Помощь в написании студенческих работ
Антистрессовый сервис

Построение и исследование имитационных моделей

КурсоваяПомощь в написанииУзнать стоимостьмоей работы

Пользовательский интерфейс модели СМО Пользовательский интерфейс модели СМО в процессе работы Графики функций распределения времени поступления и времени обработки Графики плотности распределения времени поступления и времени обработки График по времени числа требований в очереди График по времени числа требований в системе График среднего по времени числа требований в очереди График среднего… Читать ещё >

Построение и исследование имитационных моделей (реферат, курсовая, диплом, контрольная)

При решении поставленной задачи необходимо выбрать реальную систему массового обслуживания, которая является аналогом моделируемой системы. Учитывая заданные входные параметры (требования поступают в среднем с интервалом 10 секунд, обрабатываются в среднем 25 секунд; дисциплина обслуживания — FIFO, количество обслуживающих устройств — 5), можно взять в качестве аналога производственную систему, где имеется 5 устройств, с помощью которых определённым образом обрабатываются детали, например, обтачиваются. С помощью конвейера детали продвигаются к устройствам; если имеется свободное устройство, то с помощью него немедленно начинается обработка детали, а если все устройства заняты — деталь продвигается в специальный накопитель, в котором может поместиться не более 32 деталей. Если накопитель при поступлении очередной детали заполнен — она откладывается и поступает на обработку позже (со следующей партией). Также аналогом может быть сервер базы данных, к которому идут запросы, не имеющие приоритетов (но среднее время обслуживания, указанное в техническом задании, не соответствует скорости работы современных компьютеров, поэтому мы не рассматриваем такую систему в данной работе).

1. Выбор входных распределений. Построение генераторов случайных чисел

1.1 Выбор входных распределений

При выборе входных распределений следует обратить внимание на свойства потоков событий, которым соответствуют поступление требований в систему и обработка этих требований. Рассмотрим простейший поток событий. Он обладает одновременно следующими свойствами:

· стационарность (вероятность появления определённого числа событий в некотором интервале не зависит от начала отсчёта, а зависит только от ширины интервала);

· отсутствие последствий (число событий, находящихся в системе в некотором промежутке времени, не зависит от того, сколько событий находилось в системе до момента времени, предшествующему этому промежутку);

· ординарность (выражает собой условие практической невозможности появления двух и более событий в один и тот же момент времени).

Таким образом, интервалы времени между поступлением требований и временем обслуживания являются случайными величинами с экспоненциальным законом распределения.

генератор интерфейс пользовательский программа

1.2 Построение генераторов случайных чисел

Генерация случайных величин, распределённых по экспоненциальному закону, производится в два этапа:

1) генерация стандартной равномерно распределённой псевдослучайной последовательности псевдослучайных чисел;

2) преобразование полученной последовательности в экспоненциально распределённую.

Для создания стандартной равномерно распределённой последовательности используется мультипликативный линейный конгруэнтный генератор (ЛКГ), описываемый формулой:

где. 1

Мультипликативный ЛКГ имеет максимальный период (m-1), когда выполняются следующие условия:

· m является простым числом;

· a является первообразным корнем по модулю m, т. е. наименьшее целое число l, для которого al-1 делится на m, есть l = m-1.

В данной работе при построении ЛКГ взяты следующие параметры:

· m = 231-1 = 2 147 483 647;

· a = 630 360 016.

Число, на основе которого будет получено первое значение последовательности, генерируется случайным образом.

Для получения экспоненциального распределения используется следующая формула:

x= - ln ,

где x — значение экспоненциально распределённой случайной величины, — математическое ожидание, — значение равномерно распределённой случайной величины.

1.3 Оценка входных распределений

Оценка математического ожидания выполняется по формуле:

где n — количество чисел в последовательности.

Получены следующие оценки математического ожидания:

· для времени поступления требований: = 10.1320;

· для времени обработки требований: = 24.9472.

Видно, что полученные оценки мало отличаются от средних значений (µA = 10 с, µS = 25 с), являющихся входными параметрами.

Оценка дисперсии производится по формуле:

где n — количество чисел в последовательности, — оценка математического ожидания.

Получены следующие оценки дисперсии:

· для времени поступления требований: = 98.3608;

· для времени обработки требований: = 617.9198.

Для оценки корреляции необходимо сначала вычислить ковариацию по формуле:

где n — количество чисел в последовательности, — оценка математического ожидания.

Формула для оценки корреляционной функции:

где — ковариация, — оценка дисперсии.

График корреляционной функции для времени поступления Рисунок 2.2 — График корреляционной функции для времени обработки

По графикам видно, что корреляция для времени поступления составляет менее 0.05, для времени обработки — менее 0.07.

1.4 Оценка результатов

Для оценки результатов используем три метода:

· метод гистограмм;

· метод доверительных интервалов;

· метод 2.

Гистограммы представлены на рисунках. Вид обеих гистограмм позволяет сделать вывод о том, что полученные распределения действительно соответствуют экспоненциальному закону. Также приведём графики функций распределения вероятностей и графики зависимости следующих значений случайных величин от предыдущих.

Гистограмма для времени поступления Гистограмма для времени обработки График функции распределения вероятностей для времени поступления График функции распределения вероятностей для времени обработки График зависимости следующего значения от предыдущего для времени поступления График зависимости следующего значения от предыдущего для времени обработки Доверительный интервал для математического ожидания случайных величин определяется формулой:

где = 0,95 — доверительная вероятность, — математическое ожидание (здесь мы рассматриваем его оценку), б = 1 — в = 0.05 — уровень значимости, U1 — б/2 — квантиль порядка 1 — б/2 (для доверительной вероятности = 0,95 U1 — б/2 = 1,96), — среднеквадратическое отклонение.

Для математического ожидания времени поступления и времени обработки получены следующие доверительные интервалы:

· 9.6371 < < 10.9516;

· 23.6729 < < 26.9516.

Оценки математического ожидания, полученные ранее (10.1320 для времени поступления и 24.9472 для времени обработки), входят в доверительные интервалы. Это говорит о неопровержимости экспоненциального распределения для последовательностей, которые мы рассматриваем.

Сделаем проверку гипотезы о правильности выбора экспоненциального распределения с помощью метода 2. Для этого, как и при использовании метода гистограмм, разделим область выбранного распределения на k интервалов (b0, b1), (b1, b2), …, (bk-1, bk) и подсчитаем количество попаданий в каждый интервал (nj — количество значений Xi в j-м интервале). Затем вычисляется ожидаемая доля pj величин Xi, которые попадают в j-й интервал.

Далее нужно вычислить статистику отклонения выборочного распределения от гипотетического по формуле:

Количество интервалов k =20, тогда pj = 0,05. Если, то гипотеза принимается, если, то гипотеза отвергается. По данным таблицы для k=20 и =0.05 (уровень значимости, = pj) 2 = 30.144.

В результате были получены следующие значения Z:

· для времени поступления — 12.0800;

· для времени обработки — 18.1200.

Полученные значения не превышают значения 2, следовательно, обе гипотезы принимаются.

2. Логика работы программы

2.1 Оценка параметров производится по формулам:

· коэффициент использования системы:

где pi — суммарное время работы каждого устройства, m — количество устройств, T — общее время моделирования;

· среднее время ожидания заявки в очереди:

где Di — время ожидания заявки в очереди, n — количество заявок;

· среднее время пребывания заявки в системе:

где d — среднее время ожидания заявки в очереди, µS — математическое ожидание времени обслуживания требований, полученное в ходе работы программы;

· среднее по времени число требований в очереди:

где qi — время пребывания требования в очереди, T — общее время моделирования;

· среднее по времени число требований в системе:

где li — время пребывания требования в системе, T — общее время моделирования;

· абсолютная пропускная способность (количество требований в единицу времени):

где л = 1/µA — интенсивность поступления требований, щ = 1/µS — скорость обработки требований;

· относительная пропускная способность (отношение доли обслуженных требований к общему количеству требований):

где л = 1/µA — интенсивность поступления требований, щ = 1/µS — скорость обработки требований.

2.2 Пользовательский интерфейс

Пользовательский интерфейс модели СМО Пользовательский интерфейс модели СМО в процессе работы Графики функций распределения времени поступления и времени обработки Графики плотности распределения времени поступления и времени обработки График по времени числа требований в очереди График по времени числа требований в системе График среднего по времени числа требований в очереди График среднего по времени числа требований в системе График по времени коэффициента использования системы

3. Анализ работы системы

3.1 Выбор стратегии и тактики планирования

генератор интерфейс пользовательский программа Будем использовать метод факторного планирования, суть которого состоит в построении экономичных планов. По результатам измерений в их точках можно проводить статистические выводы о неизвестных параметрах полиномиальных функций регрессии.

Планирование факторного эксперимента отличается от планирования регрессионного допущением, что независимые переменные могут принимать не только количественные, но и качественные значения. Для упрощения задачи будем проводить регрессионный эксперимент.

Факторы, влияние которых мы будем учитывать при планировании экспериментов:

· количество устройств s;

· среднее время поступления требований µA;

· среднее время обработки требований µS.

Все три фактора являются управляемыми (при необходимости можно увеличить или уменьшить количество устройств обработки, изменить скорость конвейера, поставить устройства, которые работают быстрее, или настроить устройства таким образом, чтобы они обрабатывали детали медленнее). Ёмкость накопителя также является управляемым фактором, но её влияние учитывать нецелесообразно, поскольку нежелательно улучшать показатели работы системы за счёт увеличения длины очереди.

Показатели (отклики), влияние выбранных факторов на которые мы рассматриваем:

· коэффициент использования системы с;

· среднее время ожидания заявки в очереди Tq;

· среднее время пребывания заявки в системе Ts;

· среднее по времени число требований в очереди Nq;

· среднее по времени число требований в системе Ns;

· абсолютная пропускная способность Ca;

· относительная пропускная способность Cr.

Необходимо проанализировать выходные показатели работы имитационной модели, чтобы затем выбрать оптимальные входные параметры. Анализ производится в несколько этапов: сначала нужно определить необходимое количество экспериментов, затем провести их и зафиксировать результаты; после этого рассчитываются эффекты, вычисляются коэффициенты уравнений регрессии, и уравнения проверяются на адекватность. Также необходимо сделать экономическую оценку вариантов системы. На основании полученных результатов можно будет выработать рекомендации по оптимизации системы.

3.2 Определение необходимого количества экспериментов

Требуется определить необходимое количество экспериментов для факторного плана. Для этого проводятся предварительные прогоны системы с входными параметрами по умолчанию (указанными в техническом задании):

· количество устройств s = 5;

· среднее время поступления требований µA = 10;

· среднее время обработки требований µS = 25;

· ёмкость накопителя l = 32.

Количество поступающих требований — 1000; всего проводим 20 прогонов.

Значения выходных параметров вычисляются по формулам:

· коэффициент использования системы с — по формуле (3.1);

· среднее время ожидания заявки в очереди Tq — по формуле (3.2);

· среднее время пребывания заявки в системе Ts — по формуле (3.3);

· среднее по времени число требований в очереди Nq — по формуле (3.4);

· среднее по времени число требований в системе Ns — по формуле (3.5);

· абсолютная пропускная способность Ca — по формуле (3.6);

· относительная пропускная способность Cr — по формуле (3.7).

После всех 20 прогонов мы получаем по 20 значений каждого из выходных параметров, и эти значения составляют случайные величины. Для расчёта необходимого количества экспериментов требуются оценки математического ожидания и дисперсии случайных величин.

Вычисление необходимого количества экспериментов производится по формуле:

где ni — количество экспериментов для каждой случайной величины, определяемое с помощью формулы:

где уi2 — дисперсия случайной величины (её оценка вычисляется по формуле (2.7)); еi2 — относительная погрешность (5% от оценки математического ожидания случайной величины, вычисляемого по формуле (2.6)); U1-б/2 — квантиль порядка 1 — б/2, где б = 1 — в — уровень значимости, соответствующий доверительной вероятности в. Здесь мы берём в = 0,95, тогда б = 1 — 0,95 = 0,05; U1-б/2 — табличное значение, в данном случае равное 1,96. В таблице 4.1 приведены результаты предварительных 20 прогонов системы и вычисленные значения ni для каждого из откликов.

Результаты предварительных прогонов системы и определение необходимого количества экспериментов

Нач.знач. генератора времени поступления

Нач. знач. генератора времени обработки

с

Tq

Ts

Nq

Ns

Ca

Cr

0,5109

1,754 262

27,6 765

0,176 855

2,554 502

0,283 908

0,28 133 336

0,508 034

2,151 486

27,33 542

0,216 792

2,540 168

0,284 717

0,28 297 145

0,563 213

2,296 117

29,31 681

0,23 906

2,816 067

0,273 046

0,2 622 117

0,491 923

1,56 023

26,50 452

0,153 692

2,459 616

0,285 015

0,28 904 941

0,505 411

1,13 077

26,86 198

0,110 942

2,527 057

0,278 406

0,28 362 796

0,502 551

1,167 738

26,25 028

0,116 866

2,512 754

0,285 425

0,2 840 814

0,471 183

0,948 115

26,2 077

0,88 999

2,355 914

0,279 965

0,29 805 214

0,512 591

1,275 709

26,41 425

0,129 933

2,562 957

0,286 148

0,28 066 576

0,492 533

0,737 482

25,14 503

0,74 336

2,462 666

0,291 257

0,28 911 309

0,498 376

1,93 933

26,14 268

0,108 717

2,491 882

0,284 736

0,2 867 719

0,513 588

1,407 303

26,4954

0,143 903

2,56 794

0,28 688

0,28 027 381

0,476 143

0,723 342

24,68 515

0,71 796

2,380 716

0,293 877

0,29 581 853

0,513 204

1,678 125

26,65 671

0,17 222

2,566 022

0,28 794

0,28 076 539

0,53 529

1,224 035

27,64 783

0,123 858

2,67 645

0,275 231

0,27 273 391

0,497 189

1,673 466

25,24 091

0,176 345

2,485 945

0,302 288

0,28 758 513

0,488 326

0,798 859

24,62 366

0,81 788

2,441 632

0,297 731

0,2 906 616

0,522 012

1,662 983

27,29 321

0,169 181

2,61 006

0,282 064

0,27 706 486

0,510 297

1,34 852

26,88 936

0,102 024

2,551 484

0,277 865

0,28 159 426

0,512 029

1,861 985

27,27 832

0,187 367

2,560 144

0,282 889

0,2 810 005

0,504 527

2,113 141

26,77 048

0,215 974

2,522 633

0,290 654

0,28 332 542

0,506 466

1,414 697

26,53 202

0,143 032

2,53 233

0,285 502

0,28 343 508

Из таблицы видно, что максимальное значение ni получено для среднего по времени количества требований в очереди Nq и равно 187,4965. Округляем это значение вверх и получаем 188 — столько прогонов и нужно провести для дальнейшего анализа работы системы.

3.3 Построение факторных планов. Расчёт эффектов

В данной работе мы строим полный факторный план 2k, где k = 3. Факторы, влияние которых на отклики мы учитываем, и отклики, которые мы рассматриваем, описаны в подразделе 4.1. Значения факторов приведены в таблице.

Значения факторов

Фактор

Количество устройств s

Среднее время поступления требований µA

Среднее время обработки требований µS

;

Значения факторов были подобраны эмпирически с учётом того, что требуется увеличить коэффициент использования системы, но при этом не должно быть слишком большого количества требований в очереди, а также нежелательны отказы (все поступающие требования должны быть обработаны), то есть значения других откликов необходимо ограничить.

Для каждой точки факторного плана проведено 188 прогонов с различными начальными значениями генераторов. Для откликов в каждой серии испытаний вычислены средние значения, которые приведены в таблице.

Факторный план

Факторы

Отклики

s

µA

µS

с

Tq

Ts

Nq

Ns

Ca

Cr

;

;

;

0,93 959

67,71 094

87,79 055 202

9,594 440 485

2,818 805

0,36 957

0,258 381

;

;

0,99 966

434,0291

479,1 299 086

28,95 093 908

3,15 258

0,19 228

0,134 324

;

0,998 717

415,7888

460,7 731 212

27,70 749 452

3,3 469

0,18 204

0,182 137

;

;

0,666 973

8,902 939

28,94 977 197

0,891 233 076

2,92

0,33 279

0,333 376

;

;

0,574 937

1,933 499

21,99 239 752

0,277 712 324

2,874 686

0,37 007

0,258 328

;

0,40 158

0,400 361

20,48 808 071

0,40 042 367

2,7 902

0,33 234

0,33 283

;

0,99 753

233,4033

278,5 405 546

25,78 961 589

4,996 924

0,19 201

0,134 301

0,891 914

54,4625

99,4 463 086

5,425 522 797

4,459 568

0,18 195

0,18 219

Теперь необходимо провести расчёт эффектов для каждого отклика по формулам:

;

;

.

Здесь e1, e2 и e3 — главные эффекты от первого, второго и третьего факторов соответственно; y1, y2, …, y8 — значения откликов для соответствующих точек факторного плана.

Эффекты взаимодействия факторов e12, e13, e23 и e123 рассчитываются соответственно по формулам:

;

;

;

.

Значения эффектов для каждого отклика представлены в таблице.

Эффекты

Эффект

Значение эффекта для отклика

с

Tq

Ts

Nq

Ns

Ca

Cr

e1

— 0,13 766

— 55,2604

— 55,2 706 388

— 7,1 538 147

— 0,55 256

— 0,186

0,37 393

e2

0,159 841

52,1209

64,57 720 436

5,237 683 006

0,936 058

— 0,939

— 0,3 796

e3

— 0,18 474

— 159,058

— 159,44 003

— 8,90 280 345

0,875 157

— 0,8

— 0,14

e12

— 0,8 102

— 237,653

— 250,188 159

— 16,5 747 958

— 0,21 739

0,8 893

0,62 171

e13

— 0,182

— 34,9766

— 35,286 425

— 3,28 550 005

— 0,14 951

— 0,53

0,23 802

e23

0,296 622

90,64 507

103,1 759 881

10,21 100 899

1,350 895

— 0,704

— 0,9 937

e123

0,114 888

148,9491

161,3 931 942

6,511 584 226

0,382 107

— 0,751

— 0,7 548

3.4 Построение уравнений регрессии

Необходимо построить уравнения регрессии для более точного аналитического представления зависимости показателей работы системы. Уравнение является полиномом третьей степени. Коэффициенты уравнений регрессии неизвестны. Чтобы их найти, нужно решить матричное уравнение :

yi =R • aij,

где yi — матрица-столбец, содержащая средние значения соответствующего отклика за 8 экспериментов; aij — матрица-столбец, содержащая искомые коэффициенты; R — матрица, которая описана в формуле:

где x1, x2, x3 — факторы (количество устройств, среднее время поступления требований и среднее время обработки требований соответственно).

Решение уравнения будет выглядеть следующим образом:

aij = * yi.

Значения, соответствующие формуле, приведены в таблице, а полученные коэффициенты уравнений регрессии — в таблице. Коэффициенты вычислены с помощью программы MS Excel.

Матрица для вычисления коэффициентов уравнений регрессии

x1

x2

x3

x1x2

x1x3

x2x3

x1x2x3

Коэффициенты уравнений регрессии

ПФП 23

с

Tq

Ts

Nq

Ns

Ca

Cr

ai1

3,935

735,243

735,82

156,57

9,4654

0,63 860 379

0,1287

ai2

— 0,633

— 249,214

— 249,41

— 42,74

— 1,13

0,272 535

0,1 068

ai3

— 0,295

— 146,25

— 146,31

— 20,16

— 0,654

— 0,184 081

0,3 272

ai4

— 0,073

— 11,559

— 10,568

— 4,153

— 0,25

— 0,93 637

— 0,235

ai5

0,0437

38,609

38,633

5,0891

0,0554

— 0,310

— 0,16

ai6

0,0168

7,475

7,481

1,4105

0,0608

— 0,68

— 0,26

ai7

0,008

4,9

4,901

0,6512

0,0203

0,33

— 0,38

ai8

— 0,001

— 1,453

— 1,4538

— 0,184

— 0,003

0,76

0,38

Получены следующие зависимости:

y1 = 3,935 — 0,633x1 — 0,295x2 — 0,073x3 + 0,0437x1x2 + 0,0168x1x3 + 0,008x2x3 — 0,001x1x2x3;

y2 = 735,243 — 249,214x1 — 146,245x2 — 11,559x3 + 38,609x1x2 + 7,4752x1x3 + 4,9x2x3 — 1,4532x1x2x3;

y3 = 735,82 — 249,41x1 — 146,31x2 — 10,568x3 + 38,633x1x2 + 7,481x1x3 + 4,901x2x3 — 1,4538x1x2x3;

y4 = 156,57 — 42,74x1 — 20,16x2 — 4,153x3 + 5,0891x1x2 + 1,4105x1x3 + 0,6512x2x3 — 0,184x1x2x3;

y5 = 9,4654 — 1,13x1 — 0,654x2 — 0,25x3 + 0,0554x1x2 + 0,0608x1x3 + 0,0203x2x3 — 0,003x1x2x3;

y6 = 0,6 386 — 0,273x1 — 0,00184x2 — 0,936x3 — 0,31x1x2 — 0,68x1x3 + 0,33x2x3 — 0,76x1x2x3;

y7 = 0,1287 + 0,00107x1 + 0,03272x2 — 0,00235x3 — 0,00016x1x2 — 0,26x1x3 — 0,00038x2x3 + + 0,38x1x2x3.

С помощью программы MS Excel для каждой точки факторного плана сделана проверка коэффициентов уравнений регрессии по вышеприведённым зависимостям. Полученные значения совпадают со значениями откликов, следовательно, уравнения регрессии составлены верно. Результаты проверки приведены в таблице 4.7 (коэффициенты в столбцах обозначены «a», отклики — «y»).Проверка уравнений регрессии

Набор факторов

с

Tq

Ts

Nq

Ns

Ca

Cr

s

µA

µS

a

y

a

y

a

y

a

y

a

y

a

y

a

y

3,9352

0,9396

735,243

67,711

735,817

87,791

156,57

9,5944

9,4654

2,819

0,63 860 379

0,3 696

0,128 694 058

0,258 381

— 0,6335

0,9997

— 249,21

434,03

— 249,41

479,13

— 42,744

28,951

— 1,13

3,015

0,272 535

0,1 923

0,1 067 906

0,134 324

— 0,2945

0,9987

— 146,25

415,79

— 146,31

460,77

— 20,158

27,707

— 0,654

3,003

— 0,184 081

0,0182

0,32 721 027

0,182 137

— 0,0733

0,667

— 11,559

8,9029

— 10,568

28,95

— 4,1534

0,8912

— 0,25

2,001

— 0,93 637

0,3 328

— 0,2 347 475

0,333 376

0,0437

0,5749

38,6092

1,9335

38,6326

21,992

5,0891

0,2777

0,0554

2,875

— 0,3 102

0,3 701

— 0,158 035

0,258 328

0,0168

0,4016

7,47 522

0,4004

7,48 096

20,488

1,4105

0,04

0,0608

2,008

— 0,684

0,3 323

— 0,2 594

0,33 283

0,0077

0,9975

4,90 041

233,4

4,90 127

278,54

0,6512

25,79

0,0203

4,997

0,3 311

0,0192

— 0,37 380

0,134 301

— 0,0014

0,8919

— 1,4532

54,462

— 1,4538

99,446

— 0,1839

5,4255

— 0,003

4,46

0,76

0,0182

0,379

0,18 219

Для дополнительной проверки адекватности уравнений следует использовать малые приращения. Поскольку количество устройств может быть только целым числом, то мы берём приращение, равное 1. Результаты приведены в таблице 4.8.

Таблица 4.8 — Малые приращения

Факторы

Отклики

s

µA

µS

с

Tq

Ts

Nq

Ns

Ca

Cr

0,657 093

5,487 832

26,54 187

0,687 292

2,628 373

0,34 424

0,275 841

0,998 911

317,6312

363,9285

27,4242

4,5 047

0,18 438

0,147 516

0,979 116

197,6608

243,815

16,85 313

3,918 024

0,1 751

0,192 803

0,478 966

1,519 891

22,55 176

0,138 854

1,915 864

0,31 243

0,343 413

0,439 695

0,356 539

21,41 242

0,44 943

2,638 171

0,34 448

0,275 314

0,320 313

0,70 919

21,20 465

0,6 469

1,921 876

0,31 126

0,342 673

0,941 718

76,5 328

122,2027

9,400 747

5,650 445

0,18 483

0,147 856

0,702 641

8,132 428

54,34 382

0,745 967

4,215 847

0,17 501

0,191 878

Полученные результаты позволяют сделать вывод о том, что незначительное изменение факторов вызывает изменение выходных параметров. Некоторые отклики изменились довольно значительно, и это связано с тем, что изменение количества обслуживающих устройств даже на 1 резко влияет на отклики системы, в частности, на коэффициент использования, в то время как увеличение или уменьшение времени поступления и обработки на 1 с является незначительным изменением.

4. Расчёт экономической оценки вариантов системы. Рекомендации по оптимизации системы

При выработке рекомендаций по оптимизации системы необходимо руководствоваться экономической оценкой вариантов системы, которая производится по формуле:

I = Eнc1s + c2(Ns — Nq) + c3(s — Ns + Nq) + c4 T (µA-1 — Ca) + c5TNq,

где Eн = 0.15 (руб. / год) / руб. — нормативный коэффициент экономической эффективности капитальных вложений; c1 — цена одного устройства, c2 и с3 — годовые текущие затраты на обслуживание работающего и бездействующего устройства, с4 — потери от невыполнения одного требования, с5 — привёденные затраты на содержание одного требования; T = 2.5Ч107 с — годовой фонд времени работы системы; Nq — среднее по времени число требований в очереди; Ns — среднее по времени число требований в системе; Cа — абсолютная пропускная способность.

Начальные значения коэффициентов экономической оценки:

· c1 = 5 • 108 руб.;

· c2 = 8 • 104 руб.;

· c3 = 1 • 102 руб.;

· c4 = 0,035 руб.;

· c5 = 0,058 руб.

Проведём экономическую оценку для каждой точки факторного плана (расчёты с помощью MS Excel). Результаты приведены в таблице.

Экономическая оценка вариантов системы

s

µA

µS

с

Nq

Ns

Ca

Экономическая оценка

0,93 959

9,59 444 049

2,818 805

0,36 957

238 463 527,7

0,99 966

28,950 939

3,15 258

0,19 228

265 015 076,1

0,998 717

27,7 074 945

3,3 469

0,18 204

263 273 886,9

0,666 973

0,89 123 308

2,92

0,33 279

226 439 632,7

0,574 937

0,27 771 232

2,874 686

0,37 007

375 703 299,9

0,40 158

0,4 004 237

2,7 902

0,33 234

375 274 214,0

0,99 753

25,7 896 159

4,996 924

0,19 201

410 842 306,0

0,891 914

5,4 255 228

4,459 568

0,18 195

382 861 907,3

Из таблицы видно, что минимальную экономическую оценку мы получаем при следующих значениях факторов: количество устройств — 3, среднее время поступления требований — 10 с, среднее время обработки требований — 20 с. Среднее по времени число требований в очереди меньше 1, но коэффициент использования системы при этом не самый высокий.

В таком варианте системы, где количество устройств — 3, среднее время поступления требований — 10 с, среднее время обработки требований — 45 с, мы наблюдаем максимальный коэффициент использования; экономическая оценка здесь больше, чем в предыдущем рассмотренном варианте. При этом среднее по времени число требований в очереди больше, чем во всех остальных вариантах, и к тому же близко к ёмкости накопителя, что увеличивает вероятность отказов.

При минимальном количестве устройств, небольших интервалах между поступлением требований (7 с) и меньшим, чем в рассмотренных вариантах, средним временем обслуживания (20 с) коэффициент использования системы также достаточно высок, а среднее по времени число требований в очереди примерно равно 10. Значение экономической оценки этого варианта больше минимального, но меньше всех остальных. Также при этом наблюдается максимальная абсолютная пропускная способность. Можно сказать, что входные параметры системы в этом варианте являются оптимальными.

Итак, оптимальными параметрами системы будем считать следующие:

· количество устройств s = 3;

· среднее время поступления требований µA = 7 с;

· среднее время обработки требований µS = 20 с.

Для уменьшения интервалов между поступлением требований в реальной системе, аналог которой мы рассматриваем, нужно только увеличить скорость конвейера; чтобы уменьшить среднее время обработки, возможно, придётся купить новые устройства, работающие быстрее, или настроить соответствующим образом имеющиеся устройства. Такие изменения являются целесообразными, так как в этом случае система будет работать гораздо более продуктивно, нежели при входных параметрах, указанных в техническом задании.

Получены следующие значения выходных параметров:

· коэффициент использования системы 0,93 939;

· среднее время ожидания заявки в очереди 44,8218;

· среднее время пребывания заявки в системе 64,2377;

· среднее по времени число требований в очереди 6,4992;

· среднее по времени число требований в системе 2,8182.

Заключение

генератор интерфейс пользовательский программа В ходе работы были решены следующие задачи:

· анализ входных параметров и определение адекватного аналога СМО;

· построение генераторов случайных чисел для осуществления моделирования и проверка их адекватности несколькими способами;

· создание программы на языке MATLAB для имитационного моделирования СМО с дисциплиной обслуживания FIFO;

· проведение необходимых экспериментов;

· анализ работы системы на основании результатов экспериментов;

· выбор оптимальных входных параметров системы.

Проанализировав результаты работы, можно сделать вывод, что имитационное моделирование систем позволяет исследовать реальные системы и определять, при каких условиях их работа будет наиболее эффективна; при этом не требуется вложение средств в эксперименты с реальными системами.

Показать весь текст
Заполнить форму текущей работой