Помощь в написании студенческих работ
Антистрессовый сервис

Полиморфные маркеры генов-кандидатов и генетическая предрасположенность к неблагоприятному исходу у больных, перенесших острый коронарный синдром

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

В развитии осложнений ИБС ключевую роль играют процессы, объединяемые сегодня термином «атеротромбоз». При этом нарушения в системах гемостаза и липидного обмена могут. усугубляться генетическими особенностями, влияющими на структуру и скорость формирования этих процессов. Гены, кодирующие эти факторы, можно рассматривать в качестве кандидатов для изучения наследственной предрасположенности… Читать ещё >

Полиморфные маркеры генов-кандидатов и генетическая предрасположенность к неблагоприятному исходу у больных, перенесших острый коронарный синдром (реферат, курсовая, диплом, контрольная)

Содержание

  • СПИСОК СОКРАЩЕНИЙ
  • 1. ОБЗОР ЛИТЕРАТУРЫ
    • 1. 1. Полиморфные маркеры
      • 1. 1. 1. Типы полиморфизмов и методы их исследования
      • 1. 1. 2. Использование полиморфных маркеров в исследовании. генетики многофакторных заболеваний
    • 1. 2. Ишемическая болезнь сердца и ОКС
      • 1. 2. 1. Основные аспекты этиологии и патогенеза ишемическойболезни сердца
      • 1. 2. 2. Генетические факторы риска развития ишемической болезни сердца
      • 1. 2. 3. Острый коронарный синдром
    • 1. 3. Система гемостаза
    • 1. 4. Система липидного обмена
    • 1. 5. Характеристика исследованных в работе генов и полиморфных маркеров
      • 1. 5. 1. Липопротеины. Ген ЬРЬ. Пролиморфные маркеры гена и их ассоциация с ИБС
      • 1. 5. 2. Аполипротеин В. Ген АРОВ. Пролиморфные маркеры гена и их ассоциация с ИБС
      • 1. 5. 3. Аполипротеин Е. Ген АРОЕ. Пролиморфные маркеры гена и их ассоциация с ИБС
      • 1. 5. 4. Фибриноген. Ген РОВ. Полиморфные маркеры гена и их ассоциация с ИБС
      • 1. 5. 5. Белок С. Ген РЯОС. Полиморфные маркеры генаи их ассоциация с ИБС
  • 2. МАТЕРИАЛЫ И МЕТОДЫ
    • 2. 1. Объект исследования. Критерии включения пациентов в исследование
    • 2. 2. Реактивы и ферменты
    • 2. 3. Буферные растворы
    • 2. 4. Выделение геномной ДНК
    • 2. 5. Амплификация ДНК
    • 2. 6. Расщепление продуктов амплификации рестриктазами
    • 2. 7. Электрофоретическое разделение ДНК
    • 2. 8. Статистическая обработка результатов
      • 2. 8. 1. Сравнение выборок по частотам аллелей и генотипов
      • 2. 8. 2. Построение кривых Каплана-Мейера
  • 2. 8,3. Коррекция уровня значимости
  • 3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ
    • 3. 1. Исследование ассоциации полиморфных маркеров с ОКС
      • 3. 1. 1. Исследование ассоциации полиморфных маркеров 8ег447Тег гена ЬРЬ с ОКС
      • 3. 1. 2. Исследование ассоциации полиморфных маркеров Т (-93)С гена ЬРЬ с ОКС
      • 3. 1. 3. Исследование ассоциации полиморфного маркера Т (-219)С гена. АР О Е с ОКС
      • 3. 1. 4. Исследование ассоциации полиморфного маркера С (-516)Т гена АРОВ с ОКС
      • 3. 1. 5. Исследование ассоциации полиморфного маркера С (-455)А гена FG. fi с ОКС
      • 3. 1. 6. Исследование ассоциации полиморфного маркера С (-1654)Тгена РКОС с ОКС
  • 4. ВЫВОДЫ

В настоящее время сердечно-сосудистые заболевания являются основной причиной инвалидности и смертности в экономически развитых странах [1], при этом на долю ишемической болезни сердца и инфаркта миокарда приходится примерно две трети случаев смерти от сердечнососудистых заболеваний.

Известно, что данные сердечно-сосудистые патологии являются многофакторными заболеваниями с многочисленными звеньями патогенеза. Для таких заболеваний характерен сложный механизм формирования фенотипа, в основе которого лежит взаимодействие генетических факторов с факторами внешней среды [2]. При этом для каждого конкретного заболевания можно выделить группу, так называемых, генов-кандидатов, продукты которых могут быть прямо или косвенно вовлечены в развитие данной патологии.

Исследование молекулярно-генетических основ много факторных заболеваний относится к одной из наиболее серьезных задач современной генетики. Знание генетических факторов, предрасполагающих к развитию заболевания и его осложнений, имеет важное прогностическое значение и может использоваться при до симптоматической диагностике, то есть до появления каких-либо клинических или биохимических симптомов болезни.

Современная стратегия исследования генетической составляющей многофакторных заболеваний включает в себя поиск полиморфных маркеров в генах-кандидатах, могущих вносить вклад в развитие заболевания и оценку уровня их ассоциации с заболеванием [3]. Под ассоциацией полиморфного маркера с заболеванием понимают достоверно различающуюся частоту определенного аллеля или генотипа этого маркера у больных и у здоровых лиц одной и той же популяции.

В развитии осложнений ИБС ключевую роль играют процессы, объединяемые сегодня термином «атеротромбоз» [4,5]. При этом нарушения в системах гемостаза и липидного обмена могут. усугубляться генетическими особенностями, влияющими на структуру и скорость формирования этих процессов. Гены, кодирующие эти факторы, можно рассматривать в качестве кандидатов для изучения наследственной предрасположенности к осложнениям ИБС [6]. Носительство определенных аллельных вариантов этих генов может быть связано с повышенным риском развития заболевания и/или его осложнений.

Установление ассоциации гена с заболеванием и последующая оценка индивидуального генетического риска имеют важное значение для разработки дифференцированного подхода к профилактике и лечению данной патологии и ее осложнений в зависимости от наследственной предрасположенности конкретного пациента. Подобные исследования позволяют точнее и надежнее оценивать генетический риск развития заболевания и прогнозировать его течение.

В структуре смертности от сердечно-сосудистых заболеваний на долю ишемической болезни сердца приходится 46,8% [7]. Одним из множества направлений в изучении ИБС является поиск факторов, способных прогнозировать течение ИБС [8,9].

Перспективным представляется изучение генетических факторов, вклад которых в оценку риска у больных с ИБС изучен недостаточно [10]. ИБС — это полигенное заболевание, и влияние генетических факторов у больных с ИБС может быть существенным [11,12]. Одним из важнейших звеньев патогенеза ИБС являются нарушения функции системы гемостаза, приводящие к тромбообразованию [13,14,15]. Влияние факторов гемостаза на прогноз больных с ИБС изучено в многочисленных работах [16].

Научный интерес представляет так же изучение ассоциации полиморфных маркеров генов, кодирующих компоненты системы метаболизма липидов, с развитием неблагоприятных исходов у больных с ИБС. Выявленные ассоциации изменения концентрации атерогенных липопротеинов в сыворотке крови с полиморфными маркерами генов АРОВ и АРОЕ позволяют предположить, что эти генетические маркеры могут применяться в оценке заболеваемости и смертности от ИБС.

Целью данной работы было изучение ассоциации полиморфных маркеров ряда генов-кандидатов с неблагоприятным исходом у больных, перенесших острый коронарный синдром. Для достижения этой цели были поставлены следующие задачи:

1. Определить аллели и генотипы полиморфных маркеров генов, кодирующих липазу липопротеинов (ЬРЬ), аполипопротеин Е (АРОЕ), аполипопротеин В (АРОВ), фибриноген (ЕСВ) и белок С (РЯОС).

2. Провести сравнительный анализ распределения аллелей и генотипов полиморфных маркеров данных генов-кандидатов в исследованной выборке больных для выявления изучения вклада генетических факторов в развитие различных типов неблагоприятного исхода у больных, перенесших острый коронарный синдром.

3. Изучить ассоциацию факторов риска с неблагоприятными исходами.

1. ОБЗОР ЛИТЕРАТУРЫ.

4. ВЫВОДЫ.

1. Определены частоты аллелей и генотипов полиморфных маркеров Ser447Ter и T (-93)G гена LPL, T (-219)G гена АРОЕ, С (-516)Т гена АРОВ, G (-455)A гена FGB и С (-1654)Т гена PROC в группе больных, перенесших острый коронарный синдром. Для полиморфных маркеров генов LPL, АРОЕ, АРОВ и FGB показано отсутствие ассоциации с развитием неблагоприятных исходов после эпизода ОКС.

2. Обнаружена ассоциация полиморфного маркера С (-1654)Т гена PROC с неблагоприятными исходами в группе больных, перенесших острый коронарный синдром. Установлено, что носители генотипов СТ и ТТ данного полиморфного маркера имеют повышенный риск, в то время как носители генотипа СС имеют пониженный риск развития неблагоприятного исхода.

3. Носительство генотипов СТ и ТТ полиморфного маркера С (—1654)Т гена PROC у больных, перенесших острый коронарный синдром, достоверно ассоциировано с развитием как «любого» неблагоприятного исхода, так и со смертностью и риском развития «коронарного» неблагоприятного исхода.

Показать весь текст

Список литературы

  1. Boerwinkle Е., Ellsworth D., Hallman M., Biddinger A. Genetic analysis of atherosclerosis: a research pparadigm for the common chronic diseases. Hum Mol. Genet. 1996. 5, 1405−1410.
  2. Galtion D., Gavanna J. Kay A., Zhang Q. Coronary artery disease in Europe: what are the genetic risk factors? J. of the Royal College of Physicians in London. 1995. 29, 429130.
  3. В., Степанов В. Патологическая анатомия генома человека. Новосибирск, Наука, 1997. с 70−98.
  4. В.П., Балуда М. Б. и др. Физиология системы гемостаза. Москва, Медицина, 1995.
  5. ., Ферстрате М. Тромбозы. Москва, Медицина, 1986.
  6. Pratt R.E., Dzau V.J. Genomics and hypertension: concepts, potentials, and opportunities. Hypertension. 1999. 33(1 Pt2), 238−247.
  7. Р.Г., Калинина A.M., Поздняков Ю. М. Профилактическая кардиология: Руководство для врачей. Москва, Медицина, 2007.
  8. Р.Г., Масленникова Г. Я. Вклад сердечно-сосудистых и других неинфекционных заболеваний в здоровье населения России. Сердце. 2003. № 2, 58−61.
  9. Е.И. Реалии и гипотезы в проблеме атеросклероза. Клинический вестник. 1994. № 1, 4−6.
  10. H.A., Костомарова И. В., Серова Л. Д. О генетической предрасположенности к ишемической болезни сердца у больных пожилого и старческого возраста. Тезисы докладов VII Российского национального конгресса «Человек и лекарство». Москва, 2000. С. 6.
  11. Г. П. Коронарный атеротромбоз. Новые данные для нового взгляда на вечную проблему. Сердце. 2004. № 4, 12−15.
  12. Е. П. Добровольский А.Б. Тромбозы в кардиологии. Механизмы развития и возможности терапии. Москва. Спорт и культура, 1999.
  13. О.В., Качалков Д. В., Грацианский H.A., Затейщиков Д. А., Логутов Ю. А. Нестабильная стенокардия: связь данных обследования при поступлении с исходами в период госпитализации. Значение показателей гемостаза. Кардиология. 1994. 7, 11−20.
  14. Ю.П., Салменкова Е. А., Полиморфизм ДНК в популяционной генетике. Генетика. 2002. 38(9), 1173−1195.
  15. Singer М. Highly repeated sequences in mammalian genomes. Int. Rev. Cytol. 1982. 76, 67−112.
  16. Jelinek W., Schmid C. Repetitive sequences in eukaryotic DNA and their expression. Ann. Rev. Biochem. 1982. 51, 813−844.
  17. Wright J.M., Bentzen P. Microsatellits: Genetic markers for the future. Rev. Fish Biol. Fish. 1994. 4, 384−388.
  18. Jeffreys A.J., Wilson V., Thein S.L. Hyper variable «minisatellite» regions in human DNA. Nature. 1985. 316, 76−79.
  19. Weissenbach J., Gyapay G., Dib C. et. al. A second-generation linkage map of the human genome. Nature. 1992. 359, 794−801.
  20. Zupanic I., Balazic J., Romel R. Analysis of nine short tandem repeat (STR) loci in the Slovenian population. Int. J. Leg. Med. 1998. Ill, 248−250.
  21. Miesfield R., Krystal M., Arnheim N. A member of new repeated sequence family which is conserved eucaryotic evolution is found between the human delta- and beta-globin genes. Nicleic Acids Res. 1981. 9, 5931−5947.
  22. Hamada H., Petrino M., Kakunaga T., Seidman M., Stollar B. Characterization of genomic Poly (dT-dG) Poly (dC-dA) sequences: structure, organization and conformation. Mol. Cell. Biol. 1984. 4, 2610−2621.
  23. Economou E., Bergen A., Warren A., Antonarakis S. The polyadenylate tract of Alu-repetitive elements is polymorphic in the human genome. Proc. Natl. Acad. Sci. USA. 1990. 87, 2951−2954.
  24. Edwards A., Hammond H.A., Jin L., Caskey C.T., Chakraborty R. DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. Am. J. Hum Genet. 1991. 49, 746−756.
  25. Guyer M.S. Collins F.S. How is the Human genome project doing, and what have we learned so far? Proc. Natl. Acad. Sci. Usa. 1995. 92, 10 841−10 848.
  26. Charlesworth C., Sniegovski P., Stephan W., The evolutionary dynamics of repetitive DNA in eukaryotes. Nature. 1994. 371, 215−220.
  27. Brookes A.J., The essence of SNP. Gene. 1999. 234, 177−186.
  28. Cargill M., Altshuler D., Ireland J. Characterization of single-nucleotide polymorphism in coding regions of human genes. Nature Genetics. 1999. 22, 231−238.
  29. Wang D.G., Fan J—В., Siao С .J., et al. Large-scale identification, mapping and genotyping of single-nucleotide polymorphism in the human genome. Science. 1998. 280, 1077−1082
  30. Lander E.S. The new genomics: global views of biology. Science. 1996. 274, 536−539.
  31. Saiki R., Scharf S., Faloona F., Mullis K., Horn G et al. Enzymatic amplification of P-globin genomic gene sequence and restriction site analysis for diagnosis of stickle cell anaemia. Science. 1985. 230, 1350−1354.
  32. Li H., Gyllensten U.B., Gui X., Saiki P.K., Erlich H.A., Arncheim N., Amplification and analysis of DNA sequences in single human sperm and diploid cells. Nature. 1988. 335, 414−417.
  33. Schumm, J.W., R.G. Knowlton, J.C. Braman, D.F. Barker, D. Botstein, G. Akots, V.A. Brown, T.C. Gravius, C. Helms, K., Hsiao et al. Identification of more than 500 RFLPs by screening random genomic clones. Am. J. Hum. Genet. 1988.42, 143−159.
  34. Ngo I.S.L., Pace R., Richard M.V. Methods for analysis of multiple cystic fybrosis mutations. Hum.Genet. 1991. 87, 613−617.
  35. В.И., Геномика медицине под ред. В. И. Иванова и JLJI. Киселева. 2005, М.: Академкнига.
  36. Brown D.L., Gorin М.В., Weeks D.E. Efficient strategies for genomic searching using the affected-pedigree-member method of linkage analysis. Am. J. Hum. Genet. 1994. 54, 544−552.
  37. Ghosh S., Collins F.S., The geneticist’s approach to complex disease. Annu. Rev. Med. 1996. 47, 333−353.
  38. Hall J.M., Lee M.K., Newman В., Linkage of early-onset familial breast cancer to chromosome 17q21. Science. 1990. 250, 1684−1689
  39. Thomson G., Mapping disease genes: family-based association studies. Am. J. Hum. Genet. 1995. 57, 487−498.
  40. B.H. Молекулярные основы медицинской генетики. Санкт-Петербург, Интермедика. 1999.
  41. Сох N.J., Bell G.I. Disease associations, chance artifactors susceptibiility genes? Diabetes. 1989. 38, 947−950.
  42. P.С., Дудко B.A., Атеросклероз: патогенез, клиника, функциональная диагностика, лечение. Томск, STT, 1998.
  43. Hamsten A., Wiman В., De Faire U., Blombaeck M. Increased plasma levels of a rapid inhibitor of tissue plasminogen activator in young survivors of myocardial infarction. New England Journal of Medicine. 1985. 313, 1557— 1563.
  44. Mackness M.I., Mackness В., Durrington P.N., Connelly P.W., Hegele A., Paraoxonase: biochemistry, genetics and relationship to plasmalipoprotein. Curr Opin Lipidol. 1996. 7, 69 -76.
  45. Rong J.X., Rangaswamy S., Shen L. et al., Arterial injury by cholesterol oxidation products causes endothelial dysfunction and arterial wall cholesterol accumulation. Arterioscler. Thromb. Vase. Biol. 1998. 18, 1885−1894.
  46. Heinecke J.W., Lusis A.J., Paraoxonase -gene polymor-phisms associated with coronary heart disease: Support forthe oxidative damage hypothesis? Am.J. Hum. Genet. 1998. 62. 20−24.
  47. Berliner J.A., Heinecke J.W., The role of oxidized lipo-proteinsin atherogenesis. Free Radic. Biol. Med. 1996. 20, 707−727.
  48. Zeiher A.M., Fisslthaler В., Schray-Utz В., Busse R. Nitric oxide modulates the expression of monocyte chemoattractant protein 1 in cultured human endothelial cells. Circ. Res. 1995. 76, 980−986.
  49. .А., Грацианский Н. А. Хроническая ишемическая болезнь сердца. М., Медицина, 1992, т. 2, 5−52.
  50. Ohara Y., Peterson Т.Е., Harrison D.G. Hypercholesterolemia increases endothelial superoxide anion production. J. Clin. Invest. 1993. 91, 2546−2551.
  51. Galtion D., Gavanna J. Kay A., Zhang Q. Coronary artery disease in Europe: what are the genetic risk factors? J. of the Royal College of Physicians in London. 1995.29,429−430.
  52. De Faire U., Pedersen N. Studies of twins and adoptees in coronary artery disease. In: Genetic factors in coronary heart disease. Kluver Acad. Pub. 1994. 55−68.
  53. Hersi A., Fu Y., Wong B. Does the discharge ECG provide additional prognostic insights in non-ST elevation ACS patients from that acquired on admission? E. Heart Journal. 2003. 24(6), 522−531.
  54. Kofoed S.C., Wittrup H.H., Sillesen H., Nordestgaard B.G. Fibrinogen predicts ischemic stroke and advanced atherosclerosis but not echo lucent, rupture-prone carotid plaques. E. Heart Journal. 2003. 24(6), 567−576.
  55. Heras M. Reduction in Acute Myocardial Infarction Mortality Over a Five-Year Period. The American Journal of Cardiology. 2001. 3, 200−208.
  56. О.П., Мишнев О. Д. Ишемическая болезнь сердца. М.: Реафарм. 2005.
  57. Curt D. Furberg MD. Secondary prevention trials after acute myocardial infarction. The American Journal of Cardiology. 2007. 60, 28−32.
  58. Keavney B. Genetic epidemiological studies of coronary heart disease // Internal Journal of Epidemiology. 2002. 31(4), 730−736.
  59. Fox R.A.A. et al, Premilinary data from the Global Registry of Acute Coronary Events (GRACE): XXII European Society of Cardiology Annual Congress, Amsterdam, The Netherlands, August, 2000.
  60. Rogers W.J. et al. Acute Coronary Syndrome. The American Journal of Cardiology. 2000. 36, 2056.
  61. Е.П., Добровольский А. Б. Тромбозы в кардиологии. Механизмы развития и возможности и терапии. М.: Издательство «Спорт и культура». 1999.
  62. Galvani M., Ferrini D., Ottani F., Eisenberg P.R. Early risk stratification of unstable angina/non-Q myocardial infarction: biochemical markers of coronary thrombosis. The American Journal of Cardiology. 1999. 31, S55-S61.
  63. Hamm C.W. Leitlinien zur therapie des akuten koronaren syndroms mit ST-hebungen. Z. Kardiol. 2004. 93, 324−341.
  64. Hamm C.W. Anaesthesist. Paradigms in treatment of myocardial infarction. 2004. 53(5), 409−410.
  65. Bertrand M.E., et al. Management of acute coronary syndromes: acute coronary syndromes without persistent ST segment elevations: recommendations of the TASK force of the European Society of Cardiology. Eur. Heart J. 2000. 21, 1406−1432.
  66. Van der Werf F., et al. Management of acute myocardial infarction in patients presenting with ST-segment elevation. G. Ital. Cardiol. (Rome). 2009. 10(7), 450−489.
  67. Braunwald E., et al. ACC/AHA 2002 guideline update for the management of patients with unstable angina and non-ST-segment elevation myocardial infarction: summary article. Circulation. 2002. 106, 1893−1900.
  68. Antman E.M., et al. ACC/AHA Guidelines for the management of patients with ST-elevation myocardial infarction. Circulation. 2004. 110, 588−636.
  69. Andersen H.R., et al. A comparison of coronary angioplasty with fibrinolytic therapy in acute myocardial infarction. N. Engl. J. Med. 2003. 349, 733−742.
  70. Keeley E.C., Boura J.A., Grines C.L. Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction: A quantitative review of 23 randomised trials. Lancet. 2003. 361, 13−20.
  71. Zeymer U., Gitt A., Senges J. Akuter ST strecken hebungsinfarkt. Aktuelle versorgungssituation der patienten in Deutschland. Herz. 2005. 30, 241−243.
  72. Salourou M., Gerodimou E. Factors associated with delay in seeking health care for hospitalized patients with acute coronary syndromes. European Heart Journal. 2000. 24(6), 522−528.
  73. Hopkins P.N., Williams R.R., Human genetics and coronary heart disease: a public health perspective. Annu. Rev. Nutr. 1989. 9, 303−345.
  74. Балуда В. П, Баркаган 3.C., Гольдберг Е. Д, и др. Лабораторные методы исследования системы гемостаза. Томск. 1980.
  75. З.С., Геморрагические заболевания и синдромы. М.: Медицина. 1980.
  76. В.К., Петров М. Н., Ультраструктура и функция тромбоцитов человека. Л.: Медицина. Ленингр. Отд-ние., 1982.
  77. ., Ферстрате М. Тромбозы. М.: Медицина. 1986.
  78. В.Г., Кудряшова О. Ю., Цимбалова Т. Е., Затейщиков Д. А., Эндотелиальная регуляция гемостаза: система тромбомодулина. Клиническая лаборатория, 2001. (4), 27−30.
  79. Stenflo J. Semin. Thromb. Hemostasis. 1984. 10, 109−121.
  80. З.С. Геморрагические заболевания и синдромы. М.: Медицина, 1988.
  81. С., Evatt J. Н., Zimmerman В., Kleiss Т. S., Wideman A. J. J. Clin. Invest. 1981. 68, 1370−1373.
  82. Hoshi S., Hijikata M., Togashi Y., Aoyagi Т., Kono C., Yamada Y., Amano H., Keicho N., Yamaguchi T. Protein С deficiency in a family with thromboembolism and identified gene mutations. Intern. Med. 2007. 46(13), 997−1003.
  83. Sanan D.A., Fan J., Bensadoun A., Taylor J.M. Hepatic lipase is abundant on both hepatocyte and endothelial cell surfaces in the liver. J. Lipid Res. 1997. 38(5), 1002−1013.
  84. Santamarina-Fojo S., Haudenschild C., Amar M. The role of hepatic lipase in lipoprotein metabolism and atherosclerosis. Curr. Opin. Lipidol. 1998. 9(3), 211−219.
  85. Cohen J.C., Wang Z., Grundy S.M., Stoesz M.R., Guerra R. Variation at the hepatic lipase and apolipoprotein AI/CIII/AIV loci is a major cause of genetically determined variation in plasma HDL cholesterol levels. J. Clin. Invest. 1994. 94(6), 2377−2384.
  86. Dreon D.M., Femstrom H.A., Campos H., Blanche P., Williams P.T., Krauss R.M. Change in dietary saturated fat intake is correlated with change in mass of large low-density—lipoprotein particles in men. Am. J. Clin. Nutr. 1998. 67(5), 828−836.
  87. Marumoto K., Hamada M., Hiwada K. Increased secretion of atrial and brain natriuretic peptides during acute myocardial ischaemia induced by dynamic exercise in patients with angina pectoris. Clin. Sei (Colch). 1995. 88, 551−556.
  88. Clee S.M., Bissada N., Miao F. et al. Plasma and vessel wall lipoprotein lipase have different roles in atherosclerosis. J. Lipid Res. 2000. 41, 521−531.
  89. Rip J., Nierman M.C., Ross C.J., Jukema J.W., Hayden M.R., Kastelein J.J., Stroes E.S., Kuivenhoven J.A. Lipoprotein lipase S447X: a naturally occurring gain-of-function mutation. Arterioscler. Thromb. Vase. Biol. 2006. 26(6), 1236−45.
  90. Mailly F., Tugrul Y., Revmer P.W. et al. A common variant in the gene for lipoprotein lipase (Asp9→Asn). Functional implications and prevalence in normal and hyperlipidemic subjects. Atheroscler. Thromb. Vase. Biol. 1995. 15, 468−678.
  91. Stepanov V.A., Puzyrev V.P., Karpov R.S., Kutmin A.I. Genetic markers in coronary artery disease in a Russian population. Hum. Biol. 1998. 70(1), 4757.
  92. Anderson J.L., King G.J., Bair T.L., Elmer S.P., Muhlestein J.B., Habashi J., Mixson L., Carlquist J.F. Association of lipoprotein lipase gene polymorphisms with coronary artery disease. J. Am. Coll. Cardiol. 1999. 33(4), 1013−1020.
  93. Thorn J.A., Needham E.W.A., Mattu R.K., Stocks J., Galton D.J. The Ser 447-Ter mutation of the lipoprotein lipase gene relates to variability of serum lipid and lipoprotein levels in monozygotic twins. J. Lipid. Res. 1998. 39, 437−441.
  94. Ferencak G., Pasalic D., Grskovic B., Cheng S., Fijal B., Sesto M., Skodlar J., Rukavina A.S. Lipoprotein lipase gene polymorphisms in Croatian patients with coronary artery disease. Clin. Chem. Lab. Med. 2003. 41(4), 541−546.
  95. Clark A.G., Weiss K.M., Nickerson D.A., Taylor S.L., Buchanan A., Stengard J., Salomaa V., Vartiainen E., Perola M., Boerwinkle E., Sing C.F. Haplotype Structure and Population Genetic Inferences from Nucleotide-Sequence
  96. Variation in Human Lipoprotein Lipase. Am. J. Hum. Genet. 1998. 63, 595 612.
  97. Thorn J.A., Chamberlain J.C., Alcolado J.C., Oka K., Chan L., Stocks J., Gaiton D.J. Lipoprotein and hepatic lipase gene variants in coronary atherosclerosis. Atherosclerosis. 1990. 85, 55−60.
  98. Ukkola O., Kervinen K., Salvela P.I., Dickhoff K.V., Laakso M., Kesaniemi Y.A. Apolipoproteine E phenotype is related to macro- and microangiopathy in patients with non-insulin diabetes mellitus. Atherosclerosis. 1993. 101, 915.
  99. Funke H., Assmann G. The low down on lipoprotein lipase. Nat Genet. 1995. 10, 6 -7.
  100. Yamada Y., Matsuo H., Warita S. et al. Prediction of genetic risk for dyslipidemia. Genomics. 2007. 90(5), 551−558.
  101. Masana L., Febrer G., Cavanna J., Baroni M.G., Marz W. et al. Common genetic variants that relate to disorders of lipid transport in Spanish subjects with premature coronary artery disease. Clin Sci (Lond). 2001. 100. (2), 183— 190.
  102. Cladaras C., Hadzopoulou-Cladaras M., Nolte R.T., Atkinson D., Zannis V.I. The complete sequence and structural analysis of human apolipoprotein B-100: relationship between apoB-100 and apoB-48 forms. EMBO J. 1986. 5,3495−3507.
  103. Olofsson S.O., Bjursell G., Bostrom K., Carlsson P., Elovson J., Protter A.A., Reuben M.A., Bondjers G. Apolipoprotein B: structure, biosynthesis and role in the lipoprotein assembly process. Atherosclerosis. 1987. 68, 1−17.
  104. Agoston-Coldea L., Zdrenghea D., Pop D., Craciun A., Rusu M.L., Mocan T. Apolipoproteins A-I and B-markers in coronary risk evaluation. Rom. J. Intern. Med. 2007. 45(3), 251−258.
  105. Г. Г. Связь липопротеина (а) и аполипопротеина В как факторов риска с заболеваемостью ишемической болезнью сердца и развитием острого инфаркта миокарда. Кардиоваскулярная терапия и профилактика. 2005. (1), 38−43.
  106. Shiffman D., Ellis S.G., Rowland C.M., Malloy M.J. et al. Identification of four gene variants associated with myocardial infarction. Am J Hum Genet. 2005. 77(7), 596−605.
  107. Cumming A.M., Robertson F.W., Polymorphism at the apoprotein-E locus in relation to risk of coronary disease. 1984. 25(4), 310−313.
  108. Olofsson S.O., Bjurell G., Bostom K. Apolipoprotein B: Structure, biosynthesis and role in the lipoprotein assembly process. Atherosclerosis. 1987. 68(1−2), 1−17.
  109. Farese R.V., Linton M.F., Young S.G. Apolipoprotein B gene mutation affecting cholesterol levels. J. Intern. Med. 1992. 231, 643−652.
  110. Innerarity T.L., Weisgraber K.H., Arnold K.S. Familial defective apolipoprotein B-100: low density lipoproteins with abnormality receptor binding. Procl Natl Acad Sci USA. 1987. 86, 6919−6923.
  111. Hansen P. S., Klausen I.C., Lemming L., Gerdes L.U., Gregersen N., Faergeman O. Apolipoprotein B gene polymorphisms in ischemic heart disease and hypercholesterolemia: effects of age and sex. Clin. Genet. 1994. 45(2), 7883.
  112. Boerwinkle E., Chan L. A three codon insertion/deletion polymorphism in the signal peptide region of the human apolipoprotein B (APOB) gene directly typed by the polymerase chain reaction. Nucleic Acids Res. 1989. 17(10), 4003.
  113. Xu C.F., Tikkanen M.J., Huttunen J.K. Apolipoprotein B signal peptide insertion/deletion polymorphism is associated with Ag epi-topes and involved in the determination of serum triglyceride levels. J Lipid Res. 1990. 31, 12 551 261.
  114. Saha N., Tay J.S., Chew L.S. Influence of apolipoprotein B signal peptide insertion/deletion polymorphism on serum lipids and apolipoproteins in a Chinese population. Clin Genet. 1992. 41(3), 152−156.
  115. Choong M.L., Koay E.S., Khaw M.C., Aw T.C. Apolipoprotein B 5'-Ins/Del and 3-VNTR polymorphisms in Chinese, Malay and Indian singaporeans. Hum. Hered. 1999. 49(1), 3110.
  116. Ye P., Chen B.S., Wang S.W. Apolipoprotein B signal peptide insertion/deletion polymorphism in Chinese patients with coronary heart disease. Chung Hua. I. Hsueh Tsa. Chih. 1994. 74(6), 341−344, 389−390.
  117. Glisic S., Prljic J., Radovanovic N., Alavantic D. Study of apoB gene signal peptide insertion/deletion polymorphism in a healthy Serbian population: no association with serum lipid levels. Clin. Chim. Acta. 1997. 263(1), 57−65.
  118. Gaffney D., Freeman D.J., Shepherd J., Packard C.J. The ins/del polymorphism in the signal sequence of apolipoprotein В has no effect on lipid parameters. Clin Chim Acta. 1993. 218(2), 131−138.
  119. Paulweber В., Levy-Wilson B. The mechanisms by which a human apolipoprotein В gene enhancer and reducer interact with the promoter are different in cultured cells of hepatic and intestinal origin. 1991. 266(35), 24 161−24 168.
  120. Hooft F.M., Lundahl J.B., Tornvall P., Eriksson P., Hamsten A. A functional polymorphism in the apolipoprotein В promoter that influences the level of plasma low density lipoprotein. J. Lipid Research. 1999. 40(9), 1686−1694.
  121. Miettinen T.A. Impact of apo E phenotype on the regulation of cholesterol metabolism. Ann Med. 1991.23(2), 181−186.
  122. A.H., Никульчева Н. Г. Обмен липидов и липопротеидов и его нарушения. СПб.: Питер Ком, 1999.
  123. Paszty С., Maeda N., Verstuyft J., Rubin E.M. Apolipoprotein AI transgene corrects apolipoprotein E deficiency-induced atherosclerosis in mice. 1994. 94(2), 899−903.
  124. Zhang S.H., Reddick R.L., Burkey B., Maeda N. Diet-induced atherosclerosis in mice heterozygous and homozygous for apolipoprotein E gene disruption. J. Clin. Invest. 1994. 94(3), 937−945.
  125. Miyata M., Smith J.D. Apolipoprotein E allele-specific antioxidant activity and effects on cytotoxicity by oxidative insults and beta-amyloid peptides. Nat. Genet. 1996. 14(1), 55−61.
  126. Mahley R.W. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science. 1988. 240(4852), 622−630.
  127. Hixson J.E., Vernier D.T. Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with HhaL J. Lipid. Res. 1990. 31, 545−548.
  128. Heng O.K., SahaN., Toy J.S.H. Clin. Genetics. 1995. 48, 113.
  129. Haffner S.M., Stern M.P., Miettinen H., Robbins D., Howard B.V. Apolipoprotein E polymorphism and LDL size in a biethnic population. Arterioscler. Thromb. Vase. Biol. 1996. 16(9), 1184−1188.
  130. Peila R., White L.R., Petrovich H., Masaki K., Ross G.W., Havlik R.J., Launer L.J. Joint effect of the APOE gene and midlife systolic blood pressure on late-life cognitive impairment: the Honolulu-Asia aging study. Stroke. 2001. 32(12), 2882−2889.
  131. Utermann G. Apolipoprotein polymorphism and multifactorial hyperlipi-daemia. J. Inher. Metab. Dis. 1988. (suppl.l), 74−86.
  132. Davignon J., Gregg R.E., Sing C.F. Apolipoprotein E polymorphism and atherosclerosis. Atherosclerosis. 1988. 8, 1−21.
  133. Schachter F., Faure-Delanef L., Guenot F., Rouger H., Froguel P., Lesuerer-Ginot L., Cohen D. Genetic associations with human longevity at the APOE and ACE loci. Nature Genetics. 1994. 6, 29−32.
  134. Artiga M.J., Bullido M.J., Sastre I., Recuero M., Garcia M.A., Aldudo J., Vazquez J., Valdivieso F. Allelic polymorphisms in the transcriptional regulatory region of apolipoprotein E gene. FEBS Lett. 1998. 421(2), 105−108.
  135. Л.И., Генетические механизмы наследственных нарушений гемостаза. Биохимия. 2002. 67, 40−55.
  136. А.Н., Сидоркин В. Г., Преснякова М. В., Биохимические основы гемостаза и диссеминированное внутрисосудистое свертывание крови., Н. Новгород, ННИИТО. 2001.
  137. Lee A.J., Fowkes F.G., Lowe G.D., Connor J.M., Rumley A. Fibrinogen, factor VII, and PAI-1 genotypes and the risk of coronary and peripheral atherosclerosis: Edinburgh Artery Study. Thromb. Haemost. 1999. 81, 553 560.
  138. Heinrich J., Balleisen L., Fibrinogen and factor 7 in the prediction of coronary risk. Results from the PROCAM study in healthy men. Arterioscler. Thromb. 1994. 14, 54−63.
  139. Ernst E. Fibrinogen an independent cardiovascular risk factor. J. Ing. Mod. 1990. 227, 365−372.
  140. Ma J., Hennekens C.H., Ridker P.M., Stampfer M.J. A prospective study of fibrinogen and risk of myocardial infarction in the Physicians Health Study. J.Am. Coll. Cardiol. 1999. 33, 1347−1352.
  141. Born G.V.R. Fibrinogen: How to explain its risk factor status. Abstr. 3rd Int. Fibrinogen Symp. «Hemostasis, Inflamm. and Cardiovasc. Disease», Ulm, May 3−4, 1996.
  142. Smith E.B., Thompson W.D. Fibrin as a factor in atherogenesis. Thromb. Res. 1994. 73, 1−19.
  143. Landolfi R., De Cristofaro R., De Candia E., et al. Effect of fibrinogen concentration on the velocity of platelet aggregation. Blood. 1991. 78, 377 381.
  144. Libby P. Current concepts of the pathogenesis of the acute coronary syndromes. Circulation. 2001. 104, 365−372.
  145. Ross R. Atherosclerosis: an inflammatory disease. N. Engl. J. Med. 1999. 340, 115−126.
  146. Ю.И., Баум B.A., Полонская Я. В., Баум С. Р., Никитин Ю. П. Окисленный фибриноген и его связь с нарушениями гемостаза и функции эндотелия при ишемической болезни сердца и инфаркте миокарда. Кардиология. 2009. 9, 7−8.
  147. JI.A., Метельская В. А., Шальнова С. А., Перова Н. В., Деев А. Д., Школьникова М. А., Школьников В. М. Взаимосвязь между активностью фибринолиза, показателями липидного состава крови и углеводного обмена. Кардиология. 2010. 2, 45−50.
  148. Ernst E., Resch K.L. Fibrinogen as a cardiovascular risk factor: a metaanalysis and review of literature. Ann. Intern. Med. 1993. 118, 956−963.
  149. Maresca G., Di Blasio A., Marchioli R., Di Minno G. Measuring plasma fibrinogen to predict stroke and myocardial infarction: an update. Atherioscler. Thromb. Vase. Biol. 1999. 19, 1368−1377.
  150. Volzke H., Robinson D.M., Kleine V., Hertwig S., Schwahn C., Grimm R., Eckel L., Rettig R. Preoperative plasma fibrinogen levels predict mortality after coronary artery bypass grafting. Thromb. Haemost. 2003. 89, 885−891.
  151. Chuang S.Y., Bai C.H., Chen W.H., Lien L.M., Pan W.H. Fibrinogen independently predicts the development of ischemic stroke in a Taiwanese population: CVDFACTS study. Stroke. 2009. 40(5), 1578−1584.
  152. I., Poirier O., 1996. fl fibrinogen gene polymorphisms are associated with plasma fibrinogen and coronary artery disease in patients with myocardial infarction // Circulation. 93. 440−449.
  153. Humphries S.E., Panahloo A., Montgomery H.E., Green F., Yudkin J., Geneenvironment interaction in the determination of levels of haemostatic variables involved in thrombosis and fibrinolysis. Thromb. Haemost. 1997. 78, 457−461.
  154. Weng X., Cloutier G., Genest J.J. Contribution of the -455G/A polymorphism at the beta-fibrinogen gene to erythrocyte aggregation in patients with coronary artery disease // Thromb. Haemost. 1999. 82, 1406−1411.
  155. Lam K.S., Ma O.C., Wat N.M., Chan L.C., Janus E.D. B-fibrinogen gene G/A-455 polymorphism in relation to fibrinogen concentrations and ischaemic heart disease in Chinese patients with type II diabetes. Diabetologia. 1999. 42, 12 501 253.
  156. Rallidis L.S., Gialeraki A., Fountoulaki K., Politou M., Sourides V., Travlou A., Lekakis I., Kremastinos D.T. G-455A polymorphism of beta-fibrinogen gene and the risk of premature myocardial infarction in Greece. Thromb. Res. 2010. 125(1), 34−37.
  157. Lu X.F., Yu H.J., Zhou X.Y., Wang L.Y., Huang J.F., Gu D.F. Influence of fibrinogen beta-chain gene variations on risk of myocardial infarction in a Chinese Han population. Chin. Med. J. (Engl). 2008. 121(16), 1549−1553.
  158. Kiesel W. Human plasma protein C. Isolation, characterization and mechanism of action by a-thrombin. J. Clin. Invest. 1979. 64, 761−769.
  159. Robbert H.L., van de Poel, Meijers J.C.M., Rosing J., C4b-Binding Protein Protects Coagulation Factor Va from Inactivation by Activated Protein C. Biochemistry. 2000. 39, 14 543−14 548.
  160. А.Н., Сидоркин В. Г., Преснякова М. В., Биохимические основы гемостаза и диссеминированное внутрисосудистое свертывание крови., Н. Новгород, ННИИТО. 2001.
  161. Maryama I., Recombinant Thrombomodulin and Activated Protein С in the Treatment of Dissiminated Intravascular Coagulation. Thromb. Haemostas. 1999. 82,718−721.
  162. Spek C.A., Koster Т., Rosendaal F.R., et al., Genotypic Variation in the Promoter Region of the Protein С Gene Is Associated With Plasma Protein С Levels and Thrombotic Risk. Arterioscler. Thromb.Vase. Biol. 1995. 15, 214 218.
  163. Aiach M., Nicaud V., Gelas M.A., et al., Complex Association of Protein С Gene Promoter Polymorphism With Circulating Protein С Levels and Thrombotic Risk//Arterioscler. Thromb. Vase. Biol. 1999. 19, 1573−1576.
  164. Tiong I.Y., Alkotob M.L., Ghaffari S. Protein С deficiency manifesting as an acute myocardial infarction and ischaemic stroke. Heart, 2003. 89(2), E7.
  165. Le C.T., Introductory biostatistics. 2003, Hoboken, N.J.: Wiley-Interscience. XVI, 536 p.
  166. Sham P.C., Curtis D. Monte Carlo tests for associations between disease and alleles at highly polymorphic loci. Ann. Hum. Genet. 1995. 59(Pt 1), 97−105.
  167. Wittrup H.H., Nordestgaard B.G., Steffensen R., Jensen G., Tybjasrg-Hansen A. Effect of gender on phenotypic expression of the S447X mutation in LPL: the Copenhagen City Heart Study. Atherosclerosis. 2002. 165, 119−126.
  168. Clee S.M., Loubser O., Collins J., Kastelein J.J., Hayden, M.R. The LPL S447X cSNP is associated with decreased blood pressure and plasma triglycerides, and reduced risk of coronary artery disease. Clin. Genet. 2001. 60, 293−300.
  169. Shimo-Nakanishi Y., Urabe Т., Hattori N., Watanabe Y., Nagao Т., Yokochi M., Hamamoto M., Mizuno Y. Polymorphism of the lipoprotein lipase gene and risk of atherothrombotic cerebral infarction in the Japanese. Stroke. 2001. 32(7), 1481−1486.
  170. Artiga M.J., Bullido M.J., Sastre I., Recuero M., Garcia M.A., Aldudo J., Vazquez J., Valdivieso F. Allelic polymorphisms in the transcriptional regulatory region of apolipoprotein E gene. FEBS Lett. 1998. 421(2), 105−108.
  171. Artieda M., Ganan A., Cenarro A., Garcia-Otin A.L., Jerico I., Civeira F., Pocovi M. Association and linkage disequilibrium analyses of APOE polymorphisms in atherosclerosis. Dis. Markers. 2008. 24(2), 65−72.
  172. Г. И., Клейменова Е. Б., Пающик С. А. Общепринятые алгоритмы для оценки факторов риска ИБС и генетическиеполиморфизмы. Медицинский центр Центрального банка Российской Федерации, Москва. Сердце. 2009. 8(2), 104−108.
  173. М.И., Шишкин С. В., Максимов В. Н., Шахтшнейдер Е. В., Скурихина Ю. В., Куликов И. В., Ромащенко А. Г. Полиморфизм гена АРОЕ и ишемический инсульт в городской популяции Западной Сибири, 2010. Бюллетень СО РАМН, 30(3), 119−123.
  174. Green F., Hamster A., Blomback М., Humphries S. The role of beta-fobrinogen genotype in determining plasma fibrinogen levels in young survivors of myocardial infarction and healthy controls from Sweden. Thromb. Haemost. 1993. 70, 915—920.
  175. Sampaio M.F., Hirata M.H., Crespo H., et al. AMI is associated with polymorphisms in the NOS3 and FGB but not in PAI)1 genes in young adults. Clin. Chim. Acta. 2007. 377, 154−162.
  176. Д.А., Минушкина JI.O., Затейщиков Д. А., Носиков В. В. Изучение ассоциации полиморфного маркера G(-455)A гена FGB с ишемической болезнью сердца. Генетика. 2004. 40, 1406−1409.
  177. В.Б., Бровкин А. Н., Галеева З. М. и др. Генетическая предрасположенность к неблагоприятному течению ишемической болезни сердца у больных после острого коронарного синдрома. Кардиология. 2008. 48(11), 13−18.
  178. Martiskainen М., Pohjasvaara Т., Mikkelsson J., et al. 2003. Fibrinogen gene promoter -455 A allele as a risk factor for lacunar stroke. Stroke. 34, 886−891.
  179. М.Г., Титов Б. В., Судомоина M.A. и др. Комплексный анализ генетической предрасположенности к ишемическому инсульту у русских. Молекулярная биология. 2009. 43, 937−945.
  180. Alhenc-Gelas М., Gandrille S., Aubry M.L., Aiach М. Thirty-three novel mutations in the protein С gene. French INSERM network on molecular abnormalities responsible for protein С and protein S. Thromb. Haemost. 2000. 83(1), 86−92.
Заполнить форму текущей работой