Помощь в написании студенческих работ
Антистрессовый сервис

Типы выборок. 
Малая выборка

РефератПомощь в написанииУзнать стоимостьмоей работы

Известны несколько схем формирования неслучайной выборки, которые получили значительное распространение и используются главным образом в социологических исследованиях: отбор доступных единиц наблюдения, отбор по нюрнбергскому методу, целевая выборка при определении экспертов и др. Важное значение имеет также квотная выборка, которая формируется исследователем по небольшому количеству существенных… Читать ещё >

Типы выборок. Малая выборка (реферат, курсовая, диплом, контрольная)

Помимо собственно случайной выборки с ее четким вероятностным обоснованием существуют и другие выборки, которые не являются абсолютно случайными, однако широко применяются. Следует заметить, что строгое применение собственно случайного отбора единиц из генеральной совокупности далеко не всегда возможно на практике. К таким выборкам относятся механическая выборка, типическая, серийная (или гнездовая), многофазовая и ряд других.

Редко бывает, чтобы генеральная совокупность была однородной, это скорее исключение, нежели правило. Поэтому при наличии в составе генеральной совокупности различных типов явления часто желательно обеспечить более равномерное представительство в выборочной совокупности различных типов. Эта цель успешно достигается при применении типической выборки. Главная трудность заключается в том, что мы должны иметь дополнительную информацию о всей генеральной совокупности, что в ряде случаев является затруднительным.

Типическую выборку называют еще расслоенной или стратифицированной выборкой; ее применяют также в целях более равномерного представления в выборке различных районов, и в этом случае выборку называют районированной.

Итак, иод типической выборкой понимается такая выборка, при которой генеральная совокупность разделена на типические подгруппы, сформированные по одному или нескольким существенным признакам (например, население разделено на 3—4 подгруппы по величине среднедушевого дохода или, но уровню образования — начальное, среднее, высшее и т. п.). Далее из всех типических групп можно вести отбор единиц в выборку несколькими способами, формируя:

  • а) типическую выборку с равномерным размещением, где из разных типов (слоев) отбирается равное число единиц. Эта схема работает хорошо, если в генеральной совокупности слои (типы) не очень сильно отличаются друг от друга по числу единиц;
  • б) типическую выборку с пропорциональным размещением, когда требуется (в отличие от равномерного размещения), чтобы доля (%) отбора для всех слоев была бы одинаковой (например, 5 или 10%);
  • в) типическую выборку с оптимальным размещением, когда учитывается степень вариации признаков в различных группах генеральной совокупности. При таком размещении пропорция отбора для групп с большой колеблемостью признака увеличивается, что в итоге приводит к уменьшению случайной ошибки.

Формула средней ошибки при типическом отборе похожа на обычную ошибку выборки для собственно случайной выборки с той лишь разницей, что вместо общей дисперсии проставляется средняя из частных внутригрупповых дисперсий, что, естественно, приводит к уменьшению погрешности по сравнению с собственно случайной выборкой. Однако ее применение не всегда возможно (по многим причинам). Если нет необходимости в большой точности, легче и дешевле использовать серийную выборку.

Серийная (гнездовая) выборка состоит в том, что в выборку отбираются не единицы совокупности (например, студенты), а отдельные серии, или гнезда (например, учебные группы). Говоря иначе, при серийном (гнездовом) отборе единица наблюдения и единица отбора не совпадают: отбираются некоторые группы примыкающих друг к другу единиц (гнезда), а обследованию подлежат входящие в состав этих гнезд единицы. Так, например, при выборочном обследовании жилищных условий мы можем в случайном порядке выбрать некоторое число домовладений (единица отбора) и выяснить далее жилищные условия проживающих в этих домах семей (единицы наблюдения).

Серии (гнезда) состоят из единиц, связанных между собой территориально (районы, города и т. д.), организационно (предприятия, цеха и г. д.) или во времени (например, совокупность единиц выработанной за данный отрезок времени продукции).

Серийный отбор может быть организован в форме одноступенчатого, двухступенчатого или многоступенчатого отбора.

Случайно отобранные серии подвергаются сплошному исследованию. Таким образом, серийная выборка состоит из двух этапов случайного отбора серий и сплошного изучения этих серий. Серийный отбор дает значительную экономию в силах и средствах и поэтому часто используется на практике. Ошибка серийного отбора отличается от ошибки собственно случайного отбора гем, что вместо значения общей дисперсии используется межсерийная (межгрупповая) дисперсия, а вместо объема выборки — количество серий. Точность обычно не очень велика, но в ряде случаев это допустимо. Серийная выборка может быть повторной и бесповторной, а серии — равновеликими и неравновеликими.

Серийная выборка может быть организована по разным схемам. Например, можно сформировать выборочную совокупность в два этапа: сначала в случайном порядке выбираются подлежащие обследованию серии, затем из каждой отобранной серии также в случайном порядке отбирается определенное количество единиц, подлежащих непосредственному наблюдению (измерению, взвешиванию и пр.). Ошибка такой выборки будет зависеть от ошибки серийного отбора и от ошибки индивидуального отбора, т. е. многоступенчатый отбор дает, как правило, менее точные результаты по сравнению с одноступенчатым, что объясняется возникновением ошибок репрезентативности на каждой ступени выборки. В этом случае требуется использовать формулу ошибки выборки для комбинированного отбора.

Другой формой отбора является многофазовый отбор (1, 2, 3 фазы, или этапа). Этот отбор по своей структуре отличается от многоступенчатого, так как при многофазовом отборе пользуются на каждой фазе одними и теми же единицами отбора. Ошибки при многофазовом отборе рассчитывают на каждой фазе отдельно. Главная особенность двухфазовой выборки состоит в том, что выборки отличаются друг от друга по трем критериям в зависимости: 1) от доли единиц, изученных на первой фазе выборки и вновь включенных во вторую и последующие фазы; 2) от соблюдения равенства шансов каждой единицы выборки первой фазы вновь быть объектом изучения; 3) от величины интервала, отделяющего фазы друг от друга.

Остановимся еще на одном виде отбора, а именно механическом (или систематическом). Этот отбор является, вероятно, самым распространенным. Это объясняется, видимо, тем, что из всех приемов выбора данный прием является простейшим. В частности, он значительно проще, чем случайный отбор, предполагающий умение пользоваться таблицами случайных чисел, и не требует дополнительных сведений о генеральной совокупности и ее структуре. К тому же механический отбор тесно переплетается с пропорциональным стратифицированным отбором, что приводит к снижению ошибки выборки.

Например, применение механического отбора членов жилищного кооператива из списка, составленного в порядке поступления в данный кооператив, обеспечит пропорциональное представительство членов кооператива с разным стажем. Использование этого же приема для отбора респондентов из списка лиц, составленного по алфавиту, обеспечивает равные шансы для фамилий, начинающихся на разные буквы, и т. п. Использование табельных или иных списков на предприятиях или в учебных заведениях и др. может обеспечить необходимую пропорциональность в представительстве работников с разным стажем. Заметим, что механический отбор широко применяется в социологии, при изучении общественного мнения и др.

В целях снижения величины ошибки и особенно расходов на проведение выборочного исследования широко используются разные комбинации отдельных видов отбора (механического, серийного, индивидуального, многофазового и т. п.). В таких случаях следует рассчитывать более сложные ошибки выборок, которые состоят из ошибок, имеющих место на разных этапах исследования.

Малая выборка — это совокупность единиц меньше 30. Малые выборки встречаются на практике довольно часто. Например, число заболеваний редкими болезнями или число единиц, обладающих редким признаком; кроме того, к малой выборке прибегают, когда исследование стоит дорого или исследование связано с уничтожением продукции или образцов. Широкое применение малые выборки получили в сфере обследования качества продукции. Теоретические основы для определения ошибок малой выборки были заложены английским ученым У. Госсетом (псевдоним Стьюдент).

Необходимо помнить, что при определении ошибки для малой выборки следует вместо численности выборки брать величину (п — 1) или же до определения средней ошибки выборки рассчитывать так называемую исправленную дисперсию выборки (в знаменателе вместо п следует ставить (п — 1)). Отметим, что такая поправка делается только один раз — при расчете выборочной дисперсии или при определении ошибки. Величина (п — 1) носит название степени свободы. Кроме того, нормальное распределение заменяется-распределением (распределением Стыодента), которое табулировано и зависит от количества степеней свободы. Единственным параметром распределения Стыодента является величина (п — 1). Еще раз подчеркнем, что поправка (п — 1) важна и существенна лишь при малых, но численности выборочных совокупностях; при yi > 30 и выше различие сходит на нет, приближаясь к нулю.

До сих пор шла речь о случайных выборках, т. е. таких, когда выбор единиц из генеральной совокупности производится случайно (или почти случайно) и все единицы имеют равную (или почти равную) вероятность попасть в выборку. Однако отбор единиц может быть основан на принципе неслучайного отбора, когда во главу угла ставится принцип доступности и целенаправленности. В таких случаях нельзя говорить о репрезентативности полученной выборки, а исчисление ошибок репрезентативности можно производить, лишь имея сведения о генеральной совокупности.

Известны несколько схем формирования неслучайной выборки, которые получили значительное распространение и используются главным образом в социологических исследованиях: отбор доступных единиц наблюдения, отбор по нюрнбергскому методу, целевая выборка при определении экспертов и др. Важное значение имеет также квотная выборка, которая формируется исследователем по небольшому количеству существенных параметров и дает очень близкое совпадение с генеральной совокупностью. Говоря иначе, квотный отбор должен обеспечить исследователю почти полное совпадение выборочной и генеральной совокупностей по избранным им параметрам. Целенаправленное достижение близости двух совокупностей, но ограниченному кругу показателей достигается, как правило, с помощью выборки существенно меньшего объема, чем при использовании случайного отбора. Именно это обстоятельство делает квотный отбор привлекательным для исследователя, не имеющего возможности ориентироваться на самовзвешивающуюся случайную выборку большого объема. Следует добавить, что сокращение объема выборки чаще всего сочетается с уменьшением денежных затрат и сроков проведения исследования, что увеличивает преимущества указанного способа отбора. Отметим также, что при квотной выборке имеется довольно значительная предварительная информация о структуре генеральной совокупности. Главное преимущество здесь состоит в том, что объем выборки существенно меньше, чем при случайной выборке. Выделенные признаки (чаще всего социально-демографические — пол, возраст, образование) должны тесно коррелировать с изучаемыми характеристиками генеральной совокупности, т. е. объекта исследования.

Как уже указывалось, выборочный метод дает возможность получить сведения о генеральной совокупности с гораздо меньшими затратами средств, времени и усилий, чем при сплошном наблюдении. Понятно также, что сплошное изучение всей генеральной совокупности в ряде случаев невозможно, например при проверке качества продукции, образцы которой уничтожаются.

Вместе с этим, однако, следует указать, что генеральная совокупность не является полностью «черным ящиком» и кое-какими сведениями о ней мы все же располагаем. Проводя, например, выборочное исследование, касающееся жизни, быта, имущественного положения, доходов и расходов студентов, их мнений, интересов и т. п., мы все же располагаем сведениями об общей их численности, группировке по полу, возрасту, семейному положению, местожительству, курсе обучения и другими характеристиками. Эти сведения всегда используются в выборочном исследовании.

Существует несколько разновидностей распространения выборочных характеристик на генеральную совокупность: способ прямого пересчета и способ поправочных коэффициентов. Пересчет выборочных характеристик производится, как правило, с учетом доверительных интервалов и может быть выражен в абсолютных и относительных величинах.

Здесь вполне уместно подчеркнуть, что большая часть статистической информации, касающейся экономической жизни общества в самых разных ее проявлениях и видах, основана на выборочных данных. Конечно, они дополняются и данными сплошного учета, и сведениями, полученными в результате переписей (населения, предприятий и пр.). Так, например, все сведения бюджетной статистики (о доходах и расходах населения), приводимые Росстатом, основаны на данных выборочного исследования. Сведения о ценах, размерах производства, объемах торговли, выраженные в соответствующих индексах, также в значительной мере основаны на выборочных данных.

Показать весь текст
Заполнить форму текущей работой