Помощь в написании студенческих работ
Антистрессовый сервис

Исследование частотных характеристик типовых динамических звеньев

КонтрольнаяПомощь в написанииУзнать стоимостьмоей работы

Попробуем реализовать апериодическое звено 2-го порядка с постоянными времени и на двух последовательно соединенныхцепочках, отдельно каждая из которых представляет собой апериодическое звено 1-го порядка (рисунок 19). ЛАЧХ и ЛФЧХ данного звена и необходимого апериодического звена 2-го порядка представлены на рисунке 20, а, а их переходные функции — на рисунке 20, б. Реализуем апериодическое… Читать ещё >

Исследование частотных характеристик типовых динамических звеньев (реферат, курсовая, диплом, контрольная)

Министерство образования и науки Украины

Донбасская Государственная Машиностроительная Академия

Кафедра АПП

Лабораторная работа

по дисциплине

Теория автоматического управления

Тема

Исследование частотных характеристик типовых динамических звеньев

Краматорск

Задание

Таблица 1

№ п/п

Параметры динамических звеньев

Безынерцион.

Апериодич. 1-го порядка

Апериодич. 2-го порядка

Колебательное

Реальные дифференцирующие и интегрирующие, звено запаздывания

K

T, с

T1, с

T2, с

T, с

о

T, с

25−37

0.06 — 0.5

0.26

0.06 — 0.5

0.06 — 0.5

0.1−0.9

0.06 — 0.5

1. Исследование безынерционного звена

1.1 Исследование частотных характеристик безынерционного звена

Для исследования частотных характеристик безынерционного звена в прикладном пакете ProteusISIS составляем структурную схему, представленную на рисунке 1 для трех значений K:

.

ЛАЧХ звеньев представлены на рисунке 2, графики переходной функции — на рисунке 3.

Рисунок 1 — Структурная схема для исследования безынерционного звена

Рисунок 2 — ЛАЧХ безынерционных звеньев

Рисунок 3 — Переходные функции безынерционных звеньев

1.2 Реализация безынерционного звена

Реализуем безынерционное звено с коэффициентом усиления на операционных усилителях (рисунки 4 и 7). ЛАЧХ и ЛФЧХ инвертирующего и неинвертирующего усилителей представлены на рисунках 5 и 8, переходные функции — на рисунках 6 и 9. Для сравнения частотных характеристик идеальных и реальных звеньев изобразим их ЛЧХ в совмещенных координатах (рисунок 10).

Рисунок 4 — Электрическая принципиальная схема инвертирующего усилителя с коэффициентом усиления

Рисунок 5 — ЛАЧХ и ЛФЧХ инвертирующего усилителя

а)

б)

Рисунок 6 — Переходные функции идеального безынерционного звена и инвертирующего усилителя

Рисунок 7 — Электрическая принципиальная схема неинвертирующего усилителя с коэффициентом усиления

Рисунок 8 — ЛАЧХ и ЛФЧХ неинвертирующего усилителя

а)

б)

Рисунок 9 — Переходные функции идеального безынерционного звена и неинвертирующего усилителя

Рисунок 10 — ЛАЧХ и ЛФЧХ идеального безынерционного звена, инвертирующего усилителя и неинвертирующего усилителя

При рассмотрении частотных и временных характеристик безынерционных звеньев можно сделать следующие выводы:

· при прохождении через безынерционный элемент амплитуда и фаза выходного сигнала не зависит от частоты входного сигнала

· при увеличении (уменьшении) коэффициента усиления ЛАЧХ увеличивается (уменьшается) во столько же раз, а ЛФЧХ не меняется.

2. Исследование апериодического звена 1-го порядка

a. Исследование частотных характеристик апериодического звена 1-го порядка

Для исследования частотных характеристик апериодического звена 1-го порядка в прикладном пакете ProteusISIS составляем структурную схему, представленную на рисунке 11, для трех значений :

.

Логарифмические частотные характеристики апериодических звеньев представлены на рисунке 12, графики переходной функции — на рисунке 13.

Рисунок 11 — Структурная схема для исследования апериодических звеньев 1-го порядка

Рисунок 12 — Логарифмические частотные характеристики апериодических звеньев 1-го порядка

Рисунок 13 — Переходные функции апериодических звеньев 1-го порядка

b. Реализация апериодического звена 1-го порядка

Реализуем апериодическое звено 1-го порядка с постоянной времени нацепочке и нацепочке (рисунок 14). ЛАЧХ и ЛФЧХцепочки и на-цепочки представлены на рисунке 15, а и 15, б. Для сравнения частотных характеристик идеальных и реальных апериодических звеньев изобразим их ЛЧХ в совмещенных координатах (рисунок 15, в).

а)б)

а) -цепочка;

б) -цепочка

Рисунок 14 — Электрическая принципиальная схема апериодических звеньев 1-го порядка с постоянной времени

а) б)

в)

Рисунок 15 — ЛАЧХ и ЛФЧХ апериодических звеньев

а) -цепочка; б) -цепочка; в) совмещенные ЛЧХ идеального апериодического звена, -цепочка ицепочка

При анализе частотных характеристик апериодических звеньев 1-го порядка можно сделать следующие выводы:

· увеличение (уменьшение) постоянной времени звена приводит к сдвигу ЛАЧХ и ЛФЧХ влево (вправо).

· чем меньше постоянная времени Т, тем шире полоса пропускания (т.к.~).

· при уменьшении постоянной времени уменьшается время переходного процесса и наоборот.

· чем меньше постоянная времени, тем меньше время переходного процесса и шире полоса пропускания, следовательно, чем меньше время переходного процесса, тем шире полоса пропускания.

· если на график ЛАЧХ заменить ломаной кривой и из точки ''разлома'' опустить прямую на ось, то это и будет сопрягающая частота. Постоянную времени можно определить, зная сопрягающую частоту: .

c. Исследование частотных характеристик апериодического звена 2-го порядка

Для исследования частотных характеристик апериодического звена 2-го порядка в прикладном пакете ProteusISIS составляем структурную схему, представленную на рисунке 16, при неизменной первой постоянной времени и для трех значений :

.

Логарифмические частотные характеристики апериодических звеньев 2-го порядка представлены на рисунке 17, графики переходной функции — на рисунке 18.

Рисунок 16 — Структурная схема для исследования апериодических звеньев 2-го порядка

Рисунок 17 — Логарифмические частотные характеристики апериодических звеньев 2-го порядка

Рисунок 18 — Переходные функции апериодических звеньев 2-го порядка

d. Реализация апериодического звена 2-го порядка

Попробуем реализовать апериодическое звено 2-го порядка с постоянными времени и на двух последовательно соединенныхцепочках, отдельно каждая из которых представляет собой апериодическое звено 1-го порядка (рисунок 19). ЛАЧХ и ЛФЧХ данного звена и необходимого апериодического звена 2-го порядка представлены на рисунке 20, а, а их переходные функции — на рисунке 20, б.

Рисунок 19 — Электрическая принципиальная схема двух последовательно соединенных апериодических звеньев 1-го порядка с постоянными времени и

а)б)

а) ЛАЧХ и ЛФЧХ; б) переходная функция

Рисунок 20 — Характеристики последовательно соединенныхцепочек

Реализуем апериодическое звено 2-го порядка с постоянными времени и на двух последовательно соединенныхцепочках, разделенных промежуточным (разделяющим, развязывающим) усилителем (повторителем) (рисунок 21). ЛАЧХ и ЛФЧХ данного звена и необходимого апериодического звена 2-го порядка представлены на рисунке 22, а, а их переходные функции — на рисунке 22, б.

Рисунок 21 — Электрическая принципиальная схема двухцепочек с постоянными времени и, разделенных операционным усилителем

а) б)

а) ЛАЧХ и ЛФЧХ;

б) переходная функция

Рисунок 22 — Характеристики последовательно соединенныхцепочек с разделительным усилителем

При анализе частотных характеристик апериодических звеньев 2-го порядка можно сделать следующие выводы:

· увеличение (уменьшение) постоянной времени звена приводит к сдвигу ЛАЧХ и ЛФЧХ влево (вправо).

· увеличение (уменьшение) постоянной времени звена приводит к увеличению (уменьшению) времени переходного процесса.

· на полосу пропускания большее влияние оказывает большая постоянная времени

· при увеличении постоянной времени звена время переходного процесса увеличивается, а полоса пропускания уменьшается, следовательно, при увеличении времени переходного процесса полоса пропускания уменьшается и наоборот.

e. Аппроксимация апериодического звена 2-го порядка звеном 1-го порядка

Ввиду того, что апериодическое звено 2-го порядка можно аппроксимировать звеном 1-го порядка, если одна постоянная времени намного превышает вторую (в 10 раз), сравним характеристики звена с постоянными времени и со звеном 1-го порядка, изображенным на рисунке 23.

Аппроксимация апериодического звена 2-го порядка звеном 1-го порядка

а) б)

а) ЛАЧХ и ЛФЧХ;б) переходные функции

Рисунок 24 — Характеристики апериодического звена 2-го порядка и инерционного звена

При анализе характеристик апериодических звеньев (рисунок 24) можно сделать следующие выводы:

· апериодическое звено 2-го порядка можно аппроксимировать апериодическим звеном 1-го порядка, если первая постоянная времени намного меньше второй, т.к. в таком случае влияние первой экспоненты на форму выходного сигнала несущественно.

Исследование колебательного звена

При исследовании колебательного звена необходимо пронаблюдать за характером его частотных характеристик при изменении постоянной времени и декремента затухания в пределах, указанных в индивидуальном задании. Т. е. необходимо исследовать частотные характеристики при постоянных времени и декременте затухания .

f. Исследование частотных характеристик колебательного звена при изменении постоянной времени () и неизменном декременте затухания ()

Для исследования колебательного звена при изменении постоянной времени () и неизменном декременте затухания в прикладном пакете ProteusISIS составляем структурную схему, представленную на рисунке 25. Логарифмические частотные характеристики колебательного звена представлены на рисунке 26, графики переходной функции — на рисунке 27.

Рисунок 25 — Структурная схема для исследования колебательных звеньев при изменении постоянной времени () и неизменном декременте затухания ()

Рисунок 26 — Логарифмические частотные характеристики колебательных звеньев при изменении постоянной времени () и неизменном декременте затухания ()

Рисунок 27 — Переходные функции колебательных звеньев при изменении постоянной времени () и неизменном декременте затухания ()

g. Исследование частотных характеристик колебательного звена при изменении постоянной времени () и неизменном коэффициенте демпфирования ()

Для исследования колебательного звена при изменении постоянной времени () и неизменном декременте затухания () в прикладном пакете ProteusISIS составляем структурную схему, представленную на рисунке 28. Логарифмические частотные характеристики колебательного звена представлены на рисунке 29, графики переходной функции — на рисунке 30.

Рисунок 28 — Структурная схема для исследования колебательных звеньев при изменении постоянной времени () и неизменном декременте затухания ()

Рисунок 29 — Логарифмические частотные характеристики колебательных звеньев при изменении постоянной времени () и неизменном декременте затухания ()

Рисунок 30 — Переходные функции колебательных звеньев при изменении постоянной времени () и неизменном декременте затухания ()

h. Исследование частотных характеристик колебательного звена при неизмененной постоянной времени () и изменении декремента затухания ().

Для исследования колебательного звена при неизмененной постоянной времени () и изменении коэффициента демпфирования () в прикладном пакете ProteusISIS составляем структурную схему, представленную на рисунке 31. Логарифмические частотные характеристики колебательного звена представлены на рисунке 32, графики переходной функции — на рисунке 33.

Рисунок 31 — Структурная схема для исследования колебательного звена при неизмененной постоянной времени () и изменении декремента затухания ()

Рисунок 32 — Логарифмические частотные характеристики колебательных звеньев при изменении постоянной времени () и неизменном декременте затухания ()

Рисунок 33 — Переходные функции колебательного звена при неизмененной постоянной времени () и изменении декремента затухания ()

i. Реализация колебательного звена

Реализуем колебательное звено с постоянной времени и коэффициентом демпфирования наконтуре (рисунок 34). ЛАЧХ и ЛФЧХ данного звена и необходимого колебательного звена представлены на рисунке 35, а, а их переходные функции — на рисунке 35, б.

Рисунок 34 — Электрическая принципиальная схема колебательногоконтура

а) б)

а) ЛАЧХ и ЛФЧХ;б) переходная функция

Рисунок 35 — Характеристики колебательного звена иконтура

При анализе графиков частотных характеристик и переходных процессов (рисунок 35) колебательных звеньев можно сделать следующие выводы:

· увеличение (уменьшение) постоянной времени звена при неизменном декременте затухания приводит к сдвигу частотных характеристик влево (вправо).

· при неизменном коэффициенте демпфирования увеличение постоянной времени звена приводит к сужению полосы пропускания; колебательность переходного процесса не меняется.

· при неизменной постоянной времени увеличение (уменьшение) коэффициента демпфирования приводит к уменьшению (увеличению) колебательности переходного процесса и к более плавной ЛФЧХ.

· при неизменной постоянной времени увеличение (уменьшение) коэффициента демпфирования приводит к уменьшению (увеличению) перерегулирования, сужению (расширению) полосы пропускания и уменьшению (увеличению) колебательности.

3. Исследование дифференцирующих звеньев

a. Исследование частотных характеристик идеального дифференцирующего звена

Для исследования частотных характеристик идеального дифференцирующего звена в прикладном пакете ProteusISIS составляем структурную схему, представленную на рисунке 36. Логарифмические частотные характеристики идеального дифференцирующего звена представлены на рисунке 37, график переходной функции — на рисунке 38.

Рисунок 36 — Структурная схема для исследования идеального дифференцирующего звена

Рисунок 37 — Логарифмические частотные характеристики идеального дифференцирующего звена

Рисунок 38 — Переходная функция идеального дифференцирующего звена

b. Реализация идеального дифференцирующего звена

Реализуем идеальное дифференцирующее звено схемой, изображенной на рисунке 39. ЛАЧХ и ЛФЧХ дифференцирующего звена представлены на рисунках 40 и 41, переходная функция — на рисунке 42.

Рисунок 39 — Электрическая принципиальная схема дифференцирующего звена

Рисунок 40 — ЛАЧХ и ЛФЧХ дифференцирующего звена

Рисунок 41 — ЛАЧХ и ЛФЧХ дифференцирующего звена с инвертором

а)

б)

Рисунок 42 — Переходная функция схемы реализации идеального дифференцирующего звена

c. Исследование частотных характеристик реального дифференцирующего звена

Для исследования частотных характеристик реального дифференцирующего звена в прикладном пакете ProteusISIS составляем структурную схему, представленную на рисунке 43. Логарифмические частотные характеристики реального дифференцирующего звена представлены на рисунке 44, переходные функции — на рисунке 45.

Рисунок 43 — Структурная схема для исследования реального дифференцирующего звена

Рисунок 44 — Логарифмические частотные характеристики реального дифференцирующего звена

Рисунок 45 — Переходные функции реального дифференцирующего звена

d. Реализация реального дифференцирующего звена

Реализуем реальное дифференцирующее звено с помощью схем, изображенных на рисунке 46. ЛАЧХ и ЛФЧХ дифференцирующего звена представлены на рисунках 47, переходные функции — на рисунке 48.

а)б)

а) -цепочка;б) -цепочка

Рисунок 46 — Электрические принципиальные схемы реального дифференцирующего звена

Рисунок 47 — ЛАЧХ и ЛФЧХ схем реализации дифференцирующего звена

Рисунок 48 — Переходная функция схемы реального дифференцирующего звена

4. Исследование интегрирующих звеньев

a. Исследование частотных характеристик идеального интегрирующего звена

Для исследования частотных характеристик идеального интегрирующего звена в прикладном пакете ProteusISIS составляем структурную схему, представленную на рисунке 49. Логарифмические частотные характеристики идеального интегрирующего звена представлены на рисунке 50, график переходной функции — на рисунке 51.

Рисунок 49 — Структурная схема для исследования идеального интегрирующего звена

Рисунок 50 — Логарифмические частотные характеристики идеального интегрирующего звена

Рисунок 51 — Переходная функция идеального интегрирующего звена

b. Реализация идеального интегрирующего звена

Реализуем идеальное интегрирующее звено схемой, изображенной на рисунке 52. ЛАЧХ и ЛФЧХ интегрирующего звена представлены на рисунках 53 и 54, переходная функция — на рисунке 55.

Рисунок 52 — Электрическая принципиальная схема интегрирующего звена

Рисунок 53 — ЛАЧХ и ЛФЧХ интегрирующего звена

Рисунок 54 — ЛАЧХ и ЛФЧХ интегрирующего звена с инвертором

Рисунок 55 — Переходная функция схемы реализации идеального интегрирующего звена

c. Исследование частотных характеристик реального интегрирующего звена

Для исследования частотных характеристик реального интегрирующего звена в прикладном пакете ProteusISIS составляем структурную схему, представленную на рисунке 56. Логарифмические частотные характеристики реального интегрирующего звена представлены на рисунке 57, переходные функции — на рисунке 58.

Рисунок 56 — Структурная схема для исследования реального интегрирующего звена

Рисунок 57 — Логарифмические частотные характеристики реального интегрирующего звена

Рисунок 58 — Переходные функции реального интегрирующего звена

При анализе частотных и переходных характеристик реального интегрирующего звена и его реализации можно сделать следующие выводы:

5. Исследование изодромного звена

Изодромное звено можно условно представить в виде совокупности двух звеньев, действующих параллельно, — идеального интегрирующего и безынерционного. Поэтому данное звено совмещает полезные качества обоих звеньев и часто используется в качестве регулирующего устройства ПИ-регулятора (пропорционально-интегрального регулятора).

a. Исследование частотных характеристик изодромного звена

Для исследования частотных характеристик изодромного звена в прикладном пакете ProteusISIS составляем структурную схему, представленную на рисунке 59. Логарифмические частотные характеристики изодромного звена представлены на рисунке 60.

Рисунок 59 — Структурная схема для исследования изодромного звена

Рисунок 60 — Логарифмические частотные характеристики изодромного звена

b. Реализация изодромного звена

Реализуем изодромное звено схемой, изображенной на рисунке 61. ЛАЧХ и ЛФЧХ интегрирующего звена представлены на рисунках 62 и 63, переходная функция — на рисунке 64.

Рисунок 61 — Электрическая принципиальная схема изодромного звена

Рисунок 62 — ЛАЧХ и ЛФЧХ изодромного звена

Рисунок 63 — ЛАЧХ и ЛФЧХ изодромного звена с инвертором

а) б)

а) без инвертора;

б) с инвертором

Рисунок 64 — Переходная функция изодромного звена

6. Исследование звена запаздывания

Для исследования частотных характеристик звена запаздывания в прикладном пакете ProteusISIS составляем структурную схему, представленную на рисунке 65. Логарифмические частотные характеристики изодромного звена представлены на рисунке 66, переходные характеристики — на рисунке 67.

Рисунок 65 — Структурная схема для исследования звена запаздывания

Рисунок 66 — Логарифмические частотные характеристики звена запаздывания

Рисунок 67 — Переходные функции звена запаздывания

Показать весь текст
Заполнить форму текущей работой