Помощь в написании студенческих работ
Антистрессовый сервис

Физические основы явления выстрела

РефератПомощь в написанииУзнать стоимостьмоей работы

Можно исследовать начальную скорость пули с помощью законов сохранения. Начальной скоростью пули называется та скорость, с которой она покидает канал ствола. Закон сохранения энергии для явления выстрела можно записать так: График изменения скорости пули в канале ствола (кривая II на рис.) можно построить, если предположить, что сила, действующая на пулю со стороны пороховых газов, много больше… Читать ещё >

Физические основы явления выстрела (реферат, курсовая, диплом, контрольная)

Физические основы явления выстрела.

В некотором приближении поведение пороховых газов можно описать с помощью уравнения Менделеева (Клапейрона. Это позволяет качественно проанализировать явление выстрела и построить графики зависимости давления газа p скорости пули v от пути l, проходимого ею в канале ствола (см. Рис.).

Рассмотрим, как происходит процесс выстрела. Его длительность можно условно разделить на такие последовательные периоды: предварительный (от начала горения порохового заряда до полного врезания оболочки пули в нарезы ствола; первый (от начала движения пули по стволу до полного сгорания порохового заряда; второй (от момента полного сгорания порохового заряда до момента вылета пули из ствола; третий (от момента вылета пули до прекращения возрастания её скорости.

Рассмотрим, как меняется давление порохового газа при выстреле (кривая I на рис.).

Предварительный период. Во время горения заряда образуется пороховой газ. Давление его можно выразить формулой:

[pic] (1).

где Т, V и m (соответственно температура, объём и масса порохового газа, М (его молярная масса, R (универсальная газовая постоянная. Поскольку объём газа не меняется, а температура и масс резко увеличиваются, давление газа будет расти по закону:

[pic],.

где С (постоянная величина. Давление пороховых газов будет возрастать до тех пор, пока пуля не сдвинется с места.

Первый период. Его условно можно разделить на три полпериода. Рассмотрим их поочерёдно.

1. Масса порохового газа m возрастает быстрее, чем объём V запульного пространства (объём, заключённый между дном пули и дном гильзы).

Учитывая, что.

[pic].

(S (площадь сечения канала ствола, l (путь пули в канале ствола), изменение давления газа в первый подпериод можно представить графически в виде участка 1−2 кривой I.

2. Скорость возрастания массы порохового газа становится близкой к скорости движения пули, или, что одно и то же, к скорости изменения объёма V. Тогда формула (1) принимает вид.

[pic],.

где С1 (постоянная величина. Графически изменение давления в этот подпериод можно представить в виде участка 3−4 кривой I.

3. Объём V запульного пространства вследствие быстрого увеличения скорости пули растёт гораздо быстрее массы m притока порохового газа, и изменением массы можно пренебречь. Тогда формула (1) примет вид:

[pic], где С2 (постоянная величина. Изменение давления газа в этот подпериод можно представить в виде участка 5−6 кривой I.

Промежуточные процессы между подпериодами можно приближённо изобразить соответствующими участками 2−3 и 4−5 кривой I.

Второй период. Так как весь пороховой заряд уже сгорел, масса газа не меняется. Тогда формула (1) принимает вид.

[pic], где С3 (постоянная величина. Изменение давления можно представить участком 6−7 кривой I.

Третий период. Часть газа вырывается из канала ствола вслед за пулей, при встрече с воздухом образует пламя и ударную волну. Следовательно, масса газа m уменьшается. Так как при этом увеличивается объём газа, то, согласно формуле (1), происходит резкое падение давления газа (участок 7−8 кривой I). Это уменьшение происходит до тех пор, пока давление порохового газа на дно пули не уравновесится сопротивлением воздуха.

График изменения скорости пули в канале ствола (кривая II на рис.) можно построить, если предположить, что сила, действующая на пулю со стороны пороховых газов, много больше силы сопротивления, силы трения и т. д.

В предварительный период скорость пули не меняется. В остальные периоды ускорение пули пропорционально давлению. Действительно, на пулю действует сила:

[pic],.

где p (давление порохового газа, S (площадь сечения канала ствола. Следовательно, если масса пули m, то её ускорение.

[pic].

Поскольку давление газа в канале ствола во все периоды много больше атмосферного, ускорение пули будет больше нуля, т. е. Она будет двигаться ускоренно.

В первый подпериод ускорение увеличивается, следовательно, скорость пули будет резко возрастать. Графически это изменение скорости можно представить в виде участка 1−2 кривой II. Во второй подпериод ускорение почти не изменяется, поэтому движение пули будет близким к равноускоренному (участок 3−4 кривой II). В третий подпериод ускорение пули уменьшается, но остаётся положительным, следовательно, прирост скорости пули уменьшается (участок 5−6 кривой II). Во второй и третий периоды происходит дальнейшее уменьшение ускорения, что соответствует уменьшению прироста скорости (участок 7−8 кривой II).

Можно исследовать начальную скорость пули с помощью законов сохранения. Начальной скоростью пули называется та скорость, с которой она покидает канал ствола. Закон сохранения энергии для явления выстрела можно записать так:

[pic]. (2).

Здесь Е1 (энергия, выделяющаяся при сгорании пороха, Е2 (кинетическая энергия пули в момент вылета из канала ствола, Е3 (кинетическая энергия стрелкового оружия, Е4 (энергия, уносимая выброшенными пороховыми газами, идущая на нагревание ствола, и т. д.

Очевидно,.

[pic] (3).

(q (теплота сгорания пороха, m1 (его масса);

[pic] (4).

(m2 (масса пули, V (её скорость в момент вылета из ствола);

[pic] (5).

(m3 (масса оружия, u (скорость отдачи при выстреле), причём, поскольку согласно закону сохранения импульса,.

[pic],.

выражение (5) можно записать в виде:

[pic].

(6).

Энергия Е4 зависит прежде всего от длины ствола l. При малой длине много энергии будет выбрасываться наружу, при слишком большой окажутся значительными потери энергии на нагревание ствола и преодоление сил сопротивления, действующих на пулю в его канале. Следовательно, важно выбрать некоторую оптимальную длину ствола, при которой энергия Е4 будет минимальной.

Учитывая (3)-(6) и приведённые выше рассуждения, выражение (2) можно переписать в виде:

[pic].

Откуда начальная кинетическая энергия пули:

[pic].

С помощью этой формулы легко доказать следующие утверждения:

. начальная скорость пули зависит от длины ствола, массы пули, массы порохового заряда и от других факторов;

. чем длиннее ствол (до известных пределов), тем дольше действует на пулю пороховой газ и тем больше её начальная скорость;

. при постоянных длине ствола и массе порохового заряда начальная скорость пули тем больше, чем меньше её масса.

Можно сказать, что скорость пули зависит и от массы стрелкового оружия.

———————————- [pic].

Показать весь текст
Заполнить форму текущей работой