O. Effect of polymyxin В on hemoglobin- mediated hepatotoxicity // Mil. Med. 1989. V. l54, N.l. P. 180−184.
  160. Su D.H., Roth R.I., Levin L. Hemoglobin infusion augments the tumor necrosis factor response to bacterial endotoxin (lipopolysaccharide) in mice // Crit. Care Med. 1999. V.27, N.3. P.771−778.
  161. Whiteford M., Spirig A., Rudolph A., Neville L., Abdullah F., Feuerstein G., Rabinovici. R. Effect of liposome-encapsulated hemoglobin on the development of endotoxin-induced shock in the rat // Shock. 1998. V.9. P. 428−433.
  162. Ohno N and Morrison D. Effect of lipopolysaccharide chemotype strucrure on binding and inactivation of hen egg lysozyme // Eur. J. Biochem.1989. V.186, N.3. P. 621−627.
  163. Ohno N and Morrison D. Lipopolysaccharide interaction with lysozyme // J. Biol. Chem. 1989. V. 264, N.8. P. 4434−4441.
  164. Roth R., Wong J.S., Hamilton R.L. Ultrastructural changes in bacterial lipopolysaccharide induced by human hemoglobin // J. Endotoxin Res. 1996. V.3, N 4. P. 361−366.
  165. Akhrem A.A., Andreyuk G.M., Kisel M.A., Kiselev P.A. Hemoglobin conversion to hemichrome under the influence of fatty acids // Biochim. Biophys. Acta. 1989. V. 99, N2. P. 191−194.
  166. Jurgens G., Muller M., Koch M., Brandenburg K. Interaction of hemoglobin with enterobacterial lipopolysaccharide and lipid A: physicochemical characterization and biological activity // Eur. J. Biochem. J. 2001. V.268, N. l 1. P.4233−4242.
  167. Grenier D., Leduc A., Mayrand D. Interaction between Actinobacillus actinomycetemcomitans lipopolysaccharide and human hemoglobin // FEMS Microbiol. Lett. 1997. V.151, N.l. P.77−81.
  168. Gorbenko G.P. Resonance energy transfer study of hemoglobin complexes with model phospholipids membranes // Biophys. Chem. 1999. V.81, N.l. P. 93−105.
  169. Archambault M., Olivier M., Foiry В., Diarra M. S, Paradis. SE., Jacques M. Effect of pig hemoglobin binding on some physical and biological properties of Actinobacillus pleuropneumoniae lipopolysaccharide // J. Endotoxin Res. 1997. V.4, N.l. P.53−65.
  170. Elass E., Masson M., Mazurier J., Legrand D. Lactoferrin inhibits the lipopolysaccharide-inducec expression and proteoglycan-binding ability of interleukin-8 in human endothelial cells // Infect.Immun. 2002. V.70, N.4. P. 1860−1866.
  171. Takayama K., Din Z.Z., Mukerjee P., Cookt P.H., Kirkland T.N. Physicochemical properties of the lipopolysaccharide units that activates В lymphocytes // J. Biol. Chem. 1990. V.265, N.23. P.14 023−14 029.
  172. Hejna J., and Cameron J.A. Effect on particle size of solubilization of wild-type and re chemotype lipopolysaccharides solubilized with bovine serum albumin and triethylamine//Infect.Immun. 1978.V.l9, N1. P.187−193.
  173. Jurgens G., Muller M., Gardiel P., Koch MNJ., Nakakubo H., Blume A., Brandenburg K. Investigation into the interaction of recombinant human serum albumin with Re-lipopolysaccharide and lipid A//J. Endotoxin Res. 2002. V.8, N.2. P. l 15−126.
  174. Aguilera O., Quiros L.M., Fierro J.F. Transferrins selectively cause ion efflux through bacterial and artificial membranes // FEBS Lett. 2003. V.548, N.l. P.5−10.
  175. Zhang C., Mann D. and Tsai C. Neutralization of endotoxin in vitro and in vivo by a human lactoferrin-derived peptide. // Infect. Immun. 1999. V.67, N.3.1. P. 1353−1358.1
  176. Baveye S., Elass E., Mazurier J., Lagrand D. Lactoferrin inhibits the binding of lipopolysaccharides to L-selectin and subsequent production of reactive oxygen species by neutrophils //FEBS Lett. 2000. V. 469, N.l. P.5−8.
  177. Tanida N., Ohno N., Adachi Y., Matsuura M., Nakano M., Kiso M., Hasegawa A., Yadomae T. Binding of lysozyme with synthetic monosaccharide lipid A analogue, GLA60 // Biol. Pharm. Bull.1993. V. l6, N.3. P.288−292.
  178. Kurasawa Т., Takada K., Ohno N., Yadomae T. Effects of murine lysozyme on lipopolysaccharide-induced biological activities // FEMS Immunol. Med. Microbiol.1996. V.13, N.4. P. 293−301.
  179. Brandenburg K., Koch M.H.J., Seydel U. Biophysical characterizations of lysozyme binding to LPS Re and lipid A // Eur. J. Biochem. 1998. V.258, N.2. P. 686 695.
  180. Ohno N., Tanida N. and Yadomae T. Characterization of complex formation between lipopolysaccharide and lysozyme // Carbohydr. Res. 1991. V.214, N.l.1. P. 115−130.
  181. Jolles P., and Jolles J. What’s new in lysozyme research? Always a model system, today as yesterday//Mol. Cell. Biochem. J. 1984. V.63, N.2. P.165−189.
  182. Takada K., Ohno N., and Yadamae T. Binding of lysozyme to lipopolysaccharide suppresses tumor necrosis factor production in vivo II Infect. Immun. 1994. V.62, NAP. 1171−1175.
  183. Thomas C. J, Surolia A. Kinetic of the interaction of endotoxin with polymyxin В and its analogs: a surface plasmon resonance analysis //. FEBS Lett. 1999. V.445, N.2. P.420−424.
  184. Brade L., Hoist 0., Brade H. An artificial glycoconjugate containing the bisphosphorylated glucosamine disaccharide backbone of lipid A binds monoclonal antibodies //Infect. Immun. 1993. V.61, N.10. P. 4514−4517.
  185. Wakabayashi G., Gelfand J.A., Burke J.F., Thompson R.C., Dinarello C.A. A specific receptor antagonist for interleukin 1 prevents Escherichia coli — induced shock in rabbits //FASEB J. 1991. V.5, N.3. P.338−343.
  186. Storm D.R., Rosenthal К. Polymyxin and related peptides antibiotics // Annu. Rev. Biochem. J. 1977. V.46, N1. P.723−763.
  187. Vaara M., Vaara Т. Polycations as outer membrane disorganizing agents // Antimicrob. Agents Chemother. 1983. V.24, N.2. P. 114−122.
  188. Morrison D.C. and Jacobs D.M. Binding of polymyxin В to the lipid A portion of bacterial lipopolysaccharides // Immunochemistry. 1976. V.13, N 10.1. P.813−818.
  189. Bhor V.M., Thomas C.J., Surolia N., Surolia A. Polymyxin В: An ode to an old antidote for endotoxic shock // Molecular Biosystems. 2005. V.382, N.3. P. 213−222.
  190. Brandenburg K., Arraiza M.D., Lehwark-Ivetot G., Moriyon I., Zahringer U. The interaction of rough and smooth form lipopolysaccharides with polymyxins as studied by titration calorimetry // Therm. Acta. 2002. V.382, N.l. P.53−61.
  191. Moore R.A., Bates N.C., and Hancock R.E. Interaction of polycationic antibiotics with Pseudomonas aeruginosa lipopolysaccharide and lipid A studied by using dansyl-polymyxin // Antimicrob. Agents Chemoter. 1986. V.29, N3. P.496−500.
  192. Kahle C., Koch P.J., Durr W., Kastowsky M., Bradaczek H. Active penetration of charged peptides into monomolecular films of deep rough mutant lipopolysaccharide// Thin Solid Films. 1996. V.284/285, N.4. P.802−804.
  193. Koch P.J., Frank J., Schuler J., Kahle C. and Bradaczek H. Thermodynamics and structural studies of the interaction of polymyxin В with deep rough mutant lipopolysaccharides//J. Colloid. Interface Sci. 1999.V.213, N.3. P.557−564.
  194. Srimal S., Surolia N., Balasubramanian S. And Surolia A. Titration calorimetric studies to elucidate the specificity of the interactions of polymyxin В lipopolysaccharides and lipid A // Biochem. J. 1996. V.315, N2. P.679−686.
  195. Kaca W., Radzitjewska-Lebrech M., Bhal U. Effect of polymyxins on the lipopolysaccharide-defective mutants of Proteus mirabilis И 1990. Microbios. V.61, N.l. P. 23−32.
  196. Pristovsek P., Kidric J. Solution structure of polymyxins В and E effect of binding to lipopolysaccharide: An MMR and molecular modeling study // J. Med. Chem. 1999. V.42, N.22. P.4604−4613.
  197. Yin N., Marshall R.L., Matheson S., and Savage P.B. Synthesis of lipid A derivatives and their interactions with polymyxin В and polymyxin nonapeptide // J. Am. Chem. Soc. 2003. V.125, N.9. P.2426−2435.
  198. Lopes J. and Innis W. Electron microscopy of effect of polymyxin on Escherichia coli lipopolysaccharide // J. Bacterid. 1969. V. l00, N. 2. P. 1128−1130.
  199. Hanasawa K., Tani Т., Kodama M. New approach to endotoxin and septic shock by means of polymyxin В immobilized fiber // Surg. Cynecol Obstet. 1989. V. 168, N.2. P.323−331.
  200. Boons M.A., Verhoeven M.L. Sluyterman L.A. and Buck H.M. Mechanism and improvement of complex formation between LPS and polymyxin В that is immobized in an ion exchanger// Appl. Biochem. J. Biotechnol. 1989. V.2, N.l.1. P. 95−107.
  201. Drabick J.J., Bhattacharjee A.K., Williams W" Siber G. and Cross A.S. Covalent polymyxin S- starch and polymyxin B- immunoglobulin G conjugates as novel antiendotoxin reagents // Clin. Res. 1992. V.40, N.2. P. 289−293.
  202. Bucklin S.E., Lake P., Logdberg L. and Morrison D.C. Therapeutic efficacy of a polymyxin B- dextran 70 conjugate in experimental model- of endotoxemia // Antimicrob. Agents Chemother. 1995. V. 39, N.7. P.1462−1466.
  203. Issekult A.C., Removal of gram-negative endotoxin from solutions by affinity chromatography//J. Immunol. Methods. 1983. V.61, N.3. P. 275−281.
  204. Nakamura Т., Kawagoe Y., Suzuki Т., Shoji H., Ueda Y., Kobayashi N., Koide H. Change in plasma interleukin -18 by direct hemoperfusion with polymyxin B-immobilized fiber in patients with septic shock // Blood purif. 2005. V.23, N.6. P.417−420.
  205. Г. И., Беспалова И. А., Киселева A.K., Веркине JI.M., Дорошенко Е. П., Пятибратов A.M. Влияние модификации липополисахарида чумного микроба на нейтрофилокининдуцирующую активность // Микробиол. журн. 1997. Т.59, № 2. С.61−67.
  206. Andersson М., Giorard R., Cazenave P. Interaction of NK-lysine, a peptide produced by cytolytic lymphocytes, with endotoxin//Infect. Immun. 1999. V.67, N. 1. P. 201−205.
  207. Andra J., Lamata M., de Tejada G.M., Bartels R., Koch M.H., Brandenburg K. Cyclic antimicrobial peptides based on Limulus anti-lipopolysaccharide factor for neutralization of lipopolysaccharide //Biochem. Pharm. 2004. V.68, N.7. P.1297−1307.
  208. Minobe S., Watanabe Т., Sato Т., Tosa T. and Chibata I. Preparation of absorbents for pyrogen adsorption // J. Chromatogr. 1982. V.248, N.3. P.401−408.
  209. Minobe S., Watanable Т., Sato Т., Tosa Т., Characteristics and applications of absorbents for pirogen removal // Biotechnol. Appl. Biochem. J. 1988. V.10, N.l. P.143−149.
  210. Darkow R., Groth Th., Albrecht W., Lutzow K., Paul D. Functionalized nanoparticles for endotoxin binding in aqueous solution // Biomaterials. 1999. V.2, N.14. P. 1277−1283.
  211. Ding J.L. Zhu Yong, Ho Bow. High-performance affinity capture-removal of bacterial pyrogen from solutions // J. Chromatogr. 2001. V.759, N.2. P.237−246.
  212. Zhang J.P. Wang Q., Smith T.R., Hurst W.E. Sulpizio T. Endotoxin removal using a synthetic absorbent of crystalline calcium silicate hydrate // Biotechnolog. Progress. 2005. V.21, N.4. P.1220−1225.
  213. Jacobs E.R. Overview of mediators affecting pulmonary and systemic vascular changes in endotoxemia // In: Handbook of endotoxin. Eds. Hinshaw J.B. Elsevier: Amsterdam-New York-Oxford. 1985. V.2. P. 1−10.
  214. Bone R.C. The pathogenesis of sepsis// Ann. Inter. Med. 1991. V. l 15, N.6. P. 457−469.
  215. B.B., Полякова A.M., Кравченко A.B. Некоторые механизмы возникновения и развития ДВС-синдрома при бактериальных инфекциях // В кн.: Нарушение гемостаза при инфекционных заболеваниях. ДеНова: Москва. 2005. С. 49−61.
  216. Benner R., Van Oudenaren A. Antibody formation in mouse bine marrow. V. The response to the thymus-independent antigen Escherichia coli lipopolysaccharide // Immunology. 1976. V.30, N. 1. P. 49−57.
  217. Rudbuch J.A., Molecular immunogenicity of bacterial lipopolysaccharide antigens: establishing a quantitative system // J. Immunol. 1971. V. l06. N.4. P. 993−998.
  218. Т.Ф., Оводов Ю. С. Биологические свойства эндотоксинов грамотрицательных бактерий // Успехи соврем, биол. Т.90. Вып. 1(4), С.62−79.
  219. Morrison D.C., Kline L.F. Activation of the classical and proper din pathways of complement by bacterial lipopolysaccharides // J. Immunol. 1977. V. l 18, N.2. P. 362−368.
  220. Chen Y.C., Wang S.Y. and King C.C. Bacterial lipopolysaccharide inhibits dengue virus infection of primary human monocytes/macrophages by blockade of virus entry via a CD 14-dependent mechanism//J. Virol. 1993. V.73, N.4. P.2650−2657.
  221. Telepnev М., Golovlev I., Grundstrom T Francisella tularensis inhibits Tolllike receptor-mediated activation of intracellular signaling and secretion of TNF-a and IL-1 from murine macrophages //Cell Microbiol. 2003. V.5, N. 1. P. 41−51.
  222. Loppnow H., Libby P. Adult human vascular endothelial cells express the IL-6 gene differently in response to LPS and IL-1 // Cell Immunol. 1989. V.122. P. 493−503.
  223. Friedman H., Klein Т., Specter S., Newton C. and Nowotny A. Immunoadjuvanticity of endotoxins and nontoxic derivatives for normal and leukemic immunocytes // Adv. Exp. Med. Biol. 1990. V.256, N.3. P.525−535.
  224. Qureshi N., Kutuzova G., Takayama K., Rice P.A., and Golenbock D.T. Structure of lipid A and cell activation//J. Endotoxin Res. 1999. V.5, N.3. P.147−150.
  225. Seydel U., Wiese A., Schramm A.B., Brandenburg K. A biophysical view on the function and activity of endotoxins // In Endotoxin in Health and Disease. Eds. Morrison D., Brade H., Opal S., Vogel S. Marcel Dekker: New York. 1999. P. 195−220.
  226. Seydel U., Oikawa M., Fukase K., Kusumoto S., Brandenburg K. Intrinsic conformation of lipid A is responsible for agonistic and antagonistic activity // Eur. J. Bacterid. 2000 b-. V.267, N.21. P.3032−3039.
  227. Shnyra A., Hultenby K., Lindberg A.A. Role of the physical state of Salmonella lipopolysaccharide in expression of biological and endotoxic properties // Infect. Immun. 1993. V.61, N.12. P.5351−5360.
  228. Mueller M., Scheel O., Lindberg В., Gulsmann Т., Seydel U. The role of membrane-bound LBP, endotoxin aggregates, and the Maxik channel in LPS-induced cell activation // J. Endotoxin Res. 2003. V.9, N.2. P.181−186.
  229. Mueller M., Lindner В., Kusumoto S., Fukases K., Schramm А. В/ Seydel U. Aggregates are the biologically active units of endotoxin // J. Biol. Chem. 2004. V.279, N. 25. P.26 307−26 313.
  230. Toman R., Garidel P., Andra J., Slaba K., Hussein A., Koch M.H., Brandenburg K. Physicochemical characterization of the endotoxins from Coxiella burnetii strain Priscilla in relation to their bioactivities // BMC Biochemistry. 2004. V.5, N.l. P. 1−11.
  231. М.Ю. Системная эндотоксинемия в физиологии и патологии человека // Автореф. дис. д-ра мед. наук. 1993. М.: РАМПО. 58С.
  232. Yakovlev M. Elements of endotoxin theory of human physiology and pathology: systemic endotoxinemia, endotoxin aggression and endotoxinm insufficiency // J. Endotoxin Res. 2000. V.6, N.2. P. 120
  233. Я.Х., Яковлев М. Ю. Эндотоксиновая агрессия в патогенезе левитов неясной этиологии // Успехи соврем, биол. 2004. Т. 124, № 6. С. 581−588.
  234. Н.В., Аниховская И. А., Лиходед В. Г., Салахов И. М., Яковлев М. Ю. Системная эндотоксинемия в патогенезе атеросклероза // Успехи соврем, биол. 2001. Т.121, № 3. С. 266−274.
  235. Wiederman С.J., Kiechl S., Dunzendorfer S., Schratzberger P., Rgger G., Oberhollenzer F., Willeit J. The role of immune activation in endotoxin-induced parthenogenesis //J. Endotoxin Res. 2001. V.7, N.4. P.322−326.
  236. Н.И. Перитональная охрана здоровья детей с конституциональной предрасположенностью к заболеваниям // Автореф. дис. д-ра мед. Наук М.: РАМПО. 2000. 48С.
  237. В.А. Патогенетическое значение эндотоксинемии и изменений активности антиэндотоксиновой защиты при ОРВИ у детей // Автореф. дис. д-ра мед. наук М.: РАМПО. 1994.48С.
  238. Domszy J.G., Roberts G.A. Evaluation of infrared spectroscopic techniques for analyzing chitosan//Makromol. Chem. 1985. V. 186, N. 8. P.1671−1677.
  239. Anthonsen M. W., Varum К. M., and O. Smidsrod. Solution properties of chitosans: conformation and chain stiffness of chitosans with different degrees of N-acetylating // Carbohydr. Polym. 1993. V.22, N.2. P. 193−201.
  240. А.И., Шлимак B.M., Склар A.M., Штыкова Э. В., Павлова С.-С.А., Рогожин С. В. Исследование гидродинамических свойств растворов хитозанов. //Высокомолекул. соед. 1985. Т.36, № 8. Р. 420−424.
  241. А.И., Склар A.M., Павлова С.-С.А., Рогожин С. В. О вязкостных свойствах растворов хитозана// Высокомолекул. соед. А. 1981. Т 23,1. N. 3. Р. 594−597.
  242. Colfen Н., Berth G., Dautzenberg Н. Hydrodynamic studies on chitosans in aqueous solution // Carbohydr. Polym. 2001. V.45, N.4. P.373−383.
  243. Ehrlich H., Krajewska В., Hanke Т., Born R., Heinemann S., Knieb C., Worch H. Chitosan membrane as a template for hydroxyapatite crystal growth in model dual membrane diffusion system // J. Membrane Science. 2006. V. 273, N.l. P.124−128.
  244. Singla A.K., Chawla M. Chitosan: some pharmaceutical and biological aspects an update // J. Pharm. Pharmacol. 2001. V.53, N.8. P. 1047−1067.
  245. Vila A., Sanchez A., Janes K., Behrens I., Kissel T. VilaJato J.L., Alonso M.J. Low molecular weight chitosan nanoparticles as new carriers for nasal vaccine delivery in mice//Eur. J. Pharm. Biopharm. 2004. V.57, N.l. P.123−131.
  246. Thanou M., Florea Bi., Geldof M., Junginger H.E., Borchard G. Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines // Biomaterials. 2002. V.23, N.l. P.153−159.
  247. A.B., Варламов В. П. Полиэлектролитные комплексы на основе хитозана // Прикл. биохим. и микробиол. 2005. Т. 41, № 1. С. 9−16.
  248. В.Н., Нифантьев Н.Э Хитозан вещество XXI. Есть ли у него будущее в России? // Российский хим. жур. 1997. Т. 41. С. 80−85.
  249. Muzzarelli С., Muzzarelli R.A.A. Natural and artificial chitosan-inorganic composites // J. Inorg. Biochem. 2002. V.92, N.l. P. 89- 92.
  250. Anthonsen M. W., Varum К. M., and O. Smidsrod. Solution properties of chitosans: conformation and chain stiffness of chitosans with different degrees of N-acetylating // Carbohydr. Polym. 1993. V. 22, N.3. P.193−201.
  251. Л.А., Тимофеева Г. И., Цюрупа М. П., Даванков В. А. Гидродинамические и конформационные параметры хитозана // Высокомолекул. соед. А. 1980. Т. 22, N8. Р.1834−1841.
  252. Sorlier P., Denuziere A., Viton С., Domard A Relation between the degree of acetylation and the electrostatic properties of chitin and chitosan // Biomacromolecules. 2001. V.2, N.3. P. 765−772.
  253. Chuang W.Y., Young Т.Н., Yao C.H., and Chiu W.Y. Properties of the poly (Vinyl-alcohol)/chitosan blend and its effect on the culture of fibroblast in vitro II Biomaterials. 1999. V.20, N.16. P.1479−1487.
  254. W., Во S., Li S., and Qin W. Determination of the Mark-Houwink equation for chitosans with different degrees of deacetylation // Int. J. Biol. Macromol. 1991. V.13, N. 2. P.281−285.
  255. Philippova O., Volkov C., Sitnikova N., Khokhlov A. Two types of hydrophobic aggregates in aqueous solutions of chitosan and its hydrophobic derivative // Biomacromolecules. 2001. V.2, N.2. P.483−490.
  256. Amiji M.M. Pyrene fluorescence study of chitosan self-association in aqueous-solution // Carbohydr. Polym. 1995. V. 26, N. 3. P.211−213.
  257. JI.A., Петрова B.A., Бочек A.M., Каллистов O.B., Петрова С. Ф., Петропавловский Г. А. Макромолекулярные и надмолекулярные превращения в растворах хитозана и аллилхитозана // Высокомолекул. соед. Б. 1997. Т. 39, № 7.1. С. 1232−1236.
  258. Chapman, V.J. and D.J. Chapman // In: Seaweeds and Their Uses. Eds H. Gooa Chapman and Holl: London. New York. 1980.334P.
  259. Craigie J.S. Cell wall // Biology of the Red Algae- Cambridge: Cambridge University Press, 1990. P. 221−257.
  260. Falshaw R. and R. Furneaux. Carrageenan from the tetrasporic stage of Gigartina decipiens (Gigartinaceae, Rhodophyta) // Carbohydr. Res. 1994. V.252, N. 1. P. 171−182.
  261. Falshaw R., Richard H. Furneaux and David E. Stevenson. Structural analysis of carrageenans from the red alga, Callophyllis hombroniana Mont. KTjtz (Kallymeniaceae, Rhodophyta) // Carbohydr. Research: 2005. V. 340, N.6. P. 1149−1158
  262. Stortz C., Bacon В., Cherniak R., Cerezo A. High field NMR spectroscopy of cystocarpic and tetrasporic carrageenans from Iridaea undolosa II Carbohyd. Res. 1994. V. 261, N.2. P.317−326.
  263. Bulboa C.R., Macchiavello J.E. The effects of light and temperature on different phases of the life cycle in the carrageenan producing alga Chondracanthus chamissoi (Rhodophyta, Gigartinales) // Bot. Marina. 2001. V. 44, N.4. P.371−374.
  264. Bixler, H.J. Recent developments in manufacturing and marketing carrageenan //Hydrobiologia 1996. V.326/327, N.l. P. 35−57.
  265. Ekstrom, L.-G. Molecular weight distribution and the behavior of kappa-carrageenan on hydrolysis//Carbohydr. Res. 1985.V.135, N.2. P.283−289.
  266. Ueda, K. and J. Brady. Molecular dynamics simulations of carrabiose// Biopolymers. 1997. V.41, N2. P. 323−330.
  267. Borgstrom J., L. Piculell, C. Viebke, and Y. Talmon. On the structure of aggregated kappa- carrageenan helices. A study by cryo-TEM, optical rotation and viscometry // Int. J. Biol. Macromolecules .1996. V.18. N1. P. 223−229.
  268. Borgstrom, J., P., Quist, and L. Piculell. A novel chiral nematic phase in aqueous к-Carrageenan//Macromolecules 1996a V.29, N. 10. P.5926−5933.
  269. Piculell, L. Gelling carrageenans // In: Food Polysaccharides and Their Applications. Ed A.M. Stephen. Marcel Dekker: New York. 1995. P. 205−244.
  270. Hosseinzadeh H., Pourjavavdi A-. Zohuriaan-Mehr M.J. Modified carrageenan. 2. Hydrolyzed crosslinked JC-carrageenan-g-PAAm as a novel smart superabsorbent hydrogel with low salt sensitivity // J. Biomater. Sci. 2004. V.15, N. l2. P. 1499−1511.
  271. National Research Council. Food Chemical Codex. 4th ed. Washington, DC: National Academy of Science. 1996
  272. Nacife V.P., Soeiro M.N., Araujo-Jorde T.C., Neto H.C., Meirelles M.N. Ultrastructural, immunocytochemical and flow cytometry study of mouse peritoneal cells stimulated with carrageenan // Cell Struct. Funct 2000. V.24, N.2. P.337−350.
  273. Nacife V.P., Soeiro M.N., Gomes R.N., Avilla H.D., Neto H.C., Meirelles M.N. Morphological and biochemical characterization of macrophage activated by carrageenan and lipopolysaccharide in vivo II Cell Struct. Funct .2004. V.29, N.l. P.27−34.
  274. Food and Drugs: 21 C.F.R. 133.178, 133.179, 136.110, 139.121, 139.122, 150.141, 150.161, 176.170 (2000b)
  275. Food and Drugs: Substances Generally Regarded as Safe. 21 C.F.R. 182.7255 (1999b).
  276. Tobacman, J.K., R.B. Wallace, and M.B. Zimmerman. Consumption of carrageenan and other water-soluble Polym. J. s used as food additives and incidence of mammary carcinoma//Med. Hypothesis. 2001 V.56, N.3. P.589−598.
  277. Tache, S., G. Peiffer, A.-S. Millet, and D.E. Corpet. Carrageenan gel and aberrant cryptofoci in the colon of conventional and human flora-associated rats // Nutr. Cancer 2000. V.37, N.l. P.75−80.
  278. Tateda, К., K. Irifune, K. Tomono, Y. Hirakata, T. Matsumoto, M. Kaku, and Yamaguchi. Potential activity of carrageenen to enhance antibacterial host-defense system in mice // J. Infect. Chemother. 1995. V. l, N 1. P. 59−63.
  279. Sugita-Konishi Y., Yamashita S., Amano F., Shimisu M. Effect of carrageenans on the binding, phagocytotic and killing abilities of macrophages to Salmonella // Biosci. Biotechnol. Biochem. 2003. V.67, N.6. P.1425−1428
  280. Abe Т., Kawamura H., Kawabe S. Watanable H., Gejyo F., Abo T. Liver injury due to sequential activation of natural killer cells and natural killer T cells by carrageenan // J. Hepatol. 2002. V.36, N. 5. P. 614 623.
  281. Carlucci M. J., Ciancia M., Matulewicz M. C., Cerezo A. S., Damonte E. B. Antherpetic activity and mode of action of natural carrageenans of diverse structural types //Antiviral. Res. 1999a. V. 43, N.l. P. 93 102.
  282. Carlucci M. J., Scolaro L. A., Damonte E. B. Inhibitory action of natural carrageenans on Herpes simplex virus infection of mouse astrocytes // Chemotherapy. 1999b. V. 45, N.6. P. 429−436.
  283. Carlucci M. J., Scolaro L. A., Damonte E. B. Herpes simplex virus type 1 variants arising after selection with an antiviral carrageenan: Lack of correlation between drug susceptibility and syn phenotype // J. Med. Virol. 2002. V.68, N.l. P.92 98.
  284. Kolender, A.A., M.C. Matulevicz, and A.S. Cerezo. Structural analysis of antiviral sulfated alpha-D-(1−3)-linked mannans // Carbohydr. Res. 1995. V.273, N.2. P.179−185.
  285. Pratt-Pearce, R. and D. Phillips. Sulfated polysaccharides inhibit lymphocyte to epithelial transmission of HIV // Biol. Reprod. 1996. V.54, N.l. P. 173−182
  286. Shimotoyodome, A., S. Meguro, T. Hase, I. Tokimitsu, and T. Sakata. Sulfated polysaccharides, but not cellulose, increase colonic mucus in rats with loperamide-induced constipation//Dig. Dis. Sci. 2001. V.46, N.7. P.1482−1489.
  287. Irifune, K. Alveolar destruction in experimental Klebsiella pneumonia II Acta Pathol. Jpn. 1987. V.37, N.2. P. 475−486.
  288. Fujiki K., Shin Dong-Ho, Nakao M., Yano T. Protective effect of к-carrageenan against bacterial infections in carp Cyprinus carpio II J.Fac.Agr. Kyushu Univ. 1997. V. 42, N. l/2. P. I 13−119.
  289. Tsubakura M., Itagaki K., Kamawura K., Sasaki Т., Magai T. Studies on Yersinia (Pasteurella) pseudotuberculosis. 11. A new type of Y. pseudotuberculosis, type 11, and subdivision of type Y. strains//Jap. J. Vet. Sci. 1971. V.33, N3. P. 137−144.
  290. Leive L., Shovlin U.K. Physical, chemical and immunological property of lipopolysaccharide released from Escherichia coli by EDTA acid //J. Biol.Chem., 1968. V.2, N.23. P.6384- 6391.
  291. Marvin H.J.P. Ter Beest M.B.A. Witholt B. Release of outer membrane fragments from wild-type Escherichia coli and from several E. coli lipopolysaccharide mutants by EDTA and heat shock treatments // J.Bacteriol.1989. V. l71, N.10.1. P. 5262−5267.
  292. Brown M.R.W., Williams P. The influence of environmental on envelope properties affecting survival of bacteria in infections // Ann. Rev. Microbiol. 1985. V. 39, N.2. P.527−556.
  293. Н.Ф., Сомов Г. П. Патогенетическое значение психрофильности Yersiniapseudituberculosis Н Журн.микробиол. 1986. № 3. С. 3438.
  294. Galanos С., Luderitz О., and Westphal О. A new method for the extraction of R-lipopolysaccharides // Eur. J. Biochem. J. 1969. V.9, N.l. P. 245−249.
  295. Kawaoka Y. Otsuki K., Tsubokura M. Growth temperature- dependent variation in the bacteriophage -inactivating capacity and antigenicity of Yersinia enterocolitica lipopolysaccharide // J. Gen Microbiol. 1983. V.129, N.12. P.2739−2747.
  296. McConnel M., Wright AJ Variation in the structure and bacteriophage-inactivating capacity of salmonella anatum lipopolysaccharide as a function of growth temperature //J. Bacterid. 1979. V. l 37, N.2. P. 746−751.
  297. Burclay A.B., Eason R. A quantitative study of binding of glycine-arginine rich histone to DNA // Biochim. Biophys. Acta. 1972. V.269, N.l. P. 37−46.
  298. Coughlin R.T., Tonsager S., McGroarty E.J. Quantitation of metal cations bound to membranes and extracted lipopolysaccharide of Escherichia coli II Biochemistry. 1983. V.22, N.8. P.2002−2007.
  299. Raetz C.R.H. and Whitfield C. Lipopolysaccharide endotoxins // Annu. Rev. Biochem. 2002. V. 71, N. 3. P. 635−700.
  300. Jackson J.J., Kropp H. Differences in mode of action of p-lactam antibiotics influence morphology, LPS release and in vivo antibiotic efficacy // J. Endotox. Res. 1999. V.3, N. 3. P.201 -218.
  301. Ч., Шиммел П. Биофизическая химия //. М.: Мир. 1984. Т.2. С. 222−308.
  302. Maghami G.G., and Roberts G. A. F. // Evaluation of the viscometric constants for chitosan//Makromol.Chem. 1988. V. l89, N. L P. 195−200.
  303. В.П., Горбач В. И. Спектрофотометрическое определение содержания аминогрупп в хитозане // Биоорган, химия 1999. Т. 25. N 3. С. 216−219.
  304. Э. Биофизическая химия // М.: Мир 1981.Т.1. С. 80−96
  305. Stincon R.A. Holbrook J.J. Equilibrium binding of nicotinamide nucleotides to lactate dehydrogenases//Biochem. J. 1973. V. l31, N.l. P.80−89.
  306. Craigie J.S. Cell wall // In: Biology of the Red Algae. Eds.: K.M. Cole and R.V. Sheath. Cambridge University Press: Cambridge. 1990. P. 221−257.
  307. Falshaw, R. and R. Furneaux. Carrageenans from the tetrasporic stages of Gigartina clavifera and Gigartina alveate (Gigartinaceae, Rhodophyia) // Carbohydr. Res. 1995. V276, N.l. P.155−165.
  308. Takano R., Nose Y., Hayashi К., Hara S., Hirase S. Agarose-carrageenan hybrid polysaccharide from Lomentaria catenata //Vhytochemistry. 1994. V.37, N.9.1. P. 1615−1619.
  309. Miller I.J. The chemotaxonomic significance of the water-soluble red algal polysaccharides // Recent Research Developments in Phytochemistry. 1997. V. 1. P. 531 565.
  310. Khavryutchenko V.D.,. Khavryutchenko A. V. DYQUAMOD: Dynamic quantum modeling software for personal computers // Joint Inst. Nucl. Researches., Dubna and Inst. Surf. Chemistry, Nat. Acad. Sci. Ukraine: Kiev, 1993. P. 13
  311. Augusto, L.A., Li, J., Synguelakis, M., Johansson, J., and Chaby, R. Structural basis for interactions between lung surfactant protein С and bacterial lipopolysaccharide // J. Biol. Chem. 2002. V. 277, N.26. P. 23 484−23 492.
  312. С.Д., Гуревич К. Г. // Биокинетика. Фаир-пресс: Москва. 1999. 395С.
  313. Novotny, A. Determination of toxicity // In: Basic Exercises in Immunochemistry. Springer-Verlag: Berlin-Heidelberg. N.York. 1979. P.303−304.
  314. Otterlei M., Varum K.M., Ryan L., Espevik T. Characterization of binding and TNF-a-inducing ability of chitosans on monocytes: the involvement of CD 14 //Vaccine. 1994. V.12, N. 9. P. 825−832.
  315. Chou T.-C., Fu E., Shen E.-C. Chitozan inhibits prostaglandin E2 formation and cyclooxygenase-2 induction in lipopolysaccharide-treated RAW 264.7 macrophages. //Biochem. Biophys. Res. Com. 2003. V. 308, N.l. P. 403−407.
  316. Кузнецова T. A Иммуногенные и иммуномодулирующие свойства липополисахарида псевдотуберкулезного микроба // Автореф. дис. к -та мед.наук. -Владивосток, 1987. 39С.
  317. Steidler L. Microbiological and immunological strategies for treatment of inflammatory bowel disease// Microb. Infection. 2001. V.3, N.13. P. 1157−1166.
  318. Э.Г. О возможных механизмах антимикробного действия пектина при острых инфекционных диареях // Антибиотики и химиотерапия. 1996. Т.41, № 7/8. С. 40−42.
  319. Tateda К. Matsumoto Т., Yamaguchi К. Acute induction of interleukin-6 and biphasic changes of serum complement C3 by carrageenan in mice // Mediators Inflamm. 1998. V.7. P. 221−223.
  320. Wahl A.F., Wallace P.M. Oncostatin M in the anti-inflammatory response // Ann. Rheum. Dis. 2001. V.60, N.3. P. 75−80
  321. А.с. Толл-белки: специфические рецепторы неспецифического иммунитета// Иммунология 2005. №.6. С.368−377.
  322. Risco С., Dominguez J.E., Bosch М.А., Carrascosa J.L. Biochemical and electron microscopy analysis of the endotoxin binding to microtubules in vitro И Mol. Cellular Biochem. 1993. V. 121, N.l. P. 67−74.
  323. Vanneste K. et al Light scattering studies of the dilute solution behavior of kappa, iota and lambda carrageenan // Food Hydrocolloids. 1996. V. l0, N.l. P. 151 -159.
  324. Girod S., Cara L., Maillols H., Salles J.P., Devoisselle J.M. Relationship between conformation of polysaccharides in the dilute reqime and their interaction with a phospholipids bilayer // Luminescence. 2001. V. 6. N.l. P. 109−116.
  325. Porcar I., Garcia R, Gomez C, Campos A, Abad C. Macromolecules in ordered media: 7. Influence of ionic strength and bilayer composition on the association ofpolyelectrolytes to mixed liposomes//Polymer J. 1997. V.38, N.20. P.5107−5113.
  326. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F Colororimetric method for determination of sugar and related substances.// Anal. Chem. 1956. V.28. P. 350−356.
  327. Elson L.A., Morgan W.T. Colorimetric method for determination of hexosamine //Biochem. J. 1933. V.27, N.ll.P. 1824−1826.
  328. Burtseva T.I., Glebco L.I., and Ovodov Yu.S. A method for separative quantative determination of 2-keto-3-deoxyoktolonate and 3,6-dideoxyhexose in mixture //Anal. Biochem. J. 1975. V. 65, N. 1. P. 1−4 .
  329. Lowry O.H., Rosebrough N/I. Farr A.L. Randall R.I. I. Protein measurement with Folin phenol reagent //J. Biol. Chem. 1951. V.193, N.l. P.265−275.
  330. Sawardeker J.S. Sloneker J.H., Jlanes A. Quantitative determination of monosaccharides as their alditol acetates by gas liquid chromotograhhy // Anal.Chem.1965. V.37, N.12. P. 602−1604.
  331. Englyst, H.N., Cumming, J.H. Simplified Method for the Measurement of Total Non-Starch Polysaccharides by Gas Liquid-Chromatography of Constituent Sugars As Alditol Acetates//Analyst. 1984. V.109, N.7. P.937−942.
  332. , А.И., Элашвили, М.Я. Количественное определение производных 3,6-ангидрогалактозы и специфическое расщепление галактанов красныхводорослей в условиях восстановительного гидролиза // Биоорган. Химия. 1991. Т. 17, № 6. Р. 839−848.
  333. Dodgson, K.S., Price, R.G. A note on the determination of the ester sulphate content ofsulphated polysaccharides//Biochem. J. 1962. V.84, N.l. P.106−110.
  334. Laemli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4// Nature. 1970. V.227, N.5259. P.680−685.
  335. Wolfrom M., L. and Shen Han T. M The sulfonation of chitosan / J.Am. Chem. Soc. 1959. V.8. P.1764−1677.
  336. Inman J. and Dintzis H. Analitical determination of NH2- groups // Biochem. J. 1969. V.8, N.10. P.4074−4082.
  337. H. Статистические методы в биологии // М.: Мир. 1963. 224С.
  338. Elias Y.D. Ultrazentrifugen methoden // Beckman Instruments-Munchen.1961.573P.
  339. B.M. Методы определения средних молекулярных масс из данных седиментационного равновесия в ультрацентрифуге // В кн.: Аналитическое ультрацентрифугирование в химии и биохимии. Душанбе: Дониш. 1987. С.26−378.
  340. Т. Введение в ультрацентрифугирование // М.:Мир. 1973 356С.
  341. Ч., Шиммел П. Биофизическая химия // М.: Мир.1984. Т.З. 458С.
  342. De Haas C.J.C., van Leeuwen H.J., Verhoef J., van Kessel K., van Strijp J. Analysis of lipopolysaccharide (LPS) — binding characteristics of serum components using gel filtration of FITC-labeled LPS // J. Immunol. Methods. 2000. V.242, N. L P. 79−89.
  343. Galanos C., Freudenberg M.A., Reutter W. Galactosamine-induced sensitization to the lethal effects of endotoxin // Proc. Natl. Acad. Sci. USA. 1979. V.76. P. 5939−5943.
  344. Novotny, A. Determination of toxicity // In: Basic Exercises in Immunochemistry. Springer-Verlag. Berlin-Heidelberg. N. York 1979. P. 303−304.
  345. Wu. W. Home F., Williams C. Immune paralysis induced by pneumococcal polysaccharide. 1. peritoneal cell phagocytic activity and interaction with spleen cells // J. Immunol. 1971.V.107, N.12. P. 1545−162.
  346. Borsas Т., Dunkel V.C. Langone J.J. Immunoassay of antigens and haptens by inhibition of passive immune hemolysis // J. Immunol. Meth. 1980. V.32, N.2. P. 105−114.
  347. Engvall E. Enzyme immunoassay ELISA and EMIT // Methods in Ensymol. Eds. H. Van Vinakis, J.J.Langone New York: Academic Press. 1980. V.70, P.419−438.
  348. Lagrange P.H., Maskaness G.B., Miller T.E. Effects of bacterial lipopolysaccharide on the induction and expression of cell-mediated immunity // J. Immunol. 1975. V. 114, N. l/2. P.442−446.
  349. М.Д. Фармакологическое и токсическое изучение химиотерапевтических препаратов // В кн.: Методы экспериментальной химиотерапии. М.: Медицина. 1971. С. 524−537.
  350. Jerne N. and Nordin. Plague formation in agar by single antibody production cell//J, Immunol. 1975. V. 139.N.3.P. 223−240.
  351. Lasfargues A., and Chaby R. Endotoxin-induced tumour necrosis factor (TNF): selective triggering of TNF and interleukin-1 production by distinct glucosamine-derived lipids// Cell. Immun. 1988. V. l 15, N. L P. 65−178.
  352. Manna S.K., Aggarwal B.B. Lipopolysaccharide inhibits TNF-induced apoptosis: Role of nuclear factor-kappa В activation and reactive oxygen intermediates // J. Immunol. 1999. V. l62, N.3. P.1510−1518.
  353. Bienvenu J., Doche Ch., Gutowski M., Lenoble M., Pedrix J. Production of proinflammatory cytokines and cytokines involved in the TH1/TH2 balance is modulated by pentoxifylline //J. Cardiovasc. Pharmacol. 1995. V.25, N2. P.80−84.
  354. Born J. Aggregation of blood platelets by adenosine diphoshate and its reversal // Nature. 1962. V. 194, N. 2. P.504−511.
  355. Gardenfors A., Nilsson F., Skagerberg G. et al. Cerebral physiological and biochemical changes during vasogenic brain oedema induced by intrathecal injection of bacterial lipopolysaccharides in piglets.// Acta Neurochir 2002. V.144, N.6. P. 601 -609.
  356. De Moore P., Stoeno O., Raskin M., Hehorix A. Fluorimetric determination of the plasma 11-hydroxysteroids in man // Acta Endocrino. l 1960.V. 33, N.2 P. 297−307.
  357. Ф.И. Физиологические механизмы стресса и адаптации при остром действии стресс-факторов. Кишинев: Штиинца. 1986.240С.
  358. Seifter S., Dayton S., Novic В., Muntwyler E. The estimation of glycogen with the antrone reagent // Arch. Biochem. 1950. V.25, N1. P.828−835.
  359. Hohorst H.J. L-Lactat. Bestimmung mit Lactate-Dehydrogenase und NAD // In: Methoden der enzymatischen Analyse. Ed. Bergmeyer H.U. Berlin: Akademie-Verlag, 1970. B.2. P.1425- 1429.
  360. Hunter F.E., Gebecki J.M., Hoffsten P.E., Swelling and lysis of rat liver mitochondria induced by ferrous ions // J. Biol. Chem. 1963. V.238, N.3. P. 828−835.
  361. Carlberg Y., Mannerwik B. Purification and characterization of the flavoenzyme glutathione reductase from rat liver//J. Biol. Chem. 1975. V.250, N.14.1. P. 5475 -5480.
  362. Bonn R.C. Gram-negative sepsis: a dilemma of modem medicine // Clin. Microbiol. Rev. 1993. V.6, N. l P.57−68.
  363. Bik W., Wolinska-Witort E., Chmielowska M et al. Vasoactive intestinal peptide can modulate immune and endocrine responses during lipopolysaccharide-induced acute inflammation //Neuroimmunomodulation. 2004. V. l 1, N.l. P.358 364.
  364. М.И., Полякова A.M., Венгеров Ю. Я. Особенности тромбогеморрагического синдрома у больных острыми клиническими инфекциями //Клин. мед. 1988. Т.6/7,№ 2. С. 117−121.
  365. В.И., Гордиенко С. П., Литвинов В. И. Иммунология инфекционного процесса.// Руководство для врачей. 1994. М.- Медицина. 307С.
  366. Couland J.M., Labrousse J., Salmona J.P. Plasma fibronection concentration in critically ill patient // Ric. Clin. Lab. 1982. V. l2, N1. P. 113−130.
Заполнить форму текущей работой