Помощь в написании студенческих работ
Антистрессовый сервис

Экспериментальное обоснование применения дермального эквивалента в лечении ран

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Для широкого внедрения биотехнологических методов восстановления кожного покрова в клиническую практику требуется использование новых методик мониторинга раневого процесса при различных воздействиях на рану (Jones JE, Nelson ЕА., 2000). Основным лабораторным методом, предлагаемым для мониторинга состояния раны, является морфологический' (мазки-отпечатки и т. п.) (Кузин М.И., Костюченок Б. М., под… Читать ещё >

Экспериментальное обоснование применения дермального эквивалента в лечении ран (реферат, курсовая, диплом, контрольная)

Содержание

  • Список используемых в тексте сокращений
  • ГЛАВА 1. ОБЗОР, ЛИТЕРАТУРЫ
    • 1. 1. Патогенез раневого процесса
    • 1. 2. Клеточные механизмы в процессе существования трофических язв
    • 1. 3. Подходы к использованию ММП-2 и ММП-9 для мониторинга раневого процесса
    • 1. 4. Использование тканевых и клеточных технологий в лечении ран
    • 1. 5. Моделирование ран у крыс
    • 1. 6. Биологические свойства белков целомической жидкости регенерирующей морской звезды asterias rubens
  • ГЛАВА 2. МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ
    • 2. 1. Экспериментальный материал
    • 2. 2. Методики использованные для изучения первой фазы раневого процесса
      • 2. 2. 1. Моделирование раны с имплантацией ПХВ-камеры
      • 2. 2. 2. Получение белковых фракций целомической жидкости регенирирующей морской звезды
      • 2. 2. 3. Оценки протеолитической активности раневого отделяемого
      • 2. 2. 4. Морфологические исследования
    • 2. 3. Методики, использованные для изучения раневого процесса на модели неэпителизируемой раны
      • 2. 3. 1. Моделирование неэпителизируемой раны
      • 2. 3. 2. Трансплантация РКЛ на модель неэпителизируемой раны
      • 2. 3. 3. Трансплантация дермального эквивалента на модель неэпителизируемой раны
      • 2. 3. 4. Перевязки животных с моделированной неэпителизируемой раной, сбор раневого отделяемого и выведение их из опыта
      • 2. 3. 5. Морфологические исследования
    • 2. 4. Моделирование раны для изучения краевой эпителизации
    • 2. 5. Получение дермального эквивалента
    • 2. 6. Статистическая обработка данных
  • ГЛАВА 3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ
    • 3. 1. Результаты изучения раневого процесса на модели раны с имплантацей полихлорвиниловой камеры
      • 3. 1. 1. Результаты описательной микроскопии тканей моделированной раны с имплантацией ПХВ-камеры
      • 3. 1. 2. Результаты количественного анализа морфологического строения тканей раны
      • 3. 1. 3. Результаты изучения активности ММП раневого отделяемого
      • 3. 1. 4. Результаты корреляционного анализа активности ММП и количественных морфологических тканей раны с имплантацией ПХВ-камеры
    • 3. 2. Обсуждение результатов изучения раневого процесса на модели раны с имплантацией ПХВ-камеры
      • 3. 2. 1. Обсуждение результатов моделирования раны с имплантацией ПХВ-камеры
      • 3. 2. 2. Обсуждение результатов изучения влияния биологически активных веществ (белков целомической жидкости регенерирующей морской звезды) на раневой процесс
      • 3. 2. 3. Обсуждение результатов сопоставления активности ММП-2 и ММП-9 и гистологического строения раны в первую фазу раневого процесса
    • 3. 3. Результаты изучения раневого процесса на модели неэпителизируемой раны при пересадке расщепленного аутокожного лоскута и дермального эквивалента
      • 3. 3. 1. Результаты морфологического изучения
      • 3. 3. 2. Результаты изучения активности ММП раневого отделяемого в контрольной группе
      • 3. 3. 3. Результаты изучения влияния пересадки РКЛ на активность ММП раневого отделяемого в опытных группах
      • 3. 3. 4. Результаты изучения влияния пересадки ДЭ на активность ММП раневого отделяемого в опытных группах
    • 3. 4. Обсуждение результатов, полученных на модели неэпителизируемой раны
      • 3. 4. 1. Обсуждение результатов моделирования неэпителизируемой раны
      • 3. 4. 2. Обсуждение результатов сочетанной пересадки РКЛ и дермального эквивалента на неэпителизируемую рану и их сопоставления с активностью ММП-2 и ММП-9 раневого отделяемого
    • 3. 5. Результаты изучения влияния пересадки дермального эквивалента на модели ран с краевой эпителизацией
      • 3. 5. 1. Результаты морфологического изучения
      • 3. 5. 2. Результаты изучения активности ММП на модели раны с краевой эпителизацией
    • 3. 6. Обсуждение результатов полученных на моделировани раны для изучения краевой эпителизации
      • 3. 6. 1. Обсуждение результатов моделирования раны для изучения краевой эпителизации
      • 3. 6. 2. Обсуждение результатов пересадки дермального эквивалента на модели раны с краевой эпителизацией

АКТУАЛЬНОСТЬ ПРОБЛЕМЫ.

До настоящего времени проблема лечения длительно незаживающих ран полностью не решена (Васютков В. Я., Проценко Н. В. 1993; Расулов М. Ф., и др., 2003; Шумаков В. И. и др., 2002; Schultz G.S., et al., 2004;). Одним из перспективных подходов к улучшению результатов лечения длительно незаживающих ран является использование биотехнологических методов восстановления кожного покрова (Sabolinski ML, et al., 1996; FalangaV, Sabolinski M., 1 1999; Muhart M, et al., 1999; Шумаков В. И. и др., 2002; Расулов М. Ф., и др., 2003; Mirastschijski U. et al., 2004; Marston W.A. et al., 2005), в частности трансплантация дермального эквивалента (ДЭ). Дермальный эквивалент представляет собой культуру взрослых дермальных аллогенных фибробластов, заключенных в гель из коллагена I типа животного происхождения, по своей структуре моделирующий дерму.

Несмотря на значительное число работ, посвященных изучению биотехнологических методов-лечения ран, нами не найдено исследований, посвященных сочетанию клеточной и тканевой трансплантации и пересадки расщепленного кожного лоскута (PKЛ).

Для широкого внедрения биотехнологических методов восстановления кожного покрова в клиническую практику требуется использование новых методик мониторинга раневого процесса при различных воздействиях на рану (Jones JE, Nelson ЕА., 2000). Основным лабораторным методом, предлагаемым для мониторинга состояния раны, является морфологический' (мазки-отпечатки и т. п.) (Кузин М.И., Костюченок Б. М., под ред., 1990), в то время как использование заместительной клеточной терапии требует более подробного изучения взаимоотношений клеточных элементов и внеклеточного матрикса на уровне тканевых ферментов и сигнальных молекул. Одним из новых методов мониторинга течения раневого процесса может быть оценка динамики активности матриксных металлопротеиназ.

ММП) — ферментов, ответственных за ремоделирование внеклеточного матрикса, в течение раневого процесса (Wysocki А.В., et al., 1993; Bullen E.C., et al., 1995; Tarlton J.F., et al., 1997; Wysocki A.B., et al., 1999; Agren M.S., 1999; Marastschijski U., et al., 2002; Воронкина И. В., 2003).

В изученной нами отечественной и зарубежной литературе не найдено работ, посвященных применению оценки протеолитической активности раневого отделяемого для прогнозирования результатов лечения длительно незаживающих ран.

ЦЕЛЬ И ЗАДАЧИ ИССЛЕДОВАНИЯ

.

Целью настоящего исследования является оптимизация лечения ран с использованием новых биотехнологических методов — трансплантации дермального эквивалента в сочетании с расщепленным кожным лоскутом.

Для достижения цели поставлены следующие задачи:

1) Изучить результаты трансплантации дермального эквивалента и его сочетания с расщепленным кожным лоскутом на моделях длительно незаживающих ран.

2) Сопоставить активности матриксных металлопротеиназ (ММП) и данные морфологического анализа состояния раны на моделях длительно незаживающих ран, в том числе после пересадки дермального эквивалента и расщепленного кожного лоскута.

3) Сопоставить активности ММП и данные морфологического анализа состояния раны в I фазу раневого процесса в норме и при воздействии биологически активных веществ.

НАУЧНАЯ НОВИЗНА.

1) Выработаны подходы к оптимизации сроков трансплантации дермального эквивалента в эксперименте.

2) Впервые использована оценка активности ММП для мониторинга и прогнозирования течения раневого процесса, в том числе при трансплантации дермального эквивалента и расщепленного кожного лоскута.

3) Разработаны модели ран у крыс, позволяющие изучать динамику протеолитической активности раневого отделяемого параллельно с гистологической оценкой тканей раны.

4) Впервые изучено влияние белковых фракций целомической жидкости регенерирующей морской звезды на течение раневого процесса в первые трое суток у млекопитающих in vivo.

ОСНОВНЫЕ ПОЛОЖЕНИЯ, ВЫНОСИМЫЕ НА ЗАЩИТУ.

1) Трансплантация дермального эквивалента сокращает срок заживления ран в эксперименте.

2) Трансплантация дермального эквивалента после пересадки расщепленного кожного лоскута улучшает результаты последней.

3) Активность ММП-2 и ММП-9 раневого отделяемого является прогностическим показателем при пересадке дермального эквивалента и расщепленного кожного лоскута.

4) Активность ММП-2 и ММП-9 взаимосвязана с морфологическим строением тканей раны на протяжении I фазы раневого процесса, как в норме, так и при воздействии на рану биологически активных веществ (белковых фракций целомической жидкости регенерирующей морской звезды).

5) Активность ММП-2 и ММП-9 позволяет судить о процессах в длительно незаживающих ранах в эксперименте.

ПРАКТИЧЕСКАЯ ЦЕННОСТЬ РАБОТЫ.

Результаты, представленные в данной экспериментальной работе, имеют значимую1 практическую ценность для дальнейшей разработки клинических подходов к оптимизации лечения ран с использованием биотехнологических методов. На основании положений, изложенных в данной работе, могут быть разработаны клинические рекомендации по сочетанной трансплантации дермального эквивалента и расщепленного кожного лоскута, клинико-лабораторные методы (оценка активности ММП-2 и ММП-9) мониторинга и прогнозирования лечения ран в первую и вторую фазы раневого процесса.

РЕАЛИЗАЦИЯ РЕЗУЛЬТАТОВ РАБОТЫ.

Полученные результаты внедрены в учебный процесс кафедры общей хирургии СПбГМУ им. акад. И. П. Павловав научно-методические разработки отделов экспериментальной медицины и патоморфологии научно-исследовательского центра СПбГМУ им. акад. И. П. Павлова № гос. регистрации темы 01.200.212 876.

АПРОБАЦИЯ РАБОТЫ.

Материалы и основные положения диссертации изложены на: III Международной научно-практической конференции молодых учёных и студентов «Санкт-Петербургский научный форум — 2003" — Седьмой Всероссийской медико-биологической конференции молодых исследователей «Человек и его здоровье» (Санкт-Петербург, 18 апреля, 2004) — на Международном симпозиуме «Стволовые клетки, регенерация, клеточная терапия» (Санкт-Петербург, 25 — 27 октября 2004) — на IX Российском национальном конгрессе «Человек и здоровье» (Санкт-Петербург, 22 — 26 ноября, 2004) — на VI научно-практической конференции с международным участием «Санкт-Петербургские научные чтения» (Санкт-Петербург, 1—3 декабря 2004) — на XII Российском национальном конгрессе «Человек и лекарство» (Москва, 18 — 22 апреля 2005) — на Международном молодежном медицинском конгрессе «Санкт-Петербургские научные чтения» (Санкт-Петербург, 7−9 декабря 2005) — на международной конференции «Актуальные проблемы термической травмы» (Санкт-Петербург, 20 — 22 июня 2006) — на 16-й ежегодной конференции «Innovation in tissue repair: from the lab to the patient» (Италия, Пиза, 13 — 16 сентября 2006) — на Всероссийском симпозиуме «Биология клетки в культуре» (Санкт-Петербург, 17−19 октября 2006).

ВЫВОДЫ.

1. В эксперименте трансплантация дермального эквивалента ускоряет заживление раны посредством краевой эпителизации.

2. Трансплантация дермального эквивалента после пересадки расщепленного кожного лоскута улучшает результаты последней в эксперименте.

3. Активность ММП-2 и ММП-9 раневого отделяемого значимо коррелирует с данными морфологического анализа тканей раны в I фазу раневого процесса и позволяет оценить процессы, происходящие в ране при воздействии на нее биологически активных веществ в эксперименте.

4. Активность ММП-2 и ММП-9 раневого отделяемого позволяет оценивать процессы, протекающие во II фазу раневого процесса на экспериментальных моделях длительно не заживающих ран и является прогностическим критерием эффективности трансплантации дермального эквивалента и расщепленного кожного лоскута в эксперименте.

ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ.

1. Полученные данные позволяют рекомендовать использование дермального эквивалента для клинических испытаний и внедрения в клиническую практику.

2. Оценка активности ММП-2 и ММП-9 может быть рекомендована как метод лабораторного мониторинга течения раневого процесса в эксперименте и при дальнейшей разработке внедрена в клиническую практику.

Показать весь текст

Список литературы

  1. В. Я., Проценко Н. В. Трофические язвы стопы и голени. М.: Медицина, 1993. 159 с.
  2. И.В. Модуляция функциональной активности клеток и белков внеклеточного матрикса в процессе регенерации тканей под действием матриксных металлопротеиназ. Автореф. дис. .канд. биол. наук. СПб, 2003.
  3. И.В., Кокорин К. В., Чуликов О. В., Парамонов Б. А., Блинова М. И., Пинаев Г. П. Матриксные металлопротеиназы ММП-2 и ММП-9 раневых и ожоговых экссудатов и их действие на белки внеклеточного матрикса // Цитология. 2003. Т. 45, № 1. С. 43−50.
  4. И.В., Сакута Г. А., Шарлаимова H.A., Блинова М. И., Пинаев Г. П. Факторы целомической жидкости морской звезды Asterias rubens и их биологическая активность // Цитология 2000. Т.43, № 4. С. 330−331.
  5. И.В., Харисов A.M., Блинова М. И., Потокин- И.Л, Парамонов Б. А., Пинаев Г. П. Модель «воздушного пузыря» у мышей и изучение протеолитической активности раневого экссудата // Цитология: 2002. Т. 44. С.270−276.
  6. О.В., Воронкина И. В., Прокопчук С. Н., Протасов М. В., Соловьева М. А., Пинаев Г. П. Комплексная оценка течения раневого процесса на модели глубокой раны у крыс с имплантацией полихлорвиниловой камеры. // Цитология. 2004. Т.46, № 12. С/1073−1079.
  7. .К. Анатомия животных. М.: «Сельхозгиз», 1937. 352 с.
  8. С. С. Огнестрельная рана. Л.: 1956. 331 с.
  9. Ю.В. Влияние элементов внеклеточного матрикса функциональную активность эпидермальных кератиноцитов в культуре и при заживлении кожных ран. Автореф. дис. .канд. биол. наук. СПб, 1996. С. 26.
  10. М. И., Костюченок Б. М. Принципы активного хирургического лечения гнойных ран // Всесоюзная конференция по ранам и раневой инфекции. 1-я. Тезисы. М.:1977. С. 96 98.
  11. М.И., Костюченок Б. М., под ред. Раны и раневая инфекция: Руководство для врачей. М.: Медицина, 1990. 591 с.
  12. В.В., Шехтер А. Б. Соединительная ткань (функциональная морфология и общая патология). М.: Медицина, 1981, 312 с.
  13. В. И., Григорян А. В., Гостищев В. К. Гнойная рана. М.: Медицина, 1975. 311с.
  14. С.А. и др. Руководство по экспериментальной хирургии. М.: Медицина, 1989. 272 с.19- Шаповалов С. Г., Современные раневые покрытия в комбустиологии//"ФАРМиндекс-Практик". 2005. выпуск 8. С. 38−46.
  15. Agren M.S. Gelatinase activity during wound healing // Br J Dermatol 1994. Vol.131. P.634−640.
  16. Agren M.S. MMP are required for re-epithelisation of cutaneous wounds // Arch. Derm- Res. 1999. Vol. 291. P. 583−590.
  17. Agren M. S-, Steenfos H.H., Dabelsteen S., Hansen J.B., Dabelsteen E. Proliferation and? mitogenic response to PDGF-BB of fibroblasts isolated from chronic leg ulcers is ulcer-dependent // J Invest Dermatol. 1999 Vol. 112. P.463−469:
  18. Agren M. S-., Taplin C.J., Woessner J.F. Jr., Eaglestein W.H., Mertz P.M. Collagenase in wound healing: effect of wound age and type // J Invest Dermatol. 1992. Vol.99. P.709−714.
  19. Armstrong D.G., Jude E.B. The role of matrix metalloproteinases in wound healing // J Am Podiatr Med Assoc. 2002. Vol. 92. P- 12−18.
  20. Bello Y.M., Falabella A.F., Eaglstein W.H. Tissue-engineered5 skin: current status in wound healing // Am J Clin Dermatol- 2001. Vol. 2. P.305−313.
  21. Besser D-, Presta M., Nagamine Y. Elucidation of a signaling-pathway induced by FGF-2 leading to uPA gene expression in NIH 3T3 fibroblasts // Cell Growth Differ. 1995. Vol. 6. P.1009−1017.
  22. Brown L.F., Yeo K.T., Berse B., et al. Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing // J Exp Med. 1992. Vol. 176. P. 1375−1379.
  23. Bullen E.C., Longaker M.T., Updike D.L., Benton R., Ladin D., Hou Z., Howard E.W. Tissue inhibitor of metalloproteinases-1 is decreased and activated gelatinases are increased in chronic wounds // J Invest Dermatol. 1995. Vol.104. P. 236−240.
  24. Byrd V.M., Ballard D.W., Miller G.G., Thomas J.W. Fibroblast growth factor-1 (FGF-1) enhances IL-2 production and nuclear translocation of NF-kappaB in FGF receptor-bearing Jurkat T cells // J Immunol. 1999. Vol.162. P.5853−5859.
  25. Carmeliet P., Collen D. Molecular genetics of the fibrinolytic and coagulation systems in haemostasis, thrombogenesis, restenosis and atherosclerosis // Curr Opin Lipidol. 1997. Vol. 8. P. 118−125.
  26. Chandler L.A., Gu D.L., Ma C., et al. Matrix-enabled gene transfer for cutaneous wound repair // Wound Repair Regen. 2000. Vol. 8. P.473−479.
  27. Ciano P. S., Colvin R.B., Dvorak A.M., McDonagh J., Dvorak H.F. Macrophage migration in fibrin gel matrices // Lab Invest. 1986. Vol. 54. P:62−70.
  28. Clark R.A., Tonnesen M.G., Gailit J., Cheresh D.A. Transient functional expression of alphaVbeta 3 on vascular cells during wound repair // Am J Pathol. 1996. Vol. 148. P.1407−1421.
  29. Clore J.N., Cohen I.K., Diegelmann R.F. Quantitation of collagen types I and III during wound healing in rat skin // Proc Soc Exp Biol Med. 1979. Vol. 161. P.337−340.
  30. Cole M., Cox S., Imman E. Fibrin sealant Tisseel as a vehicle for peptide delivery: in vitro studies abstract. // Wound Repair Regen. 2002. Vol. 10. P. A10.
  31. Cook H., Davies K.J., Harding K.G., Thomas D.W. Defective extracellular matrix reorganization by chronic wound fibroblasts is associated with alterations in TIMP-1, TIMP-2 and MMP-2 activity // J Invest Dermatol. 2000. Vol. 115. P.225−233.
  32. Coulombe P.A. Wound epithelialization: accelerating the pace of discovery//J Invest Dermatol. 2003. Vol. 121. P.219−230.
  33. Cox S., Cole M., Tawil B. Fibrin sealant Tisseel as a vehicle for fibroblast delivery: in vitro studies abstract. // Wound Repair Regen. 2002. Vol. 10. P. A10.
  34. Cross S. E, Naylor I.L., Coleman R.A., Teo T.C. An experimental model to investigate the dynamics of wound contraction // Br J Plast Surg. 1995. Vol.48. P.189−197.
  35. Currie L.J., Sharpe J.R., Martin R. The use of fibrin glue in skin grafts and tissue-engineered skin replacements: a review // Plast Reconstr Surg. 2001. Vol. 108. P.1713−1726.
  36. Davidson J.M. Animal models for wound repair // Arch Dermatol Res- 1998. Vol.290, Supp 1. P. Sl-Sll.
  37. Davidson J.M., Broadley K.N., Quaglino D. Reversal of the wound healing deficit in diabetic rats by combined basic fibroblast growth- factor and transforming growth factor-(31 therapy // Wound Rep Reg. 1997. Vol. 5. P.77−88
  38. Delclaux C., Delacourt C., D’Ortho M.P., et al. Role of gelatinase B and elastase in human polymorphonuclear neutrophil migration across basement membrane // Am J Respir Cell Mol Biol. 1996. Vol. 14. P. 288−295.
  39. Dissemond J., Witthoff M., Brauns T.C., Haberer D., Goos M. pH values in chronic wounds. Evaluation during modern wound therapy // Hautarzt 2003. Vol. 54. P. 959−965.
  40. Dvorak H.F., Brown L.F., Detmar M., Dvorak A.M. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis // Am J Pathol. 1995. Vol. 146. P.1029−1039.
  41. Eaglstein W.H., Alvarez O.M., Auletta M., et al. Acute excisional wounds treated with a tissue-engineered skin (Apligraf) // Dermatol Surg. 1999. Vol. 25. P.195—201.
  42. Eaglstein W.H., Iriondo M., Laszlo K. A composite skin substitute (graftskin) for surgical wounds: a clinical experience // Dermatol Surg. 1995. Vol. 21. P.839−843.
  43. Eggleston A., Cox S., Tawil B. Delivering normal human keratinocytes using fibrin sealant Tisseel: in vitro studies abstract. // Wound Repair Regen. 2002. Vol. 10. P. A16.
  44. Evans M.J., Kaufman M. Pluripotential cells grown directly from normal mouse embryos // Cancer Surv. 1983. Vol. 2. P. 185−208.
  45. Falanga V. Classifications for wound bed preparation and stimulation of chronic wounds // Wound Rep Reg. 2000. Vol. 8.P. 347−352.
  46. Falanga V., Margolis D., Alvarez O., et al, for the Human Skin Equivalent Investigators Group. Rapid healing of venous ulcers and lack of clinical rejection with an allogeneic cultured human skin equivalent // Arch Dermatol. 1998. Vol. 134. P.293−300.
  47. Falanga V., Sabolinski M. A bilayered living skin construct (APLIGRAF) accelerates complete closure of hard-to-heal venous ulcers // Wound Repair Regen. 1999. Vol. 7. P.201−207.
  48. Finch P.W., Rubin J.S., Miki T., Ron D., Aaronson S.A. Human KGF is FGF-related with properties of a paracrine effector of epithelial cell growth // Science. 1989: Vol. 245. P.752−755.
  49. Flake A.W. Fate mapping of stem cells // Gottlieb D, ed. Stem Cell Biology. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 2001. P.375−398.
  50. Folkman J., Shing Y. Angiogenesis//J Biol Chem 1992. Vol.267. P. 10 931−10 934.
  51. Franz M.G., Smith P.D., Wachtel T.L., Wright T.E., Kuhn M.A., K.F., Robson M.C. Fascial incisions heal faster than skin: a new model of abdominal wall repair // Surgery. 2001. Vol.129. P.203−208.
  52. Gailit J., Clark R.A. Studies in vitro on the role of alpha v and beta 1 integrins in the adhesion of human dermal fibroblasts to provisional matrix proteins fibronectin, vitronectin, and fibrinogen // J Invest Dermatol. 1996. Vol. 106. P.102−108.
  53. Gailit J., Clark R.A. Wound repair in the context of extracellular matrix // Curr Opin Cell Biol. 1994. Vol. 6. P.717−725.
  54. Gallo R.L. Proteoglycans and cutaneous vascular defense and repair // J Investig Dermatol Symp Proc 2000. Vol. 5. P.55−60.
  55. Gath H.J., Hell B., Zarrinbal R., Bier J., Raguse J.D. Regeneration of intraoral defects after tumor resection with a bioengineered human dermal replacement (Dermagraft) // Plast Reconstr Surg. 2002. Vol. 109. P. 889−885.
  56. Gillitzer R., Goebeler M. Chemokines in cutaneous wound healing // J Leukoc Biol. 2001. Vol. 69. P.513−521.
  57. Gottrup F., Agren M.S., Karlsmark T. Models for use in wound healing research: a survey focusing on in vitro and in vivo adult soft tissue // Wound Rep Reg. 2000. Vol.8. P.83−96.
  58. Greenhalgh D.G. The role of apoptosis in wound healing // Int J Biochem Cell Biol. 1998. Vol. 30. P.1019−1030.
  59. Greiling D., Clark R.A. Fibronectin provides a conduit for fibroblast transmigration from collagenous stroma into fibrin clot provisional matrix // J Cell Sci. 1997. Vol. 110. P.861−870.
  60. Gualandris A., Presta M. Transcriptional and posttranscriptional regulation of urokinase-type plasminogen activator expression in endothelial cells by basic fibroblast growth factor // J Cell Physiol. 1995. Vol. 162. P.400−409.
  61. Han Y.P., Tuan T.L., Wu H., Hughes M., Garner W.L. TNF-alpha stimulates activation of pro-MMP2 in human skin through NF-(kappa)B mediated induction of MT1-MMP // J Cell Sci. 2001. Vol. 114. P.131−139.
  62. Hasan A., Murata H., Falabella A., Ochoa S., Zhou L., Badavias E., Falanga V. Dermal fibroblasts from venous ulcers are unresponsive to action of transforming growth factor-beta 1 // J Dermatol Sci. 1997. Vol. 16. P.59−66.
  63. Heemskerk J.W., Bevers E.M., Lindhout T. Platelet activation andblood coagulation // Thromb Haemost. 2002. Vol. 88. P.186−193.
  64. Heldin C.H., Westermark B. Mechanism of action and in vivo role of platelet-derived growth factor // Physiol Rev. 1999. Vol. 79. P. 1283−1316.
  65. Hinz B., Gabbiani G. Cell-matrix and cell-cell contacts of myofibroblasts: role in connective tissue remodeling // Thromb Haemost. 2003. Vol. 90. P.993−1002.
  66. Hiraoka N., Allen E., Apel I.J., Gyetko M.R., Weiss S.J. Matrix metalloproteinases regulate neovascularization by acting as pericellular fibrinolysins // Cel. 1998. Vol.95. P.365−377.
  67. Horner P.J., Gage F.H. Regenerating the damaged central nervous system // Nature. 2000. Vol. 407. P.963−970.
  68. Howard E.W., Bullen E.C., Banda M.J. Regulation of the autoactivation of human 72-kDa progelatinase by tissue inhibitor of metalloproteinases-2//J Biol Chem. 1991. Vol.266. P.13 064−13 069.
  69. Howes E., Soony J., Harvey S. The healing of wounds as determined by their tensile strength // J. A. M. A. 1929. Vol.92. P. 42 45.
  70. Humpherys D., Eggan K., Akutsu H., et al. Epigenetic instability in ES cells and cloned mice // Science. 2001. Vol. 293. P.95−97.
  71. Hynes R.O. Integrins: versatility, modulation, and signaling in cell adhesion // Cell 1992. Vol. 69. P. 11−25.
  72. Ivaska J., Heino J. Adhesion receptors and cell invasion: mechanisms of integrin-guided degradation of extracellular matrix // Cell Mol Life Sci. 2000. Vol. 57. P. 16−24.
  73. Jahoda C.A., Reynolds A.J. Hair follicle dermal sheath cells: unsung participants in wound healing // Lancet. 2001. Vol. 358. P. 1445−1448.
  74. Jones J.E., Nelson E.A. Skin grafting for venous leg ulcers // Cochrane Database Syst Rev. 2000. Vol. 2. P. CD001737.
  75. Kahari V.M., Saarialho-Kere U. Matrix metalloproteinases in skin // Exp Dermatol. 1997. Vol. 6. P. 199−213.
  76. Kanzler M.H., Gorsulowsky D.C., Swanson N.A. Basic mechanisms in the healing cutaneous wound // J Dermatol Surg Oncol. 1986. Vol. 12. P.1156−1164.
  77. Kapoor M., Howard R., Hall I., Appleton I. Effects of epicatechin gallate on wound healing and scar formation in a full thickness incisional wound healing model in rats // American Journal of Pathology. 2004.Vol. 165, №.1. P.299−307.
  78. Kielty C.M., Sherratt M.J., Shuttleworth C.A. Elastic fibres // J Cell Sci. 2002. Vol. 115. P.2817−2828.
  79. Kj0ller L. The urokinase plasminogen activator receptor in the regulation of the actin cytoskeleton and cell motility // Biol Chem. 2002. Vol. 383. P.5−19.
  80. Knox P., Crooks S., Rimmer C.S. Role of fibronectin in the migration of fibroblasts into plasma clots // J Cell Biol. 1986. Vol. 102. P.2318−2323.
  81. Kresse H., Schonherr E. Proteoglycans of the extracellular matrix and growth control // J Cell Physiol. 2001. Vol. 189. P.266−274.
  82. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 // Nature. 1970. Vol. 227. P. 680−683.
  83. Laiho M., Keski-Oja J. Growth factors in the regulation of pericellular proteolysis: a review // Cancer Res. 1989. Vol. 49. P.2533−2553.
  84. Langer R., Vacanti J.P. Tissue engineering // Science. 1993. Vol. 260. P.920−926.
  85. Leibovich S.J., Ross R. The role of macrophage in wound repair. A study with hydrocortisone and antimacrophage serum // Am J Pathol. 1975. Vol. 78. P.71−100.
  86. Lerman O.Z., Galiano R.D., Armour M., Levine J.P., Gurtner G.C. Cellular dysfunction in the diabetic fibroblast // Am J Pathol. 2003. Vol.162. P.303−312.
  87. Lindblad W. Animal models in wound healing research: do we need more? // Wound Rep Reg. 2000. Vol.8. P.81−82.
  88. Lobmann R., Ambrosch A., Schultz G., Waldmann K., Schieweck S., Lehnert H. Expression of matrix metalloproteinases and their inhibitors in the wounds of diabetic and non-diabetic patients // Diabetologia. 2002. Vol.45. P.1011−1016.
  89. Loots M.A., Lamme E.N., Mekkes J.R., Bos J.D., Middelkoop E. Cultured fibroblasts from chronic diabetic wounds on the lower extremity (non-insulin-dependent diabetes mellitus) show disturbed proliferation // Arch Dermatol Res. 1999. Vol. 291.P.93−99.
  90. Madlener M., Mauch C., Conca W., Brauchle M., Parks W.C., Werner S. Regulation of the expression of stromelysin-2 by growth factors in keratinocytes: implications for normal and impaired wound healing // Biochem J. 1996. Vol. 320. P.659−664.
  91. Madlener M., Parks W.C., Werner S. Matrix metalloproteinases (MMPs) and their physiological inhibitors (TIMPs) are differentially expressed during excisional skin wound repair // Exp Cell Res. 1998. Vol. 242. P.201−210.
  92. Makela M., Larjava H., Pirila E., et al. Matrix metalloproteinase 2 (gelatinase A) is related to migration of keratinocytes // Exp Cell Res. 1999. Vol. 251. P.67−78.
  93. Mansbridge J., Liu K., Patch R., Symons K., Pinney E. Three-dimensional fibroblast culture implant for the treatment of diabetic foot ulcers: metabolic activity and therapeutic range // Tissue Eng. 1998. Vol.4. P. 403−414.
  94. Mansbridge J.N., Liu K., Pinney R.E., Patch R., Ratcliffe A., Naughton G.K. Growth factors secreted by fibroblasts: role in healing diabetic foot ulcers // Diabetes Obes Metab. 1999. Vol. 1. P.265−279.
  95. Marston W.A., Usala A., Hill R. S., Mendes R., Minsley M-A. Initial report of the use of an injectable porcine collagen-derived matrix to stimulate healing of diabetic foot wounds in humans // Wound Rep Reg. 2005. Vol. 13. P.243−247.
  96. Martin C.W., Muir I.F. The role of lymphocytes in wound healing I I Br J Plast Surg. 1990. Vol. 43. P.655−662.
  97. Martin P. Wound healing aiming for perfect skin regeneration // Science. 1997. Vol. 276. P. 75−81.
  98. Mast B.A., Schultz G.S. Interactions of cytokines, growth factors, and proteases in acute and chronic wounds // Wound Rep Reg. 1996. Vol.4. P.411−420.
  99. McCawley L.J., Matrisian L.M. Matrix metalloproteinases: they’re not just for matrix anymore! // Curr Opin Cell Biol. 2001. Vol. 13. P.534−540.
  100. McClain S.A., Simon M., Jones E., Nandi A., Gailit J.O., Tonnesen M.G., Newman D., Clark R.A. Mesenchymal cell activation is the rate-limiting step of granulation tissue induction // Am J Pathol.1996. Vol. 149. P.1257−1270.
  101. Mendez M.V., Stanley A., Park H.Y., Shon K., Phillips T., Menzoian. J.O. Fibroblasts cultured from venous ulcers display cellular characteristics of senescence // J Vase Surg 1998. Vol.28. P.876−883.
  102. Milstone L.M., Asgari M.M., Schwartz P.M. Growth factor expression, healing and structural characteristics of Graftskin (Apligraf) // Wounds. 2000. Vol. 12(suppl A). P.12A-19A.
  103. Mirastschijski U., Impola U., Jahkola T., Karlsmark T., Agren M.S., Saarialho-Kere U. Ectopic localization of matrix metalloproteinase-9 in chronic cutaneous wounds // Human Pathol 2002. Vol.33. P.355−364.
  104. Mirastschijski U., Konrad D., Lundbergc E., Lyngstadaas S.P., Jorgensen L.N., Agren M.S. Effects of a topical enamel matrix derivative on skin wound healing // Wound Rep Reg. 2004. Vol. 12. P. 100−108.
  105. Mogford J.E., Mustoe T.A. Experimental models of wound healing // Falanga V., ed. Cutaneous wound healing. London: Martin Dunitz, 2001. Pi 10 922.
  106. Mosesson M.W. The roles of fibrinogen and fibrin in hemostasis and thrombosis // Semin Hematol. 1992. Vol. 29. P. 177−188.
  107. Mosesson M.W., Siebenlist K.R., Meh D.A. The structure and. biological features of fibrinogen and fibrin // Ann NY Acad Sci. 2001. Vol. 936. P. ll-30.
  108. Muhart M., McFalls S., Kirsner R., Kerdel F., Eaglstein W.H. Bioengineered skin letter. //Lancet. 1997. Vol. 350. P. l 142.
  109. Muhart M., McFalls S., Kirsner R.S., et al. Behavior of tissue-engineered skin: a comparison of a living skin equivalent, autograft, and occlusive dressing in human donor sites // Arch Dermatol. 1999. Vol. 135- P. 913−918.
  110. Murphy G. Matrix metalloproteinases and their inhibitors // Acta Orthop Scand SuppL 1995. Vol.266. P.55−60.
  111. Norris D1A., Clark R. A-, Swigart L. M-,. Huff J.C., Weston, W.L., Howell S.E. Fibronectin fragment (s) are chemotactic for human peripheral blood monocytes//J Immunol- 1982- 129: P.1612−1618.
  112. Nwomeh B.C., Liang H.X., Cohen I.K., Yager D.R. MMP-8 is the predominant collagenase in healing wounds and non-healing ulcers // J Surg Res 1999. Vol.81. P.189−195.
  113. Ofosu F.A. The blood platelet as a model for regulating blood coagulation on cell surfaces and its consequences // Biochemistry (Mosc). 2002. Vol. 67. P.47−55.
  114. Osborne C.S., Schmid P. Epidermal-dermal interactions regulate gelatinase activity in Apligraf, a tissue-engineered human skin equivalent // Br J Dermatol. 2002. Vol. 146. P.26−31.
  115. Pankov R., Yamada K.M. Fibronectin at a glance // J Ceil Sci. 2002. Vol. 115. P.3861−3863.
  116. Parenteau N.L., Bilbo P., Nolte C.J., Mason V.S., Rosenberg M. The organotypic culture of human skin keratinocytes and fibroblasts to achieve form and function// Cytotechnology.1992. Vol. 9. P. 163−171.
  117. Parks W.C. Matrix metalloproteinases in repair // Wound Rep Reg. 1999. Vol .7. P.423−432.
  118. Petersen M.J., Woodley D.T., Stricklin G.P., O’Keefe B.J. Constitutive production of procollagenase and collagenase inhibitor by human keratinocytes in culture // J Invest Dermatol 1989. Vol.92. P.156−159.
  119. Pilcher B.K., Dumin J.A., Sudbeck B.D., Krane S.M., Welgus H.G., Parks W.C. The activity of collagenase-1 is required for keratinocyte migration on a type I collagen matrix//J. Cell Biol. 1997. Vol. 137. P.1445−1457.
  120. Pilcher B.K., Wang M., Qin X.J., Parks W.C., Senior R.M., Welgus H.G. Role of matrix metalloproteinases and their inhibition in cutaneous woundhealing and allergic contact hypersensitivity // Ann NY Acad Sci. 1999. Vol. 878. P. 12−24.
  121. Pittenger M.F., Mackay A.M., Beck S.C., et. al. // Multilineage Potential of Adult Human Mesenchymal Stem Cells // Science. 1999, V.284, № 2. P. 143−147.
  122. Postlethwaite A.E., Kang A.H. Fibroblast chemoattractants // Methods Enzymol. 1988. Vol. 163. P.694−707.
  123. Postlethwaite A.E., Keski-Oja J., Balian G., Kang A.H. Induction of fibroblast chemotaxis by fibronectin. Localization of the chemotactic region to a 140,000-molecular weight non-gelatin-binding fragment // J Exp Med. 1981. Vol. 153. P.494−499.
  124. Postlethwaite A.E., Seyer J.M.*, Kang A.H. Chemotactic attraction of human fibroblasts to type I, II and III collagen and collagen-derived peptides // Proc Natl Acad Sci USA. 1978. Vol. 75. P. 871−875
  125. Postlethwaite A.E., Seyer J.M., Kang A.H. Chemotactic attraction of human fibroblasts to type I, II, and III collagens and collagen-derived peptides // Proc Natl Acad Sci USA. 1978. Vol. 75. P.871−875.
  126. Powers C.J., McLeskey S.W., Wellstein A. Fibroblast growth factors, their receptors and signaling // Endocr Relat Cancer. 2000. Vol. 7. P. 165−197.
  127. Prockop D.J., Kivirikko K.I. Collagens: molecular biology, diseases, and potentials for therapy // Annu Rev Biochem. 1995. Vol. 64. P.403−434.
  128. Radice M., Cardarelli L., Cortivo R., Abatangelo G. Chemotactic properties of human collagen break-down products in wound healing // Abatangelo G., Donati L., Vansheidt W., eds. Proteolysis in wound repair. New York: Springer, 1996. P. 51−59.
  129. Rees R.S., Adamson B.F., Lindblad W.J. Use of a cell-based interactive wound dressing to enhance healing of excisional wounds in nude mice // Wound Repair Regen. 2001. Vol. 9. P.297−304.
  130. Rheinwald J.G., Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells // Cell. 1975. Vol. 6. P.331−343.
  131. Rogers A.A., Harding K.G., Chen W.Y.J. The epidermis at the edge of venous leg ulcers exhibits proliferative rather than differentiation markers ands is associated with basement membrane disruption // Wound Rep Reg. 2003. Vohll. P. A13.
  132. Ross R. The fibroblast and wound repair // Biol. Rev. (Cambridge), 1968, Vol.43, P. 51−96.
  133. Ruoslahti E. Integrins // J Clin Invest. 1991. P. 87. P. 1−5.
  134. Saarialho-Kere U., Kerkela E., Jahkola T., Suomela S., Keski-Oja J., Lohi J. Epilysin (MMP-28) expression is associated with cell proliferation during epithelial repair // J-Invest Dermatol. 2002. Vol. 119. P.14−21.
  135. Saarialho-Kere U.K., Pentland A.P., Birkedal-Hansen H., Parks W.C., Welgus H.G. Distinct populations of basal keratinocytes express stromelysin-1 and stromelysin-2 in chronic wounds // J Clin Invest. 1994. Vol. 94. P.79−88.
  136. Sabolinski M.L., Alvarez O., Auletta M., Mulder G., Parenteau N.L. Cultured skin as a «smart material» for healing wounds: experience in venous ulcers//Biomaterials. 1996. Vol. 17. P.311−320.
  137. Schaffer C.J., Nanney L.B. Cell Biology of wound healing // Internat. Rev. Cytol. 1996. Vol. 169. P.151−181.
  138. Schmid P. Immunohistologic characterization of Graftskin (Apligraf) // Wounds. 2000. Vol. 12(suppl A). P.4A-11 A.
  139. Schultz G.S., Barillo D.J., Mozingo D.W., Chin G.A. Wound bed preparation and a brief history of TIME // Int Wound J 2004. Vol.1. P. 19−31
  140. Senger D.R. Molecular framework for angiogenesis: a complex web of interactions between extravasated plasma proteins and endothelial cell proteins induced by angiogenic cytokines // Am J Pathol. 1996. Vol. 149. P.1−7.
  141. Shea L.D., Smiley E., Bonadio J., Mooney D.J. DNA delivery from polymer matrices for tissue engineering // Nat Biotechnol. 1999. Vol. 17. P. 551— 554.
  142. Shimada T., Nakamura H., Ohuchi E., Fujii Y., Murakami Y., Sato H., Seiki M., Okada Y. Characterization of a truncated recombinant form of human membrane type 3 matrix metalloproteinase // Eur J Biochem. 1999. Vol. 262. P.907−914.
  143. Singer A.J., Clark R.A. Cutaneous wound healing // N Engl J Med. 1999. Vol. 341. P.738−746.
  144. Spanheimer R.G. Correlation between decreased collagen production in diabetic animals and in cells exposed to diabetic serum: response to insulin // Matrix 1992. Vol.12. P.101−107.
  145. Stanley A., Osier T. Senescence and the healing rates of venous ulcers //J Vase Surg. 2001. Vol.33. P. 1206−1211.
  146. Stanley A.C., Park H. Y., Phillips T.J., Russakovsky V., Menzoian J.O. Reduced growth of dermal fibroblasts from chronic venous ulcers can be stimulated with growth factors // J Vase Surg. 1997. Vol.26. P.999−1001.
  147. Stanworth S.J., Newland A.C. Stem cells: progress in research and edging towards the clinical setting // Clin Med. 2001. Vol. 1. P.378−382.
  148. Sternlicht M.D., Werb Z. How matrix metalloproteinases regulate cell behavior // Annu Rev Cell Dev Biol. 2001. Vol. 17. P.463−516:
  149. Stocum D.L. Regenerative biology and medicine: a new era in bioengineering // Cardiac and Vascular Regeneration. 2000. Vol. 1. P. 157−169.
  150. Stocum D.L. Stem cells in regenerative biology and medicine // Wound Repair Regen. 2001. Vol. 9. P.429−442.
  151. Stricklin G.P., Li L., Nanney L.B. Localization of mRNAs representing interstitial collagenase, 72-kda gelatinase, and TIMP in healing porcine burn wounds // J Invest Dermatol. 1994. Vol. 103. P.352−358.
  152. Stricklin G.P., Nanney L.B. Immunolocalization of collagenase and TIMP in healing human burn wounds // J Invest Dermatol. 1994. Vol. 103. P.488−492.
  153. Stryer L. Biochemistry, 3rd Ed. New York: W.H. Freeman, 1988
  154. Taipale J., Keski-Oja J. Growth factors in the extracellular matrix // FasebJ. 1997. Vol. ll.P.51−59.
  155. Tarlton J.F., Vickeiy C.J., Leafert D.J., Bailey A.J. Postsurgical wound progression monitored by temporal changes in the expression of matrix metalloproteinase-9 //British Journal of Dermatology. 1997. Vol. 157. P. 506−516.
  156. Taushe K., Salomon D., Wolina U. EpiDex, a novel treatment of recalcitrant chronic leg ulcers abstract. // Wound Repair Regen. 2002. Vol. 10. P. A55.
  157. Tomasek J.J., Gabbiani G., Hinz B, Chaponnier C., Brown R.A. Myofibroblasts and mechano-regulation of connective tissue remodeling // Nat Rev Mol Cell Biol. 2002. Vol. 3. P.349−63.
  158. Trengove N.J., Stacey M.C., MacAuley S., Bennett N., Gibson J., Burslem F., Murphy G., Schultz G. Analysis of the acute and chronic wound environments: the role of proteases and their inhibitors // Wound Rep Reg 1999. Vol.7. P.442−452.
  159. Tsukada K., Tokunaga K., Iwama T., Mishima Y. The pH changes of pressure ulcers related to the healing process of wounds // Wounds 1992. Vol.4. P. 16−20.
  160. Vacanti J.P., Vacanti C. The challenge of tissue engineering // Chick WL, ed. Principles of Tissue Engineering. Austin, TX: Academic Press, 1997. P. I— 6.
  161. Van Wart H.E., Birkedal-Hansen H. The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family // Proc Natl Acad Sci USA. 1990. Vol. 87. P.5578−5582.
  162. Visse R., Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry // Circ Res. 2003. Vol. 92. P.827−839.
  163. Wang Z., Juttermann R., Soloway P.D. TIMP-2 is required for efficient activation of proMMP-2 in vivo // J Biol Chem. 2000. Vol. 275. P.26 411−26 415.
  164. Waymack P., Duff R.G., Sabolinski M., for the ApligrafBurn Study Group. The effect of a tissue engineered bilayered living skin analog, over meshed split-thickness autografts on the healing of excised burn wounds // Burns. 2000. Vol. 26. P.609−619.
  165. Woessner J.F.Jr. Matrix metalloproteinases and their inhibitors in connective tissue remodeling // FASEB J. 1991. Vol.5. P. 2145−2154.
  166. Woessner F.J., Nagase H. Matrix metalloproteinases and TIMPs. New York: Oxford University Press, 2001. 223 p.
  167. Wolz R.L. Strategies for inhibiting proteases of unknown mechanism // Barett A.J., Rawlings N.D., Woessner J.F., eds. Handbook of proteolyitic enzymes. San Diego: Academic Press, 1999. P. 90−106.
  168. Wysocki A.B., Staiano-Coico L., Grinnell F. Wound fluid from chronic leg ulcers contains elevated levels of metalloproteinases MMP-2 and MMP-9 // J Invest Dernatol. 1993. Vol. 101 P.64−68.
  169. Xu J., Clark R.A. Extracellular matrix alters PDGF regulation of fibroblast integrins // J Cell Biol. 1996. Vol. 132. P.239−249.
  170. Yamada K.M. Adhesive recognition sequences // J Biol Chem. 1991. Vol. 266. P. 12 809−12 812.
  171. Yamada K.M. Clark R.A. Provisional matrix // Clark R.A. ed. The molecular and cellular biology of wound repair. New York, NY: Plenum Press, 1996. Vol. P. 51−93.
  172. Yamada K.M., Gailit J., Clark R.A. Integrins in wound repair // Clark R.A., ed. The molecular and cellular biology of wound repair. 2nd edn. New York: Plenum Press, 1996.
  173. Yang S., Leong K.F., Du Z., Chua C.K. The design of scaffolds for use in tissue engineering. II. Rapid prototyping techniques // Tissue Eng. 2002. Vol. 8. P. 1−11.
  174. Yao M., Zhang X., Liu Y. Identification, isolation and sorting of human keratinocyte stem cell abstract. // Wound Repair Regen. 2002. Vol. 10. P. A63.
Заполнить форму текущей работой