Π€ΠΈΠ·ΠΈΠΊΠ° (7-10 ΠΊΠ»Π°ΡΡΡ)
ΠΠ°Π³Π½ΠΈΡΠ½Π°Ρ |B |B = F/Il = |Π’Π»|Π‘ΠΏΡΠ°Π²ΠΎΡΠ½ΡΠ΅ ΡΠ°Π±Π»ΠΈΡΡ ΠΏΠΎ ΡΠΈΠ·ΠΈΠΊΠ΅ — |ΠΈΠ½Π΄ΡΠΊΡΠΈΡ — |M/IS, Π³Π΄Π΅ M — | — | — |- ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠΈΠ»| — | |Π‘ΠΈΠ»Π° ΠΠΌΠΏΠ΅ΡΠ° |F |F = Ibl (sin (|Π — | |Π‘ΠΈΠ»Π° ΠΠΎΡΠ΅Π½ΡΠ°|FΠ|FΠ = |Π — | — | |q (B (sin (| — | |ΠΠ°Π³Π½ΠΈΡΠ½ΡΠΉ |Π€ |Π€ = BS (cos (|ΠΠ±| — |ΠΏΠΎΡΠΎΠΊ — | — | — |ΠΠ½Π΄ΡΠΊΡΠΈΠ²Π½ΠΎΡΡ|L |L = Π€/I |ΠΠ½| — |Ρ — | — | — |Π‘ΠΎΠΏΠΎΡΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ Π΅Π΄ΠΈΠ½ΠΈΡ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ — | |Π‘ΠΈ| |ΠΠΈΠ½Π° |Π‘ΡΠ΅Π½ |Π — | |Π»Π°| — | — | — | |ΠΠΈΠ½Π° |1 |10β8 |10β5… Π§ΠΈΡΠ°ΡΡ Π΅ΡΡ >
Π€ΠΈΠ·ΠΈΠΊΠ° (7-10 ΠΊΠ»Π°ΡΡΡ) (ΡΠ΅ΡΠ΅ΡΠ°Ρ, ΠΊΡΡΡΠΎΠ²Π°Ρ, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠ½Π°Ρ)
|ΠΠ°Π³Π½ΠΈΡΠ½Π°Ρ |B |B = F/Il = |Π’Π»|Π‘ΠΏΡΠ°Π²ΠΎΡΠ½ΡΠ΅ ΡΠ°Π±Π»ΠΈΡΡ ΠΏΠΎ ΡΠΈΠ·ΠΈΠΊΠ΅ | |ΠΈΠ½Π΄ΡΠΊΡΠΈΡ | |M/IS, Π³Π΄Π΅ M | | | | | |- ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠΈΠ»| | | |Π‘ΠΈΠ»Π° ΠΠΌΠΏΠ΅ΡΠ° |F |F = Ibl (sin (|Π | | |Π‘ΠΈΠ»Π° ΠΠΎΡΠ΅Π½ΡΠ°|FΠ|FΠ = |Π | | | | |q (B (sin (| | | |ΠΠ°Π³Π½ΠΈΡΠ½ΡΠΉ |Π€ |Π€ = BS (cos (|ΠΠ±| | |ΠΏΠΎΡΠΎΠΊ | | | | | |ΠΠ½Π΄ΡΠΊΡΠΈΠ²Π½ΠΎΡΡ|L |L = Π€/I |ΠΠ½| | |Ρ | | | | | |Π‘ΠΎΠΏΠΎΡΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ Π΅Π΄ΠΈΠ½ΠΈΡ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ | | |Π‘ΠΈ| |ΠΠΈΠ½Π° |Π‘ΡΠ΅Π½ |Π | | |Π»Π°| | | | | | | |ΠΠΈΠ½Π° |1 |10−8 |10−5 | | | |Π‘ΡΠ΅Π½ |108 |1 |1000 | | | |Π |100 000|0,001 |1 | | |Π Π°| |ΡΡΠ³ |ΠΠΆ |ΠΊΠ°Π»ΠΎΡΠΈ| | |Π±ΠΎ| | | |Ρ | | |ΡΠ°| | | | | | | |ΡΡΠ³ |1 |10−7 |23,892| | | | | | |0(10−9| | | |ΠΠΆ |107 |1 |0,2389| | | | | | |20 | | | |ΠΊΠ°Π»ΠΎΡΠΈ|418 550|4,1855|1 | | | |Ρ |00 | | | | |ΠΠΎ| |ΠΊΠΡ |Π».Ρ. |ΠΊΠ³ (ΠΌ | | |ΡΠ½| | | | | | |ΠΎΡ| | | | | | |ΡΡ| | | | | | | |ΠΊΠΡ |1 |1,3596|101,97| | | | | |22 |16 | | | |Π».Ρ. |0,7354|1 |75 | | | | |988 | | | | | |ΠΊΠ³ (ΠΌ |0,0098|0,0133|1 | | | | |066 |33 | | | |ΠΠ°| |ΠΠ° |ΠΠ°Ρ |ΠΌΠΌ.Ρ|Π°ΡΠΌ | | |Π²Π»| | | |Ρ.ΡΡ| | | |Π΅Π½| | | | | | | |ΠΈΠ΅| | | | | | | | |ΠΠ° |1 |0,00|0,00|0,00| | | | | |001 |7500|0009| | | | | | |6 |86 | | | |ΠΠ°Ρ |1000|1 |750,|0,98| | | | |00 | |0616|6923| | | | | | | |1 | | | |ΠΌΠΌ.Ρ|133,|0,00|1 |0,00| | | |Ρ.ΡΡ|3224|1333| |1315| | | | | |224 | |789 | | | |Π°ΡΠΌ |1013|1,01|760 |1 | | | | |25 |325 | | | | |Π£Π½ΠΈΠ²Π΅ΡΡΠ°Π»ΡΠ½ΡΠ΅ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠ΅ | | |ΠΏΠΎΡΡΠΎΡΠ½Π½ΡΠ΅ | | |ΠΡΠ°Π²ΠΈΡΠ°ΡΠΈΠΎΠ½Π½Π°Ρ ΠΏΠΎΡΡΠΎΡΠ½Π½Π°Ρ (= G| | |= 6,67 (10−11 Π (ΠΌ2/ΠΊΠ³2 | | |Π£ΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ |Π‘ΠΊΠΎΡΠΎΡΡΡ ΡΠ²Π΅ΡΠ° | | |ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΠΎΠ³ΠΎ |Π² Π²Π°ΠΊΡΡΠΌΠ΅ c = 3| | |ΠΏΠ°Π΄Π΅Π½ΠΈΡ g = |(108 ΠΌ/Ρ | | |9,81 ΠΌ/Ρ2 | | | |ΠΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ |ΠΠ°Π³Π½ΠΈΡΠ½Π°Ρ | | |ΠΏΠΎΡΡΠΎΡΠ½Π½Π°Ρ (0 =|ΠΏΠΎΡΡΠΎΡΠ½Π½Π°Ρ (0 =| | |8,85(10−12Π€/ΠΌ |4((10−7ΠΠ½/ΠΌ | | |ΠΡΠΎΠΌΠ½Π°Ρ Π΅Π΄ΠΈΠ½ΠΈΡΠ°|ΠΠ°ΡΡΠ΄ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π°| | |ΠΌΠ°ΡΡΡ |e = 1,6(10−19 | | |1Π°.Π΅.ΠΌ=1,66(10-|ΠΠ» | | |27ΠΊΠ³ | | | |ΠΠ°ΡΡΠ° ΠΏΠΎΠΊΠΎΡ |ΠΠΎΡΡΠΎΡΠ½Π½Π°Ρ | | |ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π° me = |ΠΠΎΠ»ΡΡΠΌΠ°Π½Π° k = | | |9,1(10−31 ΠΊΠ³ |1,38(10−23ΠΠΆ/(Π| | |ΠΠ°Π·ΠΎΠ²Π°Ρ |ΠΠΎΡΡΠΎΡΠ½Π½Π°Ρ | | |ΠΏΠΎΡΡΠΎΡΠ½Π½Π°Ρ R = |ΠΠ»Π°Π½ΠΊΠ° H = | | |8,31 |6,63(10−34 ΠΠΆ/Ρ| | |ΠΠΆ/(Π (ΠΌΠΎΠ»Ρ) | | | |Π§ΠΈΡΠ»ΠΎ ΠΠ²ΠΎΠ³Π°Π΄ΡΠΎ |Π§ΠΈΡΠ»ΠΎ Π€Π°ΡΠ°Π΄Π΅Ρ F| | |NA = 6,02(1023 |= 9,65(104 | | |ΠΌΠΎΠ»Ρ-1 |ΠΠ»/ΠΌΠΎΠ»Ρ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |Π‘Π΄Π΅Π»Π°Π» Saint. ΠΠΎΠΌΠΌΠ΅ΡΡΠ΅ΡΠΊΠΎΠ΅ | | |ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΠΎΠΉ ΡΠΏΠΎΡΡ Π±Π΅Π· | | |ΠΌΠΎΠ΅Π³ΠΎ ΡΠΎΠ³Π»Π°ΡΠΈΡ Π·Π°ΠΏΡΠ΅ΡΠ΅Π½ΠΎ | | |7 | |.
|ΠΠΈΠ΄ΡΠ°Π²Π»ΠΈΡΠ΅ΡΠΊΠΈΠΉ |F1/F2 = S1/S2 |Π€ΠΈΠ·. |ΠΠ±|Π€ΠΎΡΠΌΡΠ»Ρ |ΠΠ΄.| |ΠΏΡΠ΅ΡΡ | |Π²Π΅Π»ΠΈΡΠΈΠ½Π° |ΠΎΠ·| |ΠΈΠ·ΠΌ| | | | |Π½.| |. | |Π‘ΠΎΠΎΠ±ΡΠ°ΡΡΠΈΠ΅ΡΡ |h1/h1 = (2/(1 |Π‘ΠΊΠΎΡΠΎΡΡΡ |(|(= (x/(t |ΠΌ/Ρ| |ΡΠΎΡΡΠ΄Ρ | | | | | | |Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ |((2/2 + (gh + P|2) |a = const; a > | |ΠΠ΅ΡΠ½ΡΠ»Π»ΠΈ |= const |Π Π°Π²Π½ΠΎΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠ΅|0 | | | |Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ | | |ΠΠΎΠ»Π΅Π±Π°Π½ΠΈΡ ΠΈ Π²ΠΎΠ»Π½Ρ |ΠΡΡΡ |S |S = S0 + (0t |ΠΌ | | | | |+ (at2)/2 = | | | | | |((2 — (02)/2a| | | | | |= | | | | | |= ((+ | | | | | |(0)(t/2 | | |Π§Π°ΡΡΠΎΡΠ° |(|(= 1/T |ΠΡ| | | | | |ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ | | | | | | | | |Π£Π³Π»ΠΎΠ²Π°Ρ (ΡΠΈ|(|(= 2((= 2(/T|ΡΠ°|ΠΡΠ΅ΠΌΡ |t |t=2S/((+ |c | |ΠΊΠ»ΠΈΡΠ΅ΡΠΊΠ°Ρ)| | |Π΄/| | |(0)=[pic] | | |ΡΠ°ΡΡΠΎΡΠ° | | |Ρ | | | | | |Π£Π³ΠΎΠ» |(|(= (t + (0 |ΡΠ°| | | | | | | | |Π΄ | | | | | |ΠΠ΅Π·Π°ΡΡΡ Π°ΡΡΠΈΠ΅ Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΠ΅ |Π£ΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅|a |a = ((- (0) |ΠΌ/Ρ| |ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ | | |/ t = ((2 — |2 | | | | |(02)/2S = | | | | | |= (s/t2 — | | | | | |(0/t) | | |Π‘ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ |x|x = A (cos ((t +|ΠΌ | | | | | | | |(0) | | | | | | |ΠΠΎΠ·Π²ΡΠ°ΡΠ°ΡΡ|F|F = - kx |Π |Π‘ΠΊΠΎΡΠΎΡΡΡ |(|(= (0 + at =|ΠΌ/Ρ| |Π°Ρ ΡΠΈΠ»Π° | | | | | |[pic] | | |Π§Π°ΡΡΠΎΡΠ° |(|(=[pic] |ΠΡ| | | | | |ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ | | | | | | | | | | | | |3) |a = const; a < | | | | | |Π Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎ|0 | | | | | |Π΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ | | |Π¦ΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠ°|(|(=[pic] |ΡΠ°|ΠΡΡΡ |S |S = (02/2|a| |ΠΌ | |Ρ ΡΠ°ΡΡΠΎΡΠ° | | |Π΄/| | | | | | | | |Ρ | | | | | | | | | |4)ΠΠ²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π°, Π±ΡΠΎΡΠ΅Π½Π½ΠΎΠ³ΠΎ | | | | | |Π²Π΅ΡΡΠΈΠΊΠ°Π»ΡΠ½ΠΎ | |ΠΠ΅ΡΠΈΠΎΠ΄ |T|T = 1/(=[pic]|c |Π‘ΠΊΠΎΡΠΎΡΡΡ |(|(= (0 — gt =|ΠΌ/Ρ| |ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ | | | |Π² ΠΌΠΎΠΌΠ΅Π½Ρ | |[pic] | | | | | | |t | | | | |Π‘ΠΊΠΎΡΠΎΡΡΡ |(|(= (((|ΠΌ/|ΠΡΡΠΎΡΠ° |h |h =[pic] |ΠΌ | |Π²ΠΎΠ»Π½Ρ | | |Ρ |ΠΏΠΎΠ΄ΡΠ΅ΠΌΠ° Π²| | | | | | | | |ΠΌΠΎΠΌΠ΅Π½Ρ t | | | | |ΠΠ»ΠΈΠ½Π° |(|(= ((T |ΠΌ | | | | | |Π²ΠΎΠ»Π½Ρ | | | | | | | | |ΠΠ΅ΡΠΈΠΎΠ΄ |T|T = 2? ([pic] |Ρ |ΠΠ°ΠΊΡΠΈΠΌΠ°Π»Ρ|hm|hmax = (02/2g|ΠΌ | |ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ | | | |Π½Π°Ρ |ax| | | |- | | | |Π²ΡΡΠΎΡΠ° | | | | |ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅| | | | | | | | |ΡΠΊΠΎΠ³ΠΎ | | | | | | | | |ΠΌΠ°ΡΡΠ½ΠΈΠΊΠ° | | | | | | | | | | | | | | | | | |- | | | | | | | | |ΠΊΡΡΡΠΈΠ»ΡΠ½ΠΎΠ³| | | | | | | | |ΠΎ ΠΌΠ°ΡΡΠ½ΠΈΠΊΠ°| | | | | | | | | | | | | | | | | | | | | | | | | | |- | | | | | | | | |ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠ³| | | | | | | | |ΠΎ ΠΌΠ°ΡΡΠ½ΠΈΠΊΠ°| | | | | | | | | | | | | | | | | | | | | |ΠΠ°ΠΊΡΠΈΠΌΠ°Π»Ρ|tm|tmax = (0/g |c | | | | | |Π½ΠΎΠ΅ Π²ΡΠ΅ΠΌΡ|ax| | | | | |2?([pic] | |5)ΠΠ²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π°, Π±ΡΠΎΡΠ΅Π½Π½ΠΎΠ³ΠΎ | | | | | |Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½ΠΎ | | | | | |ΠΡΠ΅ΠΌΡ |t |t =[pic] |c | | | |2?([pic] | | | | | | | | | | |ΠΠ°Π»ΡΠ½ΠΎΡΡΡ|l |x = l = (0t |ΠΌ | | | | | |ΠΏΠΎΠ»Π΅ΡΠ° | |=[pic] | | |ΠΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½Π°Ρ ΡΠΈΠ·ΠΈΠΊΠ° ΠΈ | | | | | |ΡΠ΅ΡΠΌΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ° | | | | | |ΠΠ°ΡΡΠ° |m|m0 = M/NA = |ΠΊΠ³|ΠΡΡΠΎΡΠ° Π² |h |y = h = h0 — |ΠΌ | |ΠΌΠΎΠ»Π΅ΠΊΡΠ»Ρ |0|(/NA = m/N = | |ΠΌΠΎΠΌΠ΅Π½Ρ t | |gt2/2 | | | | |m/NA (| | | | | | |ΠΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ|(|(= m/M = N/NA|ΠΌΠΎ|Π‘ΠΊΠΎΡΠΎΡΡΡ |(|(= (0 + gt |ΠΌ/c| |Π²Π΅ΡΠ΅ΡΡΠ²Π° | | |Π»Ρ|Π² ΠΌΠΎΠΌΠ΅Π½Ρ | | | | | | | | |t | | | | |ΠΠΎΠ½ΡΠ΅Π½ΡΡΠ°Ρ|n|n = N/V |ΠΌ-|Π£ΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅|a |a = ?(an2 + |ΠΌ/Ρ| |ΠΈΡ | | |3 |ΠΎΠ±ΡΠ΅Π΅ | |aT2) = g | | | | | | |-ΡΠ΅Π½ΡΡΠΎΡΡ| | | | | | | | |ΡΠ΅ΠΌΠΈΡΠ΅Π»ΡΠ½| | | | | | | | |ΠΎΠ΅ | | | | | | | | |-ΡΠ°Π½Π³Π΅Π½ΡΠΈ| | | | | | | | |Π°Π»ΡΠ½ΠΎΠ΅ | | | | |ΠΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ|Q|Q = cm (t = C (t|ΠΠΆ| |an|an = g (cos (| | |ΡΠ΅ΠΏΠ»ΠΎΡΡ | |= qm = Lm = (m| | | | | | |Π’Π΅ΠΏΠ»ΠΎΠ΅ΠΌΠΊΠΎΡ|c|c = Q/m (t |ΠΠΆ| |aT|aT = g (sin (| | |ΡΡ | | |/ΠΊ| | | | | | | | |Π³ (| | | | | | | | |Π‘ | | | | | |ΠΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ |lt = l0(1 + |Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅|y = (g/2(02)x2 | |ΡΠ°ΡΡΠΈΡΠ΅Π½ΠΈΠ΅ |((t) |ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈ| | |ΡΠ²Π΅ΡΠ΄ΡΡ ΡΠ΅Π» |(- ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ|ΠΈ | | | |Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ | | | | |ΡΠ°ΡΡΠΈΡΠ΅Π½ΠΈΡ | | | | | |Π£Π³ΠΎΠ» |(|tg (= gt/(0 |ΡΠ°Π΄| | | |ΠΏΠ°Π΄Π΅Π½ΠΈΡ | | | | |ΠΠ±ΡΠ΅ΠΌΠ½ΠΎΠ΅ |Vt = V0(1 + |5)ΠΠ²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π°, Π±ΡΠΎΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄| |ΡΠ°ΡΡΠΈΡΠ΅Π½ΠΈΠ΅ |((t) |ΡΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΡ | |ΡΠ²Π΅ΡΠ΄ΡΡ ΡΠ΅Π» |(- ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ| | | |Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ | | | |ΡΠ°ΡΡΠΈΡΠ΅Π½ΠΈΡ | | | | |ΠΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½|s |x = s = |ΠΌ | | | |ΠΈΠ΅ Π·Π° | |(0tcos (| | | | |Π²ΡΠ΅ΠΌΡ t | | | | |1)Π‘Π²ΠΎΠΉΡΡΠ²Π° Π³Π°Π·ΠΎΠ² |ΠΡΡΠΎΡΠ° Π² |h |y = h = |ΠΌ | | |ΠΌΠΎΠΌΠ΅Π½Ρ t | |(0tsin (- | | | | | |gt2/2 | | |Π‘ΠΊΠΎΡΠΎΡΡΡ |(x2 = (y2 = |Π‘ΠΊΠΎΡΠΎΡΡΡ |(|(= [pic] |ΠΌ/Ρ| |Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ |(z2; (2 = (x2 +|Π² ΠΌΠΎΠΌΠ΅Π½Ρ | | | | |ΠΈΠ΄Π΅Π°Π»ΡΠ½ΠΎΠ³ΠΎ Π³Π°Π·Π°|(y2 + (z2 |t | | | | | | | | | | | | | |- ΠΏΠΎ ΠΎΡΠΈ | | | | | | |ΠΠ₯ | | | | | | |- ΠΏΠΎ ΠΎΡΠΈ | | | | | | |ΠY | | | | |ΠΠ»ΠΈΠ½Π° |l = 1/?2 (nd2(| | | | | |ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΠΎΠ³ΠΎ | | | | | | |ΠΏΡΠΎΠ±Π΅Π³Π° | | | | | | |ΠΌΠΎΠ»Π΅ΠΊΡΠ»Ρ | | | | | | |ΠΠ±ΡΠΎΠ»ΡΡΠ½Π°Ρ |T = t + 273 | |(x|(x = (0cos (| | |ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ° | | | | | | |ΠΠ°ΠΊΠΎΠ½ |PV/T = const | |(y|(y = (0sin (-| | |ΠΠ΅Π½Π΄Π΅Π»Π΅Π΅Π²Π° — | | | |gt | | |ΠΠ»Π°ΠΉΠΏΠ΅ΡΠΎΠ½Π° | | | | | | |PV = m/M (RT =|P = nkT |ΠΠ°Π»ΡΠ½ΠΎΡΡΡ|sm|smax = |ΠΌ | |(RT | |ΠΏΠΎΠ»Π΅ΡΠ° |ax|(02sin2(/g | | |ΠΠ°Π²Π»Π΅Π½ΠΈΠ΅ |P|P = 1/3nm0(2 =|ΠΠ°|ΠΠ°ΠΊΡΠΈΠΌΠ°Π»Ρ|hm|hmax = |ΠΌ | |ΠΈΠ΄Π΅Π°Π»ΡΠ½ΠΎΠ³ΠΎ| |1/3((2 = 2/3nE| |Π½Π°Ρ |ax|(02sin2(/2g | | |Π³Π°Π·Π° | |= nkT | |Π²ΡΡΠΎΡΠ° | | | | |ΠΠ»ΠΎΡΠ½ΠΎΡΡΡ |(|(= nm0 |ΠΊΠ³|ΠΡΠ΅ΠΌΡ |t |t = 2tmax = |c | |Π³Π°Π·Π° | | |/ΠΌ|ΠΎΠ±ΡΠ΅Π΅ | |2(0sin (/g | | | | | |3 |- Π² | | | | | | | | |Π²ΡΡΡΠ΅ΠΉ | | | | | | | | |ΡΠΎΡΠΊΠ΅ | | | | |ΠΠ½Π΅ΡΠ³ΠΈΡ |E|E = 3/2kT = |ΠΠΆ| |tm|tmax = | | |Π³Π°Π·Π° | |m (2/2 | | |ax|(0sin (/g | | |Π‘ΠΊΠΎΡΠΎΡΡΡ |(|(=[pic] |ΠΌ/|6)ΠΠ²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π° ΠΏΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ | |Π³Π°Π·Π° | | |Ρ | | | | | | |Π Π°Π΄ΠΈΡΡ |R |R = ?(x2 + |ΠΌ | | | | | |ΠΊΡΠΈΠ²ΠΈΠ·Π½Ρ | |y2) = const | | | | | | |ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈ| | | | | | | | |ΠΈ | | | | |5 |2 |.
|Π€ΠΠΠΠΠ |ΠΠ°Π·ΠΎΠ²Π°Ρ |R |R = kNA |ΠΠΆ| | |ΠΏΠΎΡΡΠΎΡΠ½Π½Π°Ρ| | |/ΠΌ| | | | | |ΠΎΠ»| | | | | |Ρ (| | | | | |Π | |Π€ΠΎΡΠΌΡΠ»Ρ Π·Π° ΠΊΡΡΡ 7-Π³ΠΎ — 8-Π³ΠΎ |2)ΠΠ·ΠΎΠΏΡΠΎΡΠ΅ΡΡΡ | |ΠΊΠ»Π°ΡΡΠΎΠ² | | |Π€ΠΈΠ·. |ΠΠ±ΠΎ|Π€ΠΎΡΠΌΡΠ»Ρ |ΠΠ΄. |ΠΠ·ΠΎΡΠ΅ΡΠΌΠΈΡΠ΅Ρ|T = const; P1V1 = | |Π²Π΅Π»ΠΈΡΠΈΠ½Π°|Π·Π½.| |ΠΈΠ·ΠΌ. |ΠΊΠΈΠΉ ΠΏΡΠΎΡΠ΅ΡΡ|P2V2; P1/P2 = V2/V1| |ΠΠ΅Ρ ΡΠ΅Π»Π°|P |mg |Π |ΠΠ·ΠΎΠ±Π°ΡΠΈΡΠ΅ΡΠΊ|P = const; V1/V2 = | | | | | |ΠΈΠΉ ΠΏΡΠΎΡΠ΅ΡΡ |T1/T2; V1 = V0(1 + | | | | | | |((t1 — t0)); (= | | | | | | |(V/V0(t | |ΠΠ°Π²Π»Π΅Π½ΠΈΠ΅|p |F/S |ΠΠ° |ΠΠ·ΠΎΡ ΠΎΡΠΈΡΠ΅ΡΠΊ|V = const; P1/P2 = | | | | | |ΠΈΠΉ ΠΏΡΠΎΡΠ΅ΡΡ |T1/T2; P1 = P0(1 + | |- Π² | | | | |((t1 — t0)); (= | |ΠΆΠΈΠ΄ΠΊΠΎΡΡΠΈ| | | | |(P/P0(t | | | |(gh | |3)ΠΡΠ½ΠΎΠ²Ρ ΡΠ΅ΡΠΌΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ | |ΠΠΎΠ»ΠΈΡΠ΅ΡΡ|Q |Ρm (t; C (t; |ΠΠΆ |ΠΠ½ΡΡΡΠ΅Π½Π½ΡΡ|U |U = 3m/2M (|ΠΠΆ| |Π²ΠΎ | |qm; (m; Lm | |ΡΠ½Π΅ΡΠ³ΠΈΡ | |RT | | |ΡΠ΅ΠΏΠ»ΠΎΡΡ | |I2Rt; IUt; | |Π³Π°Π·Π° | | | | | | |U2/Rt | | | | | | | | | | |Π Π°Π±ΠΎΡΠ° |A |A = P (V = - |ΠΠΆ| | | | | | | |A (| | |Π.Π.Π |(|AΠΏ/AΠ· (|% |ΠΠ΅ΡΠ²ΡΠΉ Π·Π°ΠΊΠΎΠ½ |(U = A + Q = Q | | | |100% | |ΡΠ΅ΡΠΌΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ |- A (; Q = (U + | | | | | | |A (| |ΠΠ°ΡΡΠ° |m |(V |ΠΊΠ³ |ΠΠΠ |(|(= -A/Q1 = |% | | | | | |ΡΠ΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ | |(Q/Q1 = | | | | | | |Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ | |(T/T1; A = | | | | | | | | |-(Q | | |ΠΠΎΡΠ½ΠΎΡΡΡ|N |A/t |ΠΡ |ΠΠ»Π΅ΠΊΡΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ° | | | | | | | |- ΡΠΎΠΊΠ° | | | | | | |P |A/t; IU | |ΠΠ°ΠΊΠΎΠ½ ΠΡΠ»ΠΎΠ½Π° |F = kq1q2/r2; k| | | | | | |= ¼((0 = | | | | | | |Fr2/q1q2 | |ΠΠ»ΠΎΡΠ½ΠΎΡΡ|? |m/V |ΠΊΠ³/ΠΌ3|ΠΠ°ΠΊΠΎΠ½ |(qΠ½Π°Ρ = (qΠΊΠΎΠ½Π΅Ρ| |Ρ | | | |ΡΠΎΡ ΡΠ°Π½Π΅Π½ΠΈΡ | | | | | | |ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ | | | | | | |Π·Π°ΡΡΠ΄Π° | | |Π Π°Π±ΠΎΡΠ° |A |Fs; Nt; Uq;|ΠΠΆ |ΠΠ°ΠΏΡΡΠΆΠ΅Π½Π½ΠΎΡ|E |E = F/q1 = |Π/| | | |UIt; mgh | |ΡΡ ΡΠ». ΠΏΠΎΠ»Ρ| |kq/r2 |ΠΠ»| | | | | | | | |;Π| | | | | | | | |/ΠΌ| |Π‘ΠΈΠ»Π° |FA |g (ΠΆVΡ |Π |ΠΠ»Π΅ΠΊΡΡΠΎΠ΅ΠΌΠΊΠΎ|Π‘ |Π‘ = q/U = |Π€ | |ΠΡΡ ΠΈΠΌΠ΅Π΄Π°| | | |ΡΡΡ | |(r/k | | |Π‘ΠΈΠ»Π° |I |Q/t; P/U; |Π |ΠΠ°ΠΏΡΡΠΆΠ΅Π½Π½ΠΎΡ|E |E = kq/r |Π/| |ΡΠΎΠΊΠ° | |U/R | |ΡΡ ΡΠ°ΡΠ° | | |ΠΠ»| | | | | | | | |;Π| | | | | | | | |/ΠΌ| |Π‘ΠΈΠ»Π° |FT |mg; ma |Π |ΠΠ»Π΅ΠΊΡΡΠΎΠ΅ΠΌΠΊΠΎ|Π‘ |Π‘ = (0(S/d |Π€ | |ΡΡΠΆΠ΅ΡΡΠΈ | | | |ΡΡΡ | | | | | | | | |ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ | | | | |Π‘ΠΎΠΏΡΠΎΡΠΈΠ²|R |U/I; (l/s |ΠΠΌ |ΠΠ»Π΅ΠΊΡΡΠΎΠ΅ΠΌΠΊΠΎ|Π‘ |Π‘ = 4((0(r |Π€ | |Π»Π΅Π½ΠΈΠ΅ | | | |ΡΡΡ ΡΠ°ΡΠ° | | | | |Π£Π΄Π΅Π»ΡΠ½ΠΎΠ΅|? |RS/l |ΠΠΌ (ΠΌΠΌ|ΠΠΊΠ²ΠΈΠΏΠΎΡΠ΅Π½ΡΠΈ|A = qU = Fd = qEd; | |ΡΠΎΠΏΡΠΎΡΠΈΠ²| | |2/ΠΌ |Π°Π»ΡΠ½ΡΠ΅ |qu = qEd; E = U/d; | |Π»Π΅Π½ΠΈΠ΅ | | | |ΠΏΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΠΈ|(= q/S, Π³Π΄Π΅ (- | | | | | | |ΠΏΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΠ½Π°Ρ | | | | | | |ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΡ Π·Π°ΡΡΠ΄Π° | |Π£Π΄Π΅Π»ΡΠ½Π°Ρ|L |Q/m |ΠΠΆ/ΠΊΠ³| | | |ΡΠ΅ΠΌΠΏ. | | | | | | |ΠΏΠ°ΡΠΎΠΎΠ±ΡΠ°| | | | | | |Π·. | | | | | | |Π£Π΄Π΅Π»ΡΠ½Π°Ρ|? |Q/m |ΠΠΆ/ΠΊΠ³|ΠΠ½Π΅ΡΠ³ΠΈΡ |W |W = qU/2 = |ΠΠΆ| |ΡΠ΅ΠΌΠΏ. | | | |ΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΠΎΡ| |q2/2C = | | |ΠΏΠ»Π°Π²Π»Π΅Π½ΠΈ| | | |Π° | |CU2/2 | | |Ρ | | | | | | | | |Π£Π΄. |q |Q/m |ΠΠΆ/ΠΊΠ³|ΠΠΈΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅|(|(= Π‘/Π‘0 | |ΡΠ΅ΠΌΠΏ. | | | |ΡΠΊΠ°Ρ | | | |ΡΠ³ΠΎΡΠ°Π½ΠΈΡ| | | |ΠΏΡΠΎΠ½ΠΈΡΠ°Π΅ΠΌΠΎΡ| | | | | | | |ΡΡ | | | |Π£Π΄. |c |Q / (m (t) |ΠΠΆ/ΠΊΠ³|ΠΠΎΡΠ΅Π½ΡΠΈΠ°Π» |(|(= W/q = |ΠΠΆ| |ΡΠ΅ΠΏΠ»ΠΎΠ΅ΠΌΠΊ| | |(Π‘ |ΡΠ». ΠΏΠΎΠ»Ρ | |kq/r |/Π| |ΠΎΡΡΡ | | | | | | |Π» | |- | | | | | | | | |ΠΊΠ°Π»ΠΎΡΠΈΠΌΠ΅| | | | | | | | |ΡΡΠ° | | | | | | | | | |C |Q / (t |ΠΠΆ/(Π‘|ΠΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ΅ |ΠΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ΅| | | | | |ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ |ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ | | | | | |ΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΠΎΡΠΎΠ² |ΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΠΎΡΠΎΠ² | |ΠΠ½Π΅ΡΠ³ΠΈΡ |Ek |m (2/2 |ΠΠΆ |Π‘ΠΎΠ±Ρ = (Π‘ |Π‘ΠΎΠ±Ρ = Π‘1Π‘2/(Π‘1 | |ΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅| | | | |+ Π‘2) | |ΡΠΊΠ°Ρ | | | | | | |- | | | | | | |ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°| | | | | | |Π»ΡΠ½Π°Ρ | | | | | | | |EP |mgh | |Π‘ΠΈΠ»Π° ΡΠΎΠΊΠ° |I |I = q/t = |Π | | | | | | | |Q/T = U/R = | | | | | | | | |P/U = G ((1 -| | | | | | | | |(2) | | |ΠΠ·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ |m1(1 = m2(2; |ΠΠΠ‘ |(|(= AΡΡ/q |Π | |ΡΠ΅Π» |m1|a1| = | | | | | | |m2|a2|;|F1| = | | | | | | ||F2| | | | | | |ΠΠΈΠ΄ΡΠ°Π²Π»ΠΈΡΠ΅ΡΠΊΠΈΠΉ |F1/F2 = S1/S2 |Π‘ΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½|R |R = U/I = |ΠΠΌ| |ΠΏΡΠ΅ΡΡ | |ΠΈΠ΅ | |(l/S | | |Π ΡΡΠ°Π³ |F1l1 = F2l2 | |Rt = R0(1 + (t); (t| | | | |= (0(1 + (t) | |Π‘ΠΎΠΎΠ±ΡΠ°ΡΡΠΈΠ΅ΡΡ |h1/h2 = (2/(1 |ΠΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ|ΠΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ΅ | |ΡΠΎΡΡΠ΄Ρ | |Π΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ |ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ | | | |ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² |ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² | |ΠΠ»Π΅ΠΊΡΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ° |RΠΎΠ±Ρ = R1 + R2 |RΠΎΠ±Ρ =[pic] | |ΠΠΎΠ»ΠΈΡΠ΅ΡΡ|Q |I2Rt; IUt; |ΠΠΆ | | | |Π²ΠΎ | |U2/Rt | | | | |ΡΠ΅ΠΏΠ»ΠΎΡΡ | | | | | | |ΠΠΎΡΠ½ΠΎΡΡΡ|P |A/t; IU |ΠΡ |ΠΠ°ΠΊΠΎΠ½ ΠΠΌΠ° Π΄Π»Ρ |I = (/(R + r) | |ΡΠΎΠΊΠ° | | | |ΠΏΠΎΠ»Π½ΠΎΠΉ ΡΠ΅ΠΏΠΈ | | |ΠΠ°ΠΏΡΡΠΆΠ΅Π½|U |A/q; IR; |Π |ΠΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ|ΠΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ΅ | |ΠΈΠ΅ | |P/I; Q/It | |Π΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ |ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ | | | | | |Π±Π°ΡΠ°ΡΠ΅ΠΉ |Π±Π°ΡΠ°ΡΠ΅ΠΉ | |Π Π°Π±ΠΎΡΠ° |A |Uq; UIt |ΠΠΆ |I = nE /(R + |I = (/(R + | |ΡΠΎΠΊΠ° | | | |nr) |r/n) | | | | | |rΠΎΠ±Ρ = rn |rΠΎΠ±Ρ = rn | |Π‘ΠΈΠ»Π° |I |Q/t; P/U; |Π | | | |ΡΠΎΠΊΠ° | |U/R; q/t | | | | |Π‘ΠΎΠΏΡΠΎΡΠΈΠ²|R |U/I; (l/s |ΠΠΌ |Π Π°Π±ΠΎΡΠ° ΠΏΡΠΈ |A |A = F (d = |ΠΠΆ| |Π»Π΅Π½ΠΈΠ΅ | | | |ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠΈ| |qE (d = mgh | | | | | | |ΡΠ».Π·Π°Ρ. | | | | |Π£Π΄Π΅Π»ΡΠ½. |(|RS/l |ΠΠΌ (ΠΌΠΌ|Π Π°Π±ΠΎΡΠ° ΡΠΎΠΊΠ°|A |A = qU = UIt|ΠΠΆ| |ΡΠΎΠΏΡΠΎΡΠΈΠ²| | |2/ΠΌ | | |= I2Rt = Q | | |Π»Π΅Π½ΠΈΠ΅ | | | | | | | | |ΠΠ»Π΅ΠΊΡΡΠΈΡ|q |It; A/U |ΠΠ» |ΠΠΎΡΠ½ΠΎΡΡΡ |P |P = A/t = UI|ΠΡ| |Π΅ΡΠΊΠΈΠΉ | | | |ΡΠΎΠΊΠ° | |= I2R = U2/R| | |Π·Π°ΡΡΠ΄ | | | | | | | | |ΠΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ|ΠΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ΅ |ΠΠ°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ |U |U = A/q = Ed|Π | |Π΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ |ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ | | |= IR = P/I | | |UΠΎΠ±Ρ = (U; IΠΎΠ±Ρ|UΠΎΠ±Ρ = U1 = U2 |Π Π°Π±ΠΎΡΠ° |A |A = Fd = qEd|ΠΠΆ| |= I1 = I2 = |= const; IΠΎΠ±Ρ =| | | | | |const; |(I; | | | | | |RΠΎΠ±Ρ = (R |1/RΠΎΠ±Ρ = 1/R1 +| | | | | | |1/R2 | | | | | | | |ΠΠ°ΠΊΠΎΠ½ |m = kq = kI (t; | | | |ΡΠ»Π΅ΠΊΡΡΠΎΠ»ΠΈΠ·Π° |e =[pic]; k | | | | |=[pic] | |ΠΠΈΠ½Π΅ΠΌΠ°ΡΠΈΠΊΠ° | | | |1) ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ΅ |a = 0; (= | | | |ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ |const. | | | |Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ | | | | |ΠΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅|x |x = xo + (t |ΠΌ |ΠΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊ|q |q = It = A/U|ΠΠ»| |Π½ΠΈΠ΅ | | | |ΠΈΠΉ Π·Π°ΡΡΠ΄ | | | | |1 |6 |.
|ΠΡΡΡ |S|S = (R |ΠΌ |1)ΠΠ²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π° ΠΏΠΎΠ΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ | | | | | |ΡΠΈΠ»Ρ ΡΡΠ΅Π½ΠΈΡ | |Π‘ΠΊΠΎΡΠΎΡΡΡ|(|(= (R |ΠΌ/Ρ|Π‘ΠΈΠ»Π° |FΡΡ|FΡΡ = (N = |Π | | | | | |ΡΡΠ΅Π½ΠΈΡ | |(mg (cos (| | |Π£ΡΠΊΠΎΡΠ΅Π½ΠΈ|a|a = aT + an |ΠΌ/Ρ|Π‘ΠΈΠ»Π° |P = |Π| | |Π΅ ΠΎΠ±ΡΠ΅Π΅ | | |2 |ΡΡΠΆΠ΅ΡΡΠΈ|mg | | | |- | | | | | | | | |ΡΠ΅Π½ΡΡΠΎΡΡ| | | | | | | | |ΡΠ΅ΠΌΠΈΡΠ΅Π»Ρ| | | | | | | | |Π½ΠΎΠ΅ | | | | | | | | |- | | | | | | | | |ΡΠ°Π½Π³Π΅Π½ΡΠΈ| | | | | | | | |Π°Π»ΡΠ½ΠΎΠ΅ | | | | | | | | | |a|an = (2R = (2/R| |Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ | | | |n| | |Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ΅Π»Π° | | | | | | |ΠΏΠΎ Π½Π°ΠΊΠ»ΠΎΠ½Π½ΠΎΠΉ | | | | | | |ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ Ρ | | | | | | |ΡΠ³Π»ΠΎΠΌ Π½Π°ΠΊΠ»ΠΎΠ½Π° (| | | | | | |(ΡΠΈΡ.1) | | | |a|aT = (R | | | | | |T| | | | | |6.1)Π Π°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ |[pic] | | |ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ | | | |ΠΡΡΡ |S|S = (t |ΠΌ/Ρ| | | |Π£Π³ΠΎΠ» |(|(= (t =2(N (N |ΡΠ°Π΄|F = |FΡΡ = | | | | |- ΠΏΠΎΠ»Π½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ | |mg (sin (|(mg (cos| | | | |ΠΎΠ±ΠΎΡΠΎΡΠΎΠ²) | | |(| | |Π£ΡΠΊΠΎΡΠ΅Π½ΠΈ|A|an = 4(2R/T2 |ΠΌ/Ρ|ΠΡΠ»ΠΈ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ |(Π ΠΈΡ. 1). | |Π΅ |n| |2 |ΡΠ΅Π»Π° = 0, ΡΠΎ (| | |ΡΠ΅Π½ΡΡΠΎΡΡ| | | |= tg (| | |ΡΠ΅ΠΌΠΈΡ. | | | | | | |Π‘ΠΈΠ»Π° |F|Fn = m (2/R = |Π |Π£ΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ |a |a = g (sin (-|ΠΌ/| |ΡΠ΅Π½ΡΡΠΎΡΡ|n|4(2n2Rm | |ΡΠ΅Π»Π° | |((cos () |Ρ2| |ΡΠ΅ΠΌΠΈΡ. | | | | | | | | |Π£Π³Π»ΠΎΠ²Π°Ρ |(|(= (/t = const|ΡΠ°Π΄|Π’ΠΎΡΠΌΠΎΠ·Π½ΠΎΠΉ |l |l = |ΠΌ | |ΡΠΊΠΎΡΠΎΡΡΡ| | |/Ρ |ΠΏΡΡΡ | |m (02/2FΡΡ | | |ΠΠ΅ΡΠΈΠΎΠ΄ |T|T = 1/n = 2(/(|c |2)ΠΠ°ΠΊΠΎΠ½ Π²ΡΠ΅ΠΌΠΈΡΠ½ΠΎΠ³ΠΎ ΡΡΠ³ΠΎΡΠ΅Π½ΠΈΡ | |ΠΎΠ±ΡΠ°ΡΠ΅Π½ΠΈ| | | | | |Ρ | | | | | |Π§Π°ΡΡΠΎΡΠ° |n|(= n = 1/T = |c-1|Π‘ΠΈΠ»Π° |F |F = |Π | |ΠΎΠ±ΡΠ°ΡΠ΅Π½ΠΈ| |(/2(|;oΠ±|ΠΏΡΠΈΡΡΠΆΠ΅Π½ΠΈΡ| |Gn (m1(m2/r2 | | |Ρ | | |/c |Π΄Π²ΡΡ ΡΠ΅Π» | | | | |6.2)Π Π°Π²Π½ΠΎΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ|Π£ΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ |g |g = Gn (m/r2 |ΠΌ/| |ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ |ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΠΎΠ³ΠΎ| | |Ρ2| | |ΠΏΠ°Π΄Π΅Π½ΠΈΡ | | | | |ΠΡΡΡ |S|S = ((2 — |ΠΌ |ΠΠΎΠΌΠ΅Π½Ρ |I |I = mr2 |ΠΊ (| | | |(02)/2a = (0t +| |ΠΈΠ½Π΅ΡΡΠΈΠΈ | | |Π³ΠΌ| | | |at2/2 = | | | | |2 | | | |= ((0 + ()t/2 | | | | | | | | | | |3)ΠΡΠΎΡΡΡΠ΅ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΡ | |Π‘ΠΊΠΎΡΠΎΡΡΡ|(|(= (0 + at |ΠΌ/Ρ|Π ΡΡΠ°Π³ |F1l1 = F2l2; F1/F2 =| |Π»ΠΈΠ½Π΅ΠΉΠ½Π°Ρ| |=[pic] | | |l2/l1 | | | | | | | | | | | | | | | |- | | | | | | |ΡΠ³Π»ΠΎΠ²Π°Ρ | | | | | | | | | | |ΠΠ΅ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½Ρ|l1 = l2; F1 = F2 | | | | | |ΠΉ Π±Π»ΠΎΠΊ | | | |(|(= (0 + (|ΡΠ°Π΄|ΠΠΎΠ΄Π²ΠΈΠΆΠ½ΡΠΉ |l1 = 2l2; F1 = 2F2 | | | |=[pic] |/Ρ |Π±Π»ΠΎΠΊ | | | | | | |Π‘ΠΈΡΡΠ΅ΠΌΠ° |ΠΠ· n ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΡΡ ΠΈ n | | | | | |Π±Π»ΠΎΠΊΠΎΠ² |Π½Π΅ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΡΡ . F1 = | | | | | | |F2/2n | |Π£ΡΠΊΠΎΡΠ΅Π½ΠΈ|a|a = ((2 — |ΠΌ/Ρ| |ΠΠ· n ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΡΡ ΠΈ | |Π΅ | |(02)/2s = |2 | |ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π½Π΅ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΠ³ΠΎ.| |Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅| |2(s/t2 — (0/t) | | |F1 = F2/2n | | | |= | | | | | | |= [pic] | | | | | | | | | | | | | | | | | | |- | | | | | | |ΡΠ³Π»ΠΎΠ²ΠΎΠ΅ | | | | | | |- | | | | | | |ΡΠ΅Π½ΡΡΠΎΡΡ| | | | | | |ΡΠ΅ΠΌΠΈΡΠ΅Π»Ρ| | | | | | |Π½ΠΎΠ΅ | | | | | | |-ΡΠ°Π½Π³Π΅Π½Ρ| | | | | | |ΠΈΠ°Π»ΡΠ½ΠΎΠ΅ | | | | | | | | | | |ΠΠ°ΠΊΠ»ΠΎΠ½Π½Π°Ρ |Fx = P (sin (; Fy = | | | | | |ΠΏΠ»ΠΎΡΠΊΠΎΡΡΡ |P (cos (| | | | | |ΠΠ»ΠΈΠ½ |ΠΠ²Π΅ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠ΅ | | | | | | |Π½Π°ΠΊΠ»ΠΎΠ½Π½ΡΠ΅ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ;| | | | | | |Fx = Fl/h = F/2sin (| | |(|(= ((2 — |ΡΠ°Π΄|4)Π Π°Π±ΠΎΡΠ° ΠΈ ΡΠ½Π΅ΡΠ³ΠΈΡ | | | |(02)/2s = |/Ρ2| | | | |2((/t2 — (0/t) | | | | | |= (/t | | | | |a|an = (2/R = (/R|ΠΌ/Ρ|Π Π°Π±ΠΎΡΠ° |A |A = F (l (cos (|ΠΠΆ| | |n| | | | |= Nt | | | |a|aT = (R | |ΠΠΎΡΠ½ΠΎΡΡΡ |N |N = A/t = |ΠΡ| | |T| | | | |F (((cos (| | |Π£Π³ΠΎΠ» |(|(= ((2 — |ΡΠ°Π΄|ΠΠΠ |(|(= ΠΠΏ/ΠΠ· = |% | |ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅| |(02)/2(= (0t +| | | |NΠΏ/NΠ· | | |Π½ΠΈΡ | |(t2/2 = | | | | | | | | |= ((0 + ()t/2 | | | | | | | | | | |ΠΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊ|Ek |Ek = m (2/2 =|ΠΠΆ| | | | | |Π°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ| |p2/2m | | |ΠΡΠ΅ΠΌΡ |t|t =[pic]= |c |ΠΠΎΡΠ΅Π½ΡΠΈΠ°Π»Ρ|EΠΏ |EΠΏ = mgh |ΠΠΆ| |Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ| |=[pic] | |Π½Π°Ρ | | | | | | | | |ΡΠ½Π΅ΡΠ³ΠΈΡ | | | | | | | | |ΠΠ°ΠΊΠΎΠ½ |(EΠ½Π°Ρ = (EΠΊΠΎΠ½Π΅Ρ| | | | | |ΡΠΎΡ ΡΠ°Π½Π΅Π½ΠΈΡ | | | | | | |ΡΠ½Π΅ΡΠ³ΠΈΠΈ | | | | | | |5)ΠΡΡΠΆΠΈΠ½Π° | | | | | |Π‘ΠΈΠ»Π° |Fy |Fy = kx |Π | | | | | |ΡΠΏΡΡΠ³ΠΎΡΡΠΈ | | | | |ΠΠΈΠ½Π°ΠΌΠΈΠΊΠ° |ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½|k |k = Fy/x |Π/| | |Ρ | | |ΠΌ | | |ΡΠΏΡΡΠ³ΠΎΡΡΠΈ | | | | |Π ΠΈΠ½Π΅ΡΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ |Π |ΠΠ½Π΅ΡΠ³ΠΈΡ |EΠΊ |EΠΊ = kx2/2 |ΠΠΆ| |ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΎΡΡΡΠ΅ΡΠ°|Π½Π΅ΠΈΠ½Π΅ΡΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ |ΠΏΡΡΠΆΠΈΠ½Ρ | | | | | |ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΎΡΡΡΠ΅ΡΠ°| | | | | |F = ma = p/t (p|F + FΠΈ + FΡΠ± + |ΠΠ°ΠΏΡΡΠΆΠ΅Π½Π½ΠΎ|(|(= Fy/S = | | |- ΠΈΠΌΠΏΡΠ»ΡΡ) |FΠΊ = ma |ΡΡΡ | |E ((x/x | | |(ΠΡΠΎΡΠΎΠΉ Π·Π°ΠΊΠΎΠ½ | | | | | | |ΠΡΡΡΠΎΠ½Π°) | | | | | | | |FΠΈ = -ma; FΡΠ± =|6)ΠΠ±ΡΠΎΠ»ΡΡΠ½ΠΎ ΡΠΏΡΡΠ³ΠΎΠ΅ | | |m (2(; FΠΊ = 2m ((|ΡΡΠΎΠ»ΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΠ΅ ΡΠ΅Π» ((1 ΠΈ (2 — Π΄ΠΎ | | | |ΡΠΎΡΠ΄Π°ΡΠ΅Π½ΠΈΡ, ((1 ΠΈ ((2 — ΠΏΠΎΡΠ»Π΅) | |Π’ΡΠ΅ΡΠΈΠΉ Π·Π°ΠΊΠΎΠ½ |F12 = - F21 |((1 = ((m1-m2)(1 + | |ΠΡΡΡΠΎΠ½Π° | |2m2(2)/(m1+m2) = -(1 + 2(m1(1 +| | | |m2(2)/(m1+m2) | |Π‘ΠΈΠ»Π° |F|F = ma |Π |((2 = ((m2-m1)(2 + | | | | | |2m1(1)/(m1+m2) = -(2 + 2(m1(1 +| | | | | |m2(2)/(m1+m2) | |ΠΠΌΠΏΡΠ»ΡΡ |p|p = Ft |ΠΊΠ³ (|7)ΠΠ±ΡΠΎΠ»ΡΡΠ½ΠΎ Π½Π΅ΡΠΏΡΡΠ³ΠΎΠ΅ | |ΡΠΈΠ»Ρ | | |ΠΌ/Ρ|ΡΡΠΎΠ»ΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΠ΅ ΡΠ΅Π» ((1 ΠΈ (2 — Π΄ΠΎ | |- ΡΠ΅Π»Π° | | | |ΡΠΎΡΠ΄Π°ΡΠ΅Π½ΠΈΡ, ((1 ΠΈ ((2 — ΠΏΠΎΡΠ»Π΅) | | | |p = m (| |Π‘ΠΊΠΎΡΠΎΡΡΡ |(= (m1(1+ | | | | | |ΡΠΈΡΡΠ΅ΠΌΡ ΠΏΠΎΡΠ»Π΅ |m2(2)/(m1+m2) | | | | | |ΡΠΎΡΠ΄Π°ΡΠ΅Π½ΠΈΡ | | |ΠΠΎΠΌΠ΅Π½Ρ |M|M = Fl |Π (ΠΌ|((1 = (m1(1 + m2(2 — | |ΡΠΈΠ»Ρ | | | |((1-(2)m2k)/(m1+m2), Π³Π΄Π΅ k — | |- | | | |ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π²ΠΎΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΈΡ | |ΠΈΠΌΠΏΡΠ»ΡΡΠ°| | | | | | |L|L = p (l |ΠΊΠ³ (|((2 = (m1(1 + m2(2 — | | | | |ΠΌ2/|((1-(2)m1k)/(m1+m2), Π³Π΄Π΅ k — | | | | |Ρ |ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π²ΠΎΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΈΡ | |ΠΠ°ΠΊΠΎΠ½ |(pΠ½Π°Ρ = (pΠΊΠΎΠ½Π΅Ρ|8)ΠΠ΅Ρ Π°Π½ΠΈΠΊΠ° ΠΆΠΈΠ΄ΠΊΠΎΡΡΠ΅ΠΉ ΠΈ Π³Π°Π·ΠΎΠ² | |ΡΠΎΡ ΡΠ°Π½Π΅Π½ΠΈΡ | | | |ΠΈΠΌΠΏΡΠ»ΡΡΠ° | | | |ΠΠ°ΠΊΠΎΠ½ |(MΠ½Π°Ρ = (MΠΊΠΎΠ½Π΅Ρ|ΠΠ°Π²Π»Π΅Π½ΠΈΠ΅ |P |P = F/S = |ΠΠ°| |ΡΠΎΡ ΡΠ°Π½Π΅Π½ΠΈΡ | | | |(gh | | |ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΡΠΈΠ»Ρ | | | | | | |ΠΠ°ΠΊΠΎΠ½ |(LΠ½Π°Ρ = (LΠΊΠΎΠ½Π΅Ρ|Π‘ΠΈΠ»Π° |FA |FA = (ΠΆgVΡ |Π | |ΡΠΎΡ ΡΠ°Π½Π΅Π½ΠΈΡ | |ΠΡΡ ΠΈΠΌΠ΅Π΄Π° | | | | |ΠΌΠΎΠΌΠ΅Π½ΡΠ° | | | | | | |ΠΈΠΌΠΏΡΠ»ΡΡΠ° | | | | | | |3 |4 |.
———————————- fffffN.
fffffF.
fffffFΡΡ ΠΠ²Π²Fn.
ΠΠ²mg.
(.