Помощь в написании студенческих работ
Антистрессовый сервис

Магнитоэлектрический бесконтактный генератор с импульсным регулятором напряжения

ДипломнаяПомощь в написанииУзнать стоимостьмоей работы

Американская корпорация «Дженерал моторс» уже разработала асинхронный стартер-генератор и систему управления его инвертором. Данная система определяет положения ключа и замке зажигания; считывает сигналы датчиков частоты вращения вала стартер-генератора и напряжения на инверторе; измеряет и оценивает амплитуду и частоту напряжения, которое необходимо подавать на стартер-генератор по принятому… Читать ещё >

Магнитоэлектрический бесконтактный генератор с импульсным регулятором напряжения (реферат, курсовая, диплом, контрольная)

1. Аналитический обзор

1.1 Проблема создания бесконтактных электрических машин (БЭМ)

1.2 Отечественные и зарубежные бесконтактные автотракторные генераторы

1.2.1 Бесконтактные магнитоэлектрические генераторы

1.2.2 Бесконтактные электрические машины с обмоткой возбуждения

1.3 Современные тенденции развития бесконтактных генераторных установок и регулирование напряжения в них

1.3.1 Система управления бесконтактного магнитоэлектрического генератора

1.3.2 Бесконтактный стартер-генератор управляемый микропроцессорной системой

2. Специальный раздел

2.1 Исходные данные

2.1.1 Выбор генератора с постоянными магнитами

2.1.2 Ротор с когтеобразными полюсами с цилиндрическими постоянными магнитами, намагниченными в аксиальном направлении

2.1.3 Выбор постоянного магнита

2.1.4 Определение частот вращения ротора генератора и передаточного числа привода от двигателя к генератору

2.2 Выбор и обоснование типа регулятора

2.3 Выбор и расчет схемы выпрямителя

2.4 Расчет силовой части импульсного регулятора

2.4.1 Расчет дросселя

2.4.2 Определение параметров регулирующего транзистора

2.5 Выбор выходного каскада схемы управления

2.6 Выбор схемы управления импульсного стабилизатора

2.6.1 Выбор способа управления

2.6.2 Выбор схемы управления стабилизатором

2.6.3 Работа схемы управления стабилизатором

2.7 Динамический расчет стабилизатора

2.7.1 Составление разностных уравнений системы

2.7.2 Анализ динамических свойств системы управления стабилизатором

2.7.3 Моделирование системы управления

3. Конструкторско-технологическая часть

3.1 Определение уровня технологичности ФУ

3.1.1 Расчет показателей технологичности

3.1.2 Комплексная оценка технологичности

3.2 Расчет тепловой нагрузки элементов ФУ

3.3 Расчет надежности ФУ

3.4 Технологический процесс сборки

4. Организационно-экономический раздел

4.1 Сетевое планирование

4.1.1 Построение сетевой модели

4.1.2 Расчет временных параметров сетевого графика

4.1.3 Расчет резервов времени событий и работ

4.1.4 Анализ сетевого графика

4.2 Расчет сметной стоимости и цены НИР

4.2.1 Расчет трудоемкости и заработной платы работ сетевого графика

4.2.2 Расчет затрат и цены НИР2

4.3 Предварительная оценка экономической целесообразности исследования

5. Безопасность жизнедеятельности

5.1 Анализ потенциально опасных и вредных производственных факторов

5.2 Меры безопасности и устранение воздействия ОФВП

5.3 Пожаробезопасность

5.4 Эргономика и производственная эстетика Заключение Список сокращений Приложение

В настоящее время повышенное внимание уделяется развитию автономной электроэнергетики, которая во многих случаях обеспечивает решение важных технических проблем электроснабжения на транспорте. Электрические машины должны обладать повышенной надежностью, улучшенными динамическими качествами, с малыми массами и габаритными размерами за счет повышенных механических, электромагнитных и тепловых нагрузках. Серийно выпускаемые бесконтактные машины широко применяются в авиации, наземных транспортных средствах и т. д. Можно прогнозировать дальнейшее быстрое развитие и внедрение бесконтактных электрических машин (БЭМ).

По сравнению со стандартными аналогами бесконтактные машины обладают большим многообразием типов и вариантов конструктивного исполнения, в зависимости от широко варьируемых целей и условий работы.

В связи с этим оказалось перспективным использование генераторов с постоянными магнитами. За прошедшие годы значительно изменились конструкции генераторов с постоянными магнитами, в связи с широким использованием высококоэрцитивных магнитов.

Бурное развитие микроэлектроники и применение её на транспорте предъявляет повышенные требования к современным источникам электроэнергии автотракторной техники. Предлагаемый в исследовании импульсный регулятор, использование которого становится целесообразным при применении описанного генератора, повышает надежность работы генератора, является простым электрическим прибором с высоким КПД до 95%, улучшает выходные характеристики, обладает большим быстродействием переходных процессов и при определенных условиях применения дает меньшие массогабаритные показатели. Все это является весьма перспективным для автомобилестроения, и как показывает анализ дальнейшее совершенствование будет идти по этому направлению.

1. Аналитический обзор

1.1 Проблема создания бесконтактных электрических машин (БЭМ)

Электрические машиныодин из наиболее распространенных типов преобразователей энергии. Электроэнергия, является самым удобным видом энергии для передачи на расстояние, управления и регулирования, преобразования и распределения.

Особенность создания усовершенствованных машин связана с тем, что условия работы электрических машин непрерывно усложняются, а требования к их надежности резко возрастают. Причем интенсивность отказов для таких машин во многих случаях должна быть существенно ниже, чем у машин, работающих при нормальных условиях.

Один из радикальных путей повышения надежности, расширения функциональных возможностей и улучшения общих характеристик электрических машинотказ от использования щеточных электрических контактов и переход к бесконтактным электрическим машинам.

Во-первых, по имеющимся статистическим данным щеточный контакт при нормальных условиях работы наряду с изоляцией и подшипниковыми узлами вызывает наибольшее число отказов в работе электрических машин. Для коллекторных машин постоянного тока в среднем 25% отказов происходит из-за выхода из строя щеточно-коллекторного узла (в транспортных установках доля таких отказов достигает 44…66%) /1/ .

Во-вторых, при нестандартных условиях окружающей среды щеточный контакт в электрических машинах либо резко ухудшает свою работу, либо вообще становится неработоспособным. Наличие щеточного контакта недопустимо в присутствии воспламеняющихся газов или паров. Работоспособность контактных устройств резко ухудшается при воздействии ионизирующего излучения, они плохо работают при наличии вибраций.

В-третьих, щеточный контакт существенно ограничивает допустимую скорость ротора электрической машины. Для большинства случаев предельные линейные скорости в контакте не должны превышать 80…100 м/с. Известно, что мощность электрической машины при заданных электромагнитных нагрузках пропорциональна частоте вращения ротора. Поэтому наличие контакта не позволяет реализовать высокофорсированные конструкции электрических машин, рассчитанные на предельные механические нагрузки и обладающие наилучшими массогабаритными показателями.

В-четвертых, щеточный контакт создает дополнительные электрические и механические потери, является источником шумов и помех.

В-пятых, щеточный контакт значительно сокращает срок службы (ресурс) электрической машины.

Наконец, щеточный контакт усложняет обслуживание машины, загрязняет внутренние полости машины графитовой пылью, снижающей электрическую прочность изоляции, препятствует применению в машине высокоэффективного струйного жидкостного охлаждения, ухудшает стабильность параметров машины и т. п.

Особое значение имеет разработка БЭМ для автономных электроэнергетических установок, где перечисленные недостатки щеточного контакта проявляются особенно резко. Поэтому создание высокоэффективных БЭМодна из наиболее актуальных задач, выдвигаемых перед специалистами в области энергетики летательных аппаратов, судовых и транспортных установок.

Бесщеточные генераторные установки целесообразно применять на автотранспортных средствах имеющих большой ресурс работы (до 300 тыс. км и более) или большой интервал между ТО при тяжелых условиях эксплуатации (например сельхозмашин).

Рассмотрим основные разновидности БЭМ /1/.

На рисунке 1. показана классификация энергетических БЭМ. По принципу действия большинство БЭМ переменного тока, как и обычные электрические машины, делятся на синхронные и асинхронные (индукционные). Те и другие основаны на использовании явления электромагнитной индукции.

Рис. 1. Классификация БЭМ.

1.2 Отечественные и зарубежные бесконтактные автотракторные генераторы

1.2.1 Бесконтактные магнитоэлектрические генераторы

БЭМ с постоянными магнитами (ПМ), — первый тип электромеханического преобразователя энергии, созданного человеком. Еще в 1831 г. М. Фарадей демонстрировал это устройство /1/.

В автономных системах электроснабжения мотоциклов и тракторов все чаще применяются генераторы с постоянными магнитами или магнитоэлектрические генераторы. Где магнитодвижущая сила необходимая для проведения магнитного потока в рабочем воздушном зазоре, создается постоянными магнитами.

В связи с появлением магнитных материалов с высокими удельными энергиями. Начиная с 70-х годов, началось промышленное освоение высококоэрцитивных магнитов на основе редкоземельных материалов интерметаллических соединений самария с кобальтом Sm Co 5, самария с прозеодимом и кобальтом Sm0.5 Pr 0.5 Co 5 и др.

Магниты из редкоземельных материалов обеспечивают генераторам более высокие массогабаритные показатели, чем у генераторов с электромагнитным возбуждением. У магнитоэлектрического генератора выше КПД, он меньше нагревается при работе. Можно при той же мощности, что и у обычного генератора, уменьшить массу генератора и габариты.

Статор бесконтактных синхронных машин с постоянными магнитами имеет шихтованный цилиндрический магнитопровод 1, на внутренней поверхности которого размещается якорная обмотка 2 (рис. 2, а). Если в машине используются обычные постоянные магниты, то внутренняя поверхность сердечника статора содержит пазы, чередующиеся с зубцами (рис. 2, б).

Если в машине используют высококоэрцитивные магниты на базе РЗМ (типа 5mCo5), то внутренняя поверхность сердечника статора может выполняться как с пазами, так и без них (гладкой); в последнем случаев обмотку якоря укладывают на внутреннюю поверхность статорам сплошным слоем (рис. 2. в).

Основная специфика синхронных машин с ИМ связана с конструкцией ротора, несущего постоянные магниты. Рассмотрим наиболее распространенные конструкции роторов.

Звездообразный ротор. Типичная конструкция звездообразного ротора (рис. 3) содержит литой постоянный магнит в форме звездочки, который крепится на валу с помощью заливки немагнитным сплавом 2 (на основе цинка или алюминия). Магнит может непосредственно отливаться на валу. Достоинства ротора — простота и высокая степень заполнения его объема магнитом.

Когтеобразный ротор. Когтеобразный ротор (рис. 4) состоит из цилиндрического постоянного магнита 1, к торцам которого примыкают шайбы 2 и 4 из магнитомягкой стали, имеющие когтеобразные выступы 3 и 5. На рис. 4 показаны линии магнитной индукции для рабочего потока Фа и потока рассеяния Ф,; поток Фд тем больше, чем меньше азимутальный зазор между выступами.

Недостатки таких машин связаны с трудностью поддержания постоянства выходного напряжения генератора. У магнитоэлектрического генератора нет обмотки возбуждения. Применялись различные пути регулирования выходного напряжения генератора.

Например, на тракторах применялся магнитоэлектрический генератор ГТ1А /2/,/3/ с механическим (центробежным) регулятором напряжения. Он, естественно, мог поддерживать напряжение генератора постоянным только при изменении частоты вращения ротора и не мог реагировать на изменение тока нагрузки. Поэтому от этого способа регулирования вскоре отказались.

На мотоциклетных магнитоэлектрических генераторах попытались применить параметрическое регулирование напряжения, которое обеспечивалось за счет такого выбора параметров генератора, при которых влияние внешних факторов на выходное напряжение минимально. Однако от этого способа пришлось отказаться опять-таки из-за низкой точности регулирования. Третий способ регулирования /3/ путем периодического закорачивания выходных выводов генератора. Он обеспечивает требуемую точность поддержания напряжения, но крайне неэкономичен вследствие больших потерь, связанных с протеканием по генератору токов короткого замыкания. В последнее время специалисты склоняются к одному из новых способов регулирования с помощью управляемого выпрямителя, что будет рассмотрено в п 1.3.1.

На тракторах применяется бесконтактный генератор типа 13.3701 /4/. Применение постоянных магнитов марки 2БА или 1БИ в пазах пакета ротора (или когда применение магнитов невозможно, то выполняют участок магнитопровода ротора из стали 45) позволяет улучшить самовозбуждение генератора и отказаться от применения аккумуляторной батареи (возбуждение было комбинированным). Самовозбуждение без АБ генератора, работающего в комплекте с ИРН Я112Б должно происходить при частоте вращения не более 3200 мин .В таблице № 1. приведены данные скоростей самовозбуждения генератора 13.3701 без АБ с 70 образцами ИРН Я112Б.

Таблица № 1.

Скорость возбуждения не более 3200 мин при температуре

Ротор генератора

+25 С

40 С

С магнитами и втулкой из стали 10

Со 100% регуляторов

Со 100% регуляторов

С втулкой из стали 45

С 96% регуляторов

С 92% регуляторов

1.2.2 Бесконтактные электрические машины с обмоткой возбуждения

Несмотря на достоинства БЭМ с постоянными магнитами их применение носит ограниченный характер из-за плохих регулировочных свойств. В системах, где требуется плавное и глубокое регулирование показателей и высокий уровень их стабилизации, широко используются БЭМ с обмоткой возбуждения (с эл. магнитным индуктором).

Бесконтактные электрические машины обмоткой возбуждения (ОВ) отличаются большим многообразием конструкции.

Начало БЭМ с ОВ было положено П. И. Яблочковым, который в 1877 году предложил первый бесконтактный генератор с ОВ /1/. Затем появились разновидности индукторных генераторов, первой среди которых был генератор А. К. Клименко (1882г).

Недоиспользование магнитного потока в индукторных генераторах стимулировало развитие БЭМ с когтеобразными полюсами и БЭМ с осевым возбуждением.

В перечисленных типах БЭМ обмотка якоря и возбуждения размещяются на статоре, а изменение магнитного потока в активной зоне обеспечивается благодаря специальной форме стального магнитопровода ротора.

В БЭМ с вращающимся выпрямителем основнвм элементом является обычная синхронная машина, у которой на статоре находится обмотка якоря, а на роторе-полюсы из магнитомягкой стали и обмотка возбуждения, питаемая постоянным током. В отличие от обычной синхронной машины, у которой ток подается в ОБ через кольцевой щеточный контакт, в рассматриваемой машине питание ОБ осуществляется от специального возбудителя (В), обеспечивающего бесконтактную передачу энергии от статора к ротору электромагнитным путем. Так как при этом на ротор передается электрическая энергия переменного тока, возбудитель питает ОБ через установленный на роторе вращающийся выпрямитель, что и определяет название машины. Типичная компоновка элементов бесконтактной синхронной машины (БСМ) с вращающимся выпрямителем (ВВ) показана на рис. 5.

В качестве возбудителя можно использовать вращающийся трансформатор (Вт), асинхронный (АВ) и синхронный (СВ) возбудители.

За рубежом серийно выпускается автотракторный генератор с возбудителем и вращающимся выпрямителем, с протяжной вентиляцией, типа Т4 фирмы Bosch. Его технические данные приведены в Таблице № 4 в сравнении с отечественным индукторным генератором, и генератором с контактными кольцами английской фирмы Lucas.

Бесконтактные генераторы с укороченными полюсами.

В машинах этого типа обмотки якоря и возбуждения находятся на статоре, а ротор имеет когтеобразные выступы (полюсы) из магнитомягкой стали, которая за счет МДС возбуждения приобретают чередующуюся магнитную полярность и создает в рабочем воздушном зазоре знакопеременное магнитное поле. Подобные конструкции могут выполняться в виде чисто механических конструкций, не содержащих постоянных магнитов, вращающихся выпрямителей, многовитковых обмоток и шихтованных сердечников. Подобные конструкции обладают высокой надежностью, слабой чувствительностью к внешним воздействиям, что позволяет создавать высоконадежные компактные генераторы. Общие недостатки БСМ с когтеобразными полюсами связаны с повышенными магнитными потоками рассеивания.

В целях унификации бесщеточные генераторы с укороченными полюсами выполняются на базе серийных генераторов /5/.

Например на базе выпускавшегося щеточного генератора Г250 был разработан бесщеточный генератор Г252, мощностью 700−750 Вт с разнесенными клювообразными полюсами и подвешенной в расточке пакета статора обмотки возбуждения (ОБ).

ОВ крепится в средней зоне пакета статора. В таблице № 2 приведены электрические и технические характеристики генератора Г252 в сравнении с бесщеточными генераторами ведущих зарубежных фирм, а также генераторами щеточного исполнения.

Конструкция имеет преимущества. Сравнительно малые длины магнитных силовых линий в магнитопроводе, а следовательно, меньшая требуемая величина намагничивающей силы возбуждения.

Недостатком является несколько большая трудоемкость его изготовления, а также невозможность балансировки ротора в сборе, что снижает качественные показатели генератора.

По использованию активных материалов бесщеточные генераторы значительно уступают аналогичному показателю генераторов щеточного исполнения /5/ .Так, по сравнению с щеточными генераторами Г221 и Г265 генератор Г252 имеет более низкие технические показатели: по максимальному коэффициенту использования ниже на 12 25%, по удельному коэффициенту использования на 620%.

Генераторы Г252 прошли эксплуатационные испытания и устанавливались на автомобилях МАЗ-555 /5/. Производство бесщеточных генераторов с укороченными полюсами только начинается, первыми моделями этого семейства являются генераторы 45.3701 и 49.3701,которые планируется устанавливать на автомобили семейства УАЗ /6/.

Таблица № 2

Бесщеточные генераторы

Щеточные генераторы

Параметры

Г252

Marchall (Франция)

Delco Remi (США)

Г221

Г256

Напряжение, В

14.0

14.0

14.0

14.0

14.0

Максимальный ток, А

54.0

31.5

72.0

41.5

57.5

Расчетный ток, А

34.0

21.0

48.0

30.0

40.0

Мощность, Вт:

расчетная максимальная

Масса без шкива, кг

6,3

3.45

12.5

4.3

5.12

Максимальный коэффициент использования, Вт/кг

119.0

Удельному коэффициент использования, Вт 10/кг мин

36.8

39.0

27.0

39.0

48.0

Максимальный коэффициент использования активных материалов, Вт /кг

Максимальная плотность тока, А/мм

25.2

20.0

30.0

26.0

22.0

Индукторные генераторы. У индукторных машин магнитная индукция в каждой точке рабочего зазора изменяется только по величине, а её направление остается постоянным. Следовательно индукция в зазоре индукторной машины (ИМ) имеет пульсирующий характер и содержит переменную (рабочую) и постоянную (нерабочую) составляющие. Обмотка якоря и возбуждения в ИМ находятся на статоре. а изменение во времени магнитного потока, сцепленного с обмоткой якоря, достигается за счет периодического изменения магнитного сопротивления на пути рабочего потока при вращении зубчатого ротора. Достоинствами ИМ помимо способности генерировать ток повышенной частоты являются простота конструкции ротора, высокая надежность, хорошее регулирование напряжения, работоспособность в сложных окружающих условиях (при повышенных температурах, пониженном давлении, присутствии агрессивных сред и т. п.). Главный недостаток ИМ проявляется в наличии постоянной составляющей магнитного потока, которая не участвует в наведении рабочей ЭДС, но загружает магнитопровод и требует существенного увеличения его объема и массы по сравнению с обычными синхронными машинами /1/,/7/.

В автотракторной промышленности наибольшее распространение получили индукторные генераторы с односторонним и двусторонним возбуждением. Рассмотрим некоторые из них.

Бесконтактный автомобильный генератор мощностью 1.5 кВт./8/.

Генератор предназначен для установки на двигатели ЯМЗ-740 и Камаз-4310.Генератор работает в схеме электрооборудования параллельно с АБ в комплекте с регулятором напряжения РР133 (Рис.8). Генератор представляет собой одноименнополюсную семифазную индукторную машину с односторонним электромагнитным возбуждением и встроенным кремниевым выпрямителем (рис. 9) и состоит из трех основных узлов: статора, ротора и системы возбуждения с задней крышкой и катушкой возбуждения на каркасе. В узел ротора входит ротор, три подшипника и ось.

Пакет статора шихтован из листовой стали, имеет 14 зубцов, на которых закреплены катушки семифазной обмотки, выполненные проводом ПЭВ-2 диаметром 1,25 мм с числом витков 44 каждая. Соединение катушек в фазе последовательное. Фазы соединены в семиугольник.

Конструкция генератора позволяет снизить до минимума массу вращающихся частей, что в свою очередь положительно сказалось на величине момента инерции, которое имеет большое значение с точки зрения воздействия на элементы ременного привода. Отсутствие скользящих контактов, монолитный ротор, отсутствие перекосов в подшипниках, простота конструкции и технологии изготовления являются предпосылкой высокой надежности генератора и стабильности в процессе производства. Технология сборки и разборки генератора очень проста. Благодаря консольному креплению узел ротора можно легко снимать н устанавливать, не нарушая при этом посадок подшипников. Для этого достаточно отвернуть болт на торце задней крышки и вынуть хвостовик оси из отверстия. Момент инерции генератора 1.5 кВт равен 8 10 Н м, что примерно в два раза меньше, чем генератора с клювообразной магнитной системой близкой мощности. КПД генератора высок и составляет в среднем 70%. Техническое обслуживание генератора заключается только в периодической проверке состояния н надежности крепления проводов, крепления генератора на двигателе и проверке натяжения приводного ремня.

Рис. 9.Генератор мощностью 1.5 кВт.

1- корпус выпрямительного блока; 2- теплоотвод; 3- крышка задняя; 4- катушка возбуждения; 5- статор; 6- ротор; 7- крышка передняя; 8- вентилятор; 9- шкив; 10- шарикоподшипник задний; 11- ступица ротора; 12- шарикоподшипники передние; 13- ось Для оценки уровня качества генератора в Таблице № 3 приведены его основные технические характеристики в сравнении с характеристиками ближайшего зарубежного аналога — бесконтактного генератора Е80 фирмы Maremont (США).

Таблица № 3

Страна, фирма, модель

Параметры

АЗТЭ 21.3701

Mareton E80(США)

Напряжение номинальное, В

Ток максимальный, А

Начальная частота вращения при холостом ходе, мин

Расчетный ток нагрузки, А

Масса генератора, кг

18.3

Удельный коэффициент использования

38.4

24.8

Ресурс 90%ный до первого кап. ремонта, тыс. км

Тракторная генераторная установка мощностью 2 кВт /9/.

Генератор 11.3701 напряжением 28 В предназначен для тракторов Т330 и Т550 Чебоксарского завода тракторов. Мощность обусловлена применением мощных потребителей (осветительного оборудование, электромагнитный привод управления различными механизмами и агрегатами, фреоновый кондиционер).

Рис. I0. Общий вид (а) и токоскоростная характеристика (б) генератора 11.3701

Рис. 11. Электрическая схема генераторной установки.

Конструктивно генератор 11.3701 аналогичен генератору Г-3О3 и представляет собой индукторную одноименнополюсную электромашину с односторонним электромагнитным возбуждением и встроенным кремниевым выпрямителем.

На рис. 10. представлены общий вид и токоскоростная характеристика генератора, на рис. 11 электрическая схема установки. Привод генератора при помощи гидромуфты, благодаря чему устраняется нагрузка от радиальных усилий /9/.

В Таблице № 4 приведены основные технические данные разработанного генератора сравнительно с генераторами зарубежных фирм.

Таблица № 4

Генераторы

Параметры

11.3701

Т4 бесщеточный (Bosch, ФРГ)

АС203 (Lucas, Англия)

Напряжение номинальное, В

Ток максимальный, А

Частота вращения при расчетном токе, мин

Расчетный ток нагрузки, А

Масса генератора, кг

Удельный коэффициент использования

33.6

21.3

Тракторный генератор мощностью 1 кВт /10/.Алтайским заводом тракторного электрооборудования совместно с НИИ автоприборов разработан тракторный генератор переменного тока 15.3701 мощностью 1 кВт напряжением 14 В со встроенным кремниевым выпрямителем и регулятором напряжения Я112Б. Интегральный регулятор напряжения Я112Б обеспечивает высокую точность регулирования в рабочем диапазоне тока нагрузки, частоты вращения генератора температуры окружающего воздуха. Недавно внедрен в производство генератор 2102.3707 индукторного типа, предназначенный для установки на автомобилях КамАЗ и «Урал» /6/.

Рис. I2. Принципиальная электрическая схема генераторной установки.

Генератор 15.3701 (рис.13) выполнен на базе и взамен выпускаемого в на заводе АЗТЭ генератора Г309.

1.3 Современные тенденции развития бесконтактных генераторных установок и регулирование напряжения в них

Анализ показывает, что требуемая мощность потребителей в автотранспортных средствах каждые 10 лет возрастает на 1015% /11/.

Определилось несколько основных направлений совершенствования. Это увеличение частот вращения роторов генератора и стартера; повышение напряжения бортовой сети; замена стартера и генератора одной электрической машиной (стартер генератором).

На самых современных зарубежных легковых автомобилях по-прежнему устанавливаются генераторы с контактными кольцами. Рассмотрим некоторые технические характеристики этих электромашин:

Генератор КCI4 (фирма «Бош»): рабочий диапазон частот вращения вала — 1080−6000 мин'; расчетная мощность — 750 Вт при частоте вращения 2000 мин-'; максимальная мощность — 1127 Вт при 6000 мин'; расчетный ток — 51 А.

Генератор 100 211−2550 (фирма «Дэнсо»): диапазон рабочих частот вращения вала — 1025−6000 мин'; расчетная мощность — 560 Вт при 2000 мин''; максимальная мощность — 1000 Вт. Генератор имеет дополнительное плечо выпрямителя, подключенное к нулевой точке обмотки статора, благодаря чему ток отдачи при 6000 мин' возрос, по сравнению с обычным исполнением почти на 8 А.

На зарубежных легковых автомобилях в последнее время стали применять и чехословацкие генераторы на 14 В, 55 А. Расчетная их мощность505 Вт при 2000 мин', максимальная — 800 Вт.

Диапазон частот вращения вала — 1000−6000 мин'.Максимальный ток — 57 А. Коэффициент использования генератора при расчетном токе нагрузки 57 мВт/(кг/мин'), т. е. он занимает середину диапазона коэффициентов генераторов западно-европейских и японских фирм (52−60 мВт/(кг?мин').

Как видно, зарубежные фирмы серийно выпускают генераторы для легковых автомобилей, имеющие примерно одинаковые характеристики: рабочий диапазон частот вращения вала — 1100−6000 мин'; номинальная частота его вращения — 2000 мин'; расчетный ток- 50−60 А.

Таким образом, генераторы, выпускаемые зарубежными фирмами, особым разнообразием характеристик не отличаются. Хотя применение постоянных магнитов может снизить массогабаритные показатели на 30−40%. Постоянные магниты повышают удельную мощность генераторов до 0,5 кВт/кг.

В нашем отечественном автомобилестроении основной генератор для легковых автомобилей — это генератор 37.3701 с контактными кольцами. Его напряжение — 14 В, расчетная мощность — 750 Вт, расчетный ток — 55 А, масса — 4,4 кг; удельный коэффициент использования — 58 мВт/(кг?мин'), что соответствует уровню западных образцов /11/.

Дальнейшее совершенствование электрических машин, применяемых на автомобилях, будет идти, как показывает анализ, по нескольким направлениям. Одно из них — применение постоянных магнитов высоких энергий (например, сплава «железо-неодимбор», называемого «Магнаквенч», у которого магнитная энергия выше, чем у обычных магнитов, в 5−10 раз). Второе направление — переход на асинхронные машины. Благодаря этому снимаются проблемы, связанные с работой коллекторно-щеточного узла, а также появляется возможность увеличить частоту вращения якоря электрической машины. Хорошими регулировочными свойствами и токоскоростной характеристикой обладают и асинхронные генераторы с вентильным возбуждением.

Третье направление — это применение асинхронных стартер-генераторов.

1.3.1 Система управления бесконтактного магнитоэлектрического генератора

Магнитоэлектрические генераторы обладают такими достоинствами, которые делают их весьма перспективными для автомобилей. Однако здесь они распространения пока не получили. (В крайнем случае, распространения массового.) Главная причина этого — трудности, связанные с поддержанием постоянства выходного напряжения генератора /3/.

Наконец, в последнее время специалисты все больше склоняются к способу регулирования — с помощью управляемого выпрямителя, устанавливаемого на выходе генератора: такой выпрямитель реагирует на отклонения средней величины выходного напряжения генератора от требуемого уровня.

Данный способ не связан с дополнительными потерями энергии в генераторе малоинерционная система управления выпрямителем исключает выбросы напряжения, связанные с отклонением мощных потребителей тока. То есть система управления решает даже ту проблему, для осуществления которой на генераторах с электромагнитным возбуждением приходилось применять специальные технические средства (динамические стабилизаторы-фильтры). Однако получалась система довольно сложной, с не очень стабильными характеристиками. Чтобы устранить эти недостатки, специалисты кафедры «Автотракторное электрооборудование» МГААТМ /3/ применили тиристорный управляемый выпрямитель с системой управления, реализованной на современной элементной базе. Такой подход позволил свести к минимуму размеры печатной платы устройства и, главное, повысить стабильность характеристик системы управления.

Новый выпрямитель выполнен по трехфазной мостовой схеме, в которую входят три обычных «автомобильных» полупроводниковых диода (в анодной группе) и три малогабаритных силовых тиристора (в катодной группе).

Система управления выпрямителем (см. Рис 14) представляет собой три (по числу силовых тиристоров) идентичных канала. Силовыми тиристорами управляют маломощные тиристоры, которые, в свою очередь, включает и выключает система импульсно-фазового управления (СИФУ).

Управляющий вход СИФУ подключен к измерительному органу девиации выходного напряжения выпрямителя. Измерительный орган выполнен на базе дифференциального усилителя, который сравнивает опорное напряжение параметрического стабилизатора с напряжением на выходе настроечного резистивного делителя. чей вход подсоединен к выходу выпрямителя.

Уровень точности поддержания регулируемого напряжения настраивается изменением величины коэффициента усиления дифференциального усилителя. К синхронизирующему входу каждого канала СИФУ подается линейное входное напряжение выпрямителя, с которым связан силовой тиристор соответствующего канала.

Каждый из каналов СИФУ работает следующим образом: в момент перехода линейного напряжения, вырабатываемого генератором 4, через нулевое значение уровень выходного сигнала формирователя 6 импульсов первого канала управления изменяется. По этому сигналу интегратор 7 формирует пилообразное напряжение, синхронизированное с линейным напряжением на входе выпрямителя 5, и подает его на элемент 8 сравнения. Сюда же подается (через фильтр 1 и дифференциальный усилитель 3) выходное напряжение с выпрямителя 5, элемент 8 сравнивает девиацию выходного напряжения выпрямителя с пилообразным напряжением и в момент равенства данных напряжений формирует сигнал управления тиристором. Этот сигнал через усилитель 9 тока подается на маломощный, тиристор (для работы микросхем применяется стабилизатор 2 напряжения). Сигнал управления силовым тиристором оказывается синхронизированным с соответствующим линейным напряжением на входе выпрямителя и подается с задержкой, определяемой величиной отклонения регулируемого напряжения.

Макетный образец генераторной установки с магнитоэлектрическим генератором и управляемым выпрямителем уже изготовлен. Его испытания показали, что выходное напряжение генераторной установки в требуемых для работы в комплекте с аккумуляторной батареей пределах он поддерживает, причем в широком диапазоне изменения частоты вращения ротора и нагрузки /3/.

1.3.2 Бесконтактный стартергенератор управляемый микропроцессорной системой

Классические электрические системы автомобилей включают две электрические машины: стартер и генератор. Однако в последние годы функции стартера и генератора предлагается совместить — так, как это давно уже сделано в авиации. Причем наиболее перспективной для такой цели считается частотно-регулируемая асинхронная машина с инвертором напряжения. (Главным образом потому, что в ней нет скользящих контактов, которые, как известно, существенно снижают надежность системы.)

Для оптимального управления приводом необходимо изменять как частоту, так и амплитуду питающего напряжения. Практическая реализация системы, если ее выполнять на дискретных элементах, оказывается делом трудным, а в отдельных случаях и невозможным.

В режиме стартера машина должна развивать момент, достаточный для пуска ДВС при напряжении аккумуляторной батареи, существенно меньшем номинального. Кроме того, должна быть предусмотрена возможность нескольких пусков от одного заряда батареи. После пуска система управления должна автоматически переводить стартер-генератор в режим генератора, обеспечивать постоянство выходного напряжения независимо от частоты вращения ротора и т. п.

Выход находят применяя бесконтактный стартер-генератор, управляемый микропроцессорной системой /12/,/13/.

Стартер-генератор (Рис 15.) представляет собой стандартную асинхронную машину (AМ) серии 4А с короткозамкнутым ротором, дополненную трехфазным автономным инвертором напряжения/12/.

Выбор серийной машины не случаен: за счет этого упрощается процесс изготовления стартер-генератора.

Автономный транзисторный инвертор напряжения собран, как видно из рисунка, по мостовой схеме. Со стороны переменного тока к нему подключена асинхронная машина, а со стороны постоянного тока — аккумуляторная батарея (АБ) и бортовая сеть автомобиля. Работой силовых транзисторов управляет микропроцессорная система.

Вал асинхронной машины через понижающий редуктор, передаточный коэффициент которого равен 15−16, подключен к ДВС. После пуска двигателя, т. е. когда частота вращения коленчатого вала становится больше частоты вращения вала асинхронной машины, обгонная муфта редуктора автоматически уменьшает коэффициент передачи до 2,0. Асинхронная машина переходит в генераторный режим с частотой вращения, в 2 раза большей частоты вращения коленчатого вала ДВС. На этом режиме инвертор преобразует электрическую мощность трехфазного переменного тока, снимаемую со статарной обмотки асинхронной машины, в мощностью постоянного тока, отдаваемую в бортовую сеть и на заряд аккумуляторной батареи, а также питает статорную обмотку реактивным намагничивающим током заданной частоты.

Когда асинхронная машина работает в генераторном режиме, инвертор также является источником только реактивной мощности, необходимой для создания основного магнитного потока. Причем частота вращения магнитного поля статора определяется частотой переключения транзисторов инвертора. Активная составляющая тока статора машины выпрямляется диодами обратного моста и отдается в бортовую сеть.

Следовательно, у асинхронного генератора клеммы статарной обмотки служат одновременно и клеммами возбуждения, и выходными.

В стартерном режиме инвертор преобразует электрическую мощность постоянного тока, потребляемую от аккумуляторной батареи, в активную мощность трехфазного переменного тока, необходимую для прокрутки ДВС. Закон этого преобразования задается микропроцессорной системой управления. В генераторном режиме заданная величина напряжения бортовой сети также поддерживается автоматически, путем изменения частоты переключения транзисторов инвертора по закону, реализуемому микропроцессорной системой управления.

Американская корпорация «Дженерал моторс» уже разработала асинхронный стартер-генератор и систему управления его инвертором. Данная система определяет положения ключа и замке зажигания; считывает сигналы датчиков частоты вращения вала стартер-генератора и напряжения на инверторе; измеряет и оценивает амплитуду и частоту напряжения, которое необходимо подавать на стартер-генератор по принятому закону; формирует управляющие воздействия на ключи инвертора. При этом частота напряжения определяется из ycловия постоянства абсолютного скольжения (за исключением момента начала «старта» двигателя и перехода асинхронной машины в генераторный режим, когда скольжение изменяется скачком от нуля до заданной величины). Правда, закон регулирования специалисты приняли довольно простой: отношение амплитуды питающего напряжения к его частоте должно оставаться постоянным. Эта простота системы созданная «Дженерал моторс» не позволяет использовать все возможности микропроцессоров. В частности, применяемый в ней для стабилизации выходного напряжения в режиме-генератора пропорциональный, регулятор может стать причиной неустойчивой работы самой системы регулирования. Если же функции приема, обработки информации и выдачи сигналов управления на ключи инвертора разделить между двумя процессорами, система заметно усложнится.

Перечисленных недостатков можно избежать, если применить микропроцессорную систему, структурная схема которой приведена на Рисунке 16 /12/.

Основные ее узлы и назначение следующие. Системный генератор (СГ) предназначен для формирования тактовых сигналов; микропроцессор (МП) вычисляет временные задержки и управляет ключами инвертора; системный контроллер (СК) формирует сигналы управления; оперативное запоминающее устройство (ОЗУ) хранит переменные и промежуточную информацию о состоянии асинхронной машины; постоянное запоминающее устройство (ПЗУ) содержит программу и таблицы функций управления; блок счетчиков (БС) и схема формирования вектора прерывания (СФВП) выполняют программный отсчет заданного времени, необходимого для формирования управляющих воздействий на ключи инвертора; блок-порт приема информации (ППИ) принимает сигналы датчиков скорости вращения вала стартер генератора, питающего напряжения, положения ключа в замке зажигания; блок-порт выдачи информации (ПВИ) выдает управляющие воздействия на ключи инвертора.

Главная задача рассматриваемой системы — выдача таких управляющих воздействий на ключи инвертора, чтобы амплитуда и частота напряжения на обмотках стартер-генератора машин соответствовали требуемым с точки зрения оптимального закона управления. Решается она иначе, чем в системе «Дженерал моторс». Частота регулируется не за счет постоянства скольжения, а изменением длительности цикла переключения ключей инвертора, амплитуда — с помощью широтно-импульсного регулятора (ШИР). То есть система может изменять управляющие воздействия через некоторые промежутки времени, длительность которых задается программой. Поэтому задача регулирования частоты и амплитуды напряжения сформулирована именно с точки зрения длительности процессов.

Разработанная система управления использует оптимальные законы управления, что позволяет обеспечить пуск двигателя, а в режиме генератора требуемую ТСХ при минимуме потерь в асинхронной машине. Разброс параметров АМ при производстве корректируется простым изменением таблиц «зашиваемых» в ПЗУ.

Созданные макетные образцы стартер-генераторов рассчитаны на напряжения 24 и 48 В. Такие напряжения позволяют уменьшить массу проводников, аккумуляторной батареи и самого стартер-генератора, а также стоимость автономного инвертора (использованы силовые транзисторы, рассчитанные на меньшие токи).

2. Специальный раздел

2.1 Исходные данные

2.1.1 Выбор генератора с постоянными магнитами

К перспективному электрооборудованию подвижных объектов предъявляются требования малой массы, высокой надежности, широких функциональных возможностей и высоких выходных характеристик систем.

Электрические генераторы с постоянными магнитами, обладая достоинствами бесконтактных машин, имеют ещё следующие преимущества: высокую надежность, простоту конструкции, высокий КПД, надежное возбуждение, улучшенные выходные характеристики, малую инерционность при переходных процессах. В определенном диапазоне частот тока и мощностей электрические генераторы с постоянными магнитами имеют лучшие массогабаритные характеристики, чем генераторы с электромагнитным возбуждением /2/,/16/. Свойственные электрическим генераторам с постоянными магнитами недостатки: отсутствие прямого способа регулирования напряжения, разброс характеристик постоянных магнитов, относительно высокая стоимость генераторов преодолеваются.

В данном дипломном проекте выбрана стандартная, выпускаемая промышленностью, генераторная установка Г273 /17/. Её технические характеристики приведены в приложении А. Генератор Г273 имеет клювообразную (когтеобразную) систему ротора. Отличительной особенностью является то, что вместо обмотки возбуждения в данном дипломном проекте разрабатывается возможность установки постоянного магнита. Следовательно, необходимо выбрать типы постоянных магнитов, обеспечивающие надежную работу генератора, и обосновать применение когтеобразного ротора.

2.1.2 Ротор с когтеобразными полюсами с цилиндрическими постоянными магнитами, намагниченными в аксиальном направлении

Когтеобразный ротор (Рис .17) состоит из цилиндрического постоянного магнита, к торцам которого примыкают шайбы из магнитомягкой стали, имеющие когтеобразные выступы. Выступы левой шайбы чередуются по окружности с выступами правой шайбы. Каждая шайба и её выступы приобретают магнитную полярность сопряженного с ним полюса магнита, поэтому когтеобразные выступы по отношению к статору образуют систему полюсов с чередующейся полярностью.

Магнит крепится в заточках полюсных шайб. Вал обычно изготовляется из немагнитной стали во избежание шунтирования магнита. В том случае, когда на валу имеется втулка из немагнитного материала (обычно латуни), вал выполняют из магнитной стали.

Главным достоинством ротора является то, что постоянный магнит защищен магнитомягкими элементами от внешних полей, а его первоначальное намагничивание осуществляется в собранном виде внешним магнитным полем.

Наличие полюсов приводит к полной стабильности поля в воздушном зазоре, определяемого конфигурацией поверхности когтей, что позволяет получить синусоидальную форму кривой напряжения.

Рис. 17 Ротор с когтеобразными полюсами с цилиндрическими постоянными магнитами, намагниченными в аксиальном направлении Индукция в воздушном зазоре В достаточно высокие (В 0.6.0.7 Тл), так как значение магнитного потока определяется площадью поперечного сечения магнита, которая может быть выбрана значительной. Такую конструкцию целесообразно применять для магнитов с высокими значениями коэрцитивной силы Нс.

При повышении частоты (числа полюсов) коэффициент заполнения объема ротора магнитом не снижается.

Механическая прочность когтеобразных роторов достаточно высокая. Окружная скорость может быть доведена до 80.100 м/с.

Наряду с достоинствами когтеобразные роторы обладают и рядом недостатков. Пониженная степень заполнения его объема постоянным магнитом, возможность отгиба концов когтеобразных выступов из-за центробежных сил, повышенные радиальные размеры /18/.

2.1.3 Выбор постоянного магнита

Технические и массогабаритные данные электрических генераторов с постоянными магнитами зависят прежде всего от магнитных свойств постоянных магнитов. О качестве постоянных магнитов судят по значению максимальной удельной магнитной энергии Wmax или её удвоенному значению (BH) max. В электрических генераторах с постоянными магнитами в настоящее время применяются следующие основные группы магнитотвердых материалов для постоянных магнитов: железоникелевые и железоникелькобальтовые сплавы, бариевые ферриты, интерметаллические соединения на основе редкоземельных элементов и кобальта.

Широкое применение нашли анизотропные сплавы, на базе ЮНДК24, ЮНДК35Т5, ЮНДК40Т8 с направленной кристаллизацией, обладающие большими удельной магнитной энергией и коэрцитивной силой. Магнитные свойства этих материалов приведены в Таблице № 5.

Таблица № 5

Марка

Wм max, кДж/м

Вr, Тл

Нс, кА/м

ЮН15 ДК25БА

1.25

ЮНДК31Т3БА

1.15

ЮНДК35Т5АА

1.05

ЮНДК40Т8АА

0.9

NKS-100 (Япония)

1.1

Альнико VII (США)

1.34

Вr остаточная намагниченность, Нс коэрцитивная сила.

Появление сплавов ЮНДК значительно расширило применение магнитов. Сплавы типа ЮНДК (альнико) являются металлокерамическими материалами, которые обычно изготовляются методами порошковой технологии или литьем. Эти материалы обладают наилучшей термической устойчивостью с температурой Кюри 850. Температурные коэффициенты индукции в интервале температур от -60 до 100 С составляет в среднем в (0.02 0.07)%/С т. е относительно невелики.

Магнитные характеристики металлокерамических магнитов из ЮНДК24, ЮНДК35Т5 и ЮНДК38Т7 приведены на Рис. 18.

Наилучшими материалами для постоянных магнитов, используемых в БЭМ, являются интерметаллические соединения на основе редкоземельных материалов /18/ вида RСo5 (самария Sm, празеодим Pr, тербия Тb, церия Ce, и др.) и кобальта. Магниты из Rco5 получают литьем или спеканием. Наиболее широкое применение имеют материалы состава: Sm36%, Co64%. Они имеют прямолинейную спинку кривой размагничивания и обладают высокими магнитными свойствами: Вr=0.70.9 Тл, Нс=560 640 кА/м, (BH) max=128 176 Тл кА/м. Эти магниты обладают уникальными значениями коэрцитивной силы, в 67 раз превышающие значения для магнитов типа ЮНДК. На Рис. 19 приведены кривые размагничивания и значения (BH) max.

Таблица № 6.

Марка

Wм max, кДж/м

Вr, Тл

Нс, кА/м

КС37

>0.77

>540

КС37А

>0.82

>560

КСП37

0.9

КСП 37А

72.5

0.9

Магниты из РЗМ рассчитаны для работы при температурах от -70 до +150С, имеют достаточно низкий температурный коэффициент при Вr, примерно 0.03 0.05%/С в диапазоне температур 20−200С. В таблице № 6 даны характеристики существующих РЗМ.

Несмотря на высокие магнитные показатели, использование РЗМ магнитов пока затруднено по причине того, что, например, стоимость SmCo5 достигает нескольких миллионов рублей за килограмм.

Для стандартного генератора Г273 в целях удешевления и унификации целесообразно выбрать магниты типа ЮНДК, так как они обладают удовлетворительными, для нашего варианта характеристиками и могут создать необходимый для самовозбуждения магнитный поток. Выберем, исходя из вышеописанных данных, постоянный магнит типа ЮНДК35Т5АА (см. Таблицу № 5 и Рис 18). Этот магнит изготовлен методом порошковой технологии. Буквы АА означают, что материал монокристаллической структуры. Эти сплавы обладают хорошими магнитными свойствами, эффективно работают при температурах до 600С и относительно недороги.

2.1.4 Определение частот вращения ротора генератора и передаточного числа привода от двигателя к генератору

Инженерный расчет генератора, сводится к перерасчету передаточного отношения привода генератора от коленчатого вала двигателя. Э.д.с фазы будем считать по формуле е=lVотнВ. Воспользуемся рядом упрощений и допущений /19/. Вектор магнитной индукции В перпендикулярен вектору относительной скорости движения Vотн. Магнитная индукция в зазоре равна индукции постоянного магнита В=Вм, так как считаем что воздушные зазоры пренебрежимо малы и линии индукции не имеют выпячиваний в воздушном зазоре (т.е. параллельны друг другу). Тогда можно записать что:

U=lVотнВм (1)

Для перерасчета считаем, что lVотн=const для определенной частоты вращения. При пересчете будем опираться на технические данные ГУ Г273 и его ТСХ /20/ (Рисунок А.1 в приложении А). Также считаем, что у обмотки возбуждения магнитная индукция равна Вм1=1.7 Тл, а у выбранного магнита Вм2=1.05 Тл.

1. Расчет при холостом ходе генератора.

частота вращения ротора генератора при Iнагр =0 и UГУ =28 В.

следовательно, так как магнитная индукция в 1.62 раза меньше, то исходя из формулы (1) считаем, что частоту вращения ротора надо поднять с 1050 до 1700 об/мин. Так как при n=1050 об/мин и Вм2=1.05 Тл генератор не выдает необходимого напряжения в 28 Вольт (Напряжение равно только 17 В).

2. При контрольном режиме ТСХ.

при Iнагр =20 и UГУ =28 В Соотношение В и Вм остается прежним 1.62 раза. Из формулы (1) находим, что чтобы обеспечить необходимое напряжение ГУ в 28 Вольт надо поднять частоту вращения генератора до 3564 об/мин.

3. При номинальном режиме работы, когда nномгу = 5000 об/мин при Iнагр =28А и UГУ =28 В, надо поднять частоту вращения ротора до 8100 об/мин.

При максимальной частоте вращения двигателя частота вращения ротора генератора должна составлять не менее 10 800 об/мин.

Ввиду того, что частота вращения ротора генератора необходимая для обеспечения заданного напряжения не соответствует частоте вращения коленчатотго вала двигателя, необходимо ставить повышающий редуктор привода генератора. Примерные частоты вращения двигателя находятся в пределах 700 4500 об/мин, минимальная частота вращения генератора 1700 об/мин.

Необходимо обеспечить токоотдачу на минимальных оборотах то, есть при минимальной частоте вращения двигателя 700 об/мин, надо чтобы генератор имел частоту вращения 1700 об/мин. Следовательно необходимо выбрать передаточное число 1700/700=2.4, (i=2.4) повышающего редуктора от двигателя к генератору.

Так как вместо обмотки возбуждения на генераторе установлен постоянный магнит магнитный поток невозможно уменьшить при увеличении частоты вращения (Ф=const). Неизбежно повышение напряжения на выходе генератора, причем оно будет увеличиваться пропорционально увеличению частоты вращения ротора генератора. Рассчитаем во сколько раз увеличится напряжение генератора по-формуле

где nmax и nmin частоты вращения двигателя.

Нам известны nmax =4500 об/мин, nmin =700 об/мин и Umin=28 В, тогда

.

Напряжение генераторной установки изменяется в пределах 28 … 170 Вольт.

2.2 Выбор и обоснование типа регулятора

При заданном широком изменении входных параметров и невозможностью регулирования с помощью обмотки возбуждения целесообразным становится применение регулятора постоянного напряжения с импульсным регулированием. Они находят все более широкое применение в электронной аппаратуре. Это объясняется, в первую очередь, их высокими энергетическими и объемно-массовыми показателями. Коэффициент полезного действия таких источников может достигать 70…85%, при этом их удельная мощность составит 120…250 Вт/дм /23/.

Регулятор постоянного напряжения представляет собой однотактный регулируемый преобразователь с гальванической связью входа и выхода. Он состоит из периодически эамыкаемого электронного ключа и шунтирующего нагрузку диода. За счет изменения соотношения между временем включенного и выключенного состояний ключа достигается регулирование выходного напряжения без потерь мощности. При этом среднее значение выходного напряжения в зависимости от схемы и режима работы может быть больше или меньше входного напряжения.

Показать весь текст
Заполнить форму текущей работой