Зуботехническая техника внутреннего раскрашивания
В последнее время врачи стоматологи-ортопеды всерьез заинтересовались титаном. Наметилась тенденция замены существующих сплавов для съемного и несъемного протезирования на биосовместимый и относительно недорогой металл — титан. Аллергенные свойства базисных сплавов, используемых в стоматологии, и, в частности, сплавов, содержащих никель и беррилий, вызвали отрицательное отношение к ним ряда… Читать ещё >
Зуботехническая техника внутреннего раскрашивания (реферат, курсовая, диплом, контрольная)
В частности, техника внутреннего раскрашивания показана для имитации индивидуальных особенностей центральных резцов и отчетливо выраженных характеристик остальных зубов, для воспроизведения возрастных особенностей зубов лиц среднего и пожилого возраста, а также в случаях затруднений при выборе расцветки.
Автор статьи указывает на ряд преимуществ данного метода:
- 1. благодаря тому, что красители наносят на поверхность уже спеченного керамического покрытия, которое не будет давать усадку при последующих обжигах, после проведения обжига воспроизводимые эффекты не сместятся, а будут находиться именно в тех местах, где они были нарисованы зубным техником;
- 2. благодаря тому, что обжиги керамического покрытия и красителей ведутся раздельно, в процессе изготовления реставрации можно уточнить строение мамелонов, а также провести коррекцию внутреннего анатомического строения имитируемого зуба алмазными головками и другими инструментами;
- 3. по сравнению с методом наружного подкрашивания может быть достигнута большая глубина окраски зубного протеза или микропротеза. Даже без нанесения наружных красителей можно изготовить такие зубные протезы, которые, благодаря точному воспроизведению вида внешней поверхности и внутреннего строения естественных зубов, будут восприниматься окружающими, как собственные зубы пациента;
- 4. благодаря высокой цветовой насыщенности внутренних красителей, с их помощью можно точно передать цвет зуба в местах с ограниченным пространством, т. е. в тех местах, где невозможно нанести слой керамической массы достаточной толщины;
- 5. в отличие от сложного воспроизведения внутреннего строения зуба с помощью интенсивов и эффект-масс, процедура внутреннего раскрашивания не является сложной, поэтому даже новички могут сравнительно легко передать окраску имитируемого зуба и обеспечить при этом высокое качество исполнения работы;
- 6. при использовании внутренних красителей можно обойтись минимальным числом порошков керамики основных расцветок.
Автор статьи также отмечает некоторые недостатки техники внутреннего раскрашивания:
- 1. увеличивается число обжигов керамического покрытия;
- 2. керамические красители размещают между слоями материала, отличающегося от них по строению и составу;
- 3. поскольку внутренние красители наносят на обожженную поверхность фарфора, воспроизведение окраски ограничено одной плоскостью (плоскостью поверхности опакового слоя, поверхностью дентина или эмали).
По этой причине нарисованный эффект воспринимается менее объемным, чем созданный путем моделирования с применением интенсивов и эффект-масс. Х. Аосима (2001) также рассказывает о взаимосвязи внутренних красителей и нанесенной на них полупрозрачной керамики. Дело в том, что при изменении толщины слоя полупрозрачной керамики меняется восприятие цветов, поэтому я считаю, что зубной техник должен в достаточной мере владеть техникой регулирования расцветки фарфора и цвета воспроизводимых эффектов. Кроме того, он должен твердо усвоить основные принципы техники моделирования трехслойного керамического покрытия для того, чтобы всегда был соблюден баланс между толщинами каждого из слоев наносимого покрытия.
Х.Аосима (2001) представляет данную технику следующим образом. После нанесения дентиновой и эмалевой масс, проводят первый «дентиновый» обжиг. Затем поверхность обоженной коронки раскрашивают необходимыми красителями, после чего поверх красителей наносят слой полупрозрачной массы и проводят еще один обжиг. При воспроизведении индивидуальных и возрастных особенностей зубов, а также всевоз-можных эффектов с использованием техники внутреннего раскрашивания следует неукоснительно соблюдать два условия:
- 1. трехслойное нанесение керамической массы;
- 2. раздельный обжиг каждого слоя.
Для закрепления красителей проводят их обжиг, выбрав температуру примерно на 1300С ниже температуры обжига дентина. Чем большему числу обжигов будет подвергнута коронка, тем ближе к идеалу цвет красителя. Благодаря тому, что коэффициент термического расширения керамики «Норитакэ» и внутренних красителей «Норитакэ» хорошо согласуются между собой, при обжиге коронки не возникают поры, пузырьки и другие дефекты, как при использовании красителей других фирм-производителей.
В процессе моделирования коронки для обеспечения удобства нанесения красителей проводят пескоструйную обработку поверхности, подлежащей подкрашиванию, корундовым (алюмооксидным) песком, также поверхность коронки смачивают специальной жидкостью для разведения красителей. Она способствует их лучшему нанесению, сводит к минимуму вероятность образования пузырей и усиливает флюоресцентные свойства красителей.
Х. Аосима (2001) указывает, что если невозможно подобрать подходящую расцветку краевого фарфора, то можно ее слегка подкорректировать с помощью красителей. В своей статье он приводит основные часто встречающиеся возрастные и индивидуальные особенности зубов пациентов.
В целом, число явно выраженных индивидуальных особенностей зубов пациентов юношеского возраста невелико (Х.Аосима, 2001). Количество используемых красителей тоже сравнительно невелико, поэтому очень часто можно обойтись всего одним закрепительным обжигом. Красителями специально подобранного цвета воспроизводят наблюдаемую окраску мамелонов, с помощью голубоватого или зеленоватого красителя усиливают прозрачность режущего края, белым имитируют едва заметные белые полосы. Что же касается формы, то стирание эмали по режущему краю малозаметно, однако на вестибулярной поверхности хорошо видны чередующиеся выпуклые и вогнутые участки.
По сравнению с молодыми пациентами, у лиц более зрелого возраста характерные особенности окраски и формы зубов выражены более отчетливо. При внутреннем раскрашивании коронки зубной техник может передать оранжевый оттенок в области режущего края, едва заметную темно-голубую или бурую полосу между двумя белы ми полосами, неокрашенные волосяные трещины (для их воспроизведения можно воспользоваться красителями «оранжевый 1 для мамелонов» + белый). В некоторых случаях поверхность зуба покрывают не только полупрозрачной, но и более заглушенной. а иногда даже и окрашенной керамической массой.
С возрастом зубы большинства пациентов приобретают разноцветную окраску, поэтому технику потребуется большее число красителей для внутреннего раскрашивания, чтобы он смог более точно передать возрастные и индивидуальные особенности зубов лиц пожилого возраста. При передаче особенностей пациентов этой возрастной группы используют красители оранжевых и землисто-коричневого цветов в области режущего края, воспроизводят темные пятна, окрашенные или неокрашенные трещины эмали, создают ощущение прозрачности в проксимальных областях, имитируют белые полосы внутренней структуры зуба. После создания общего фона и проведения первого закрепительного обжига красителей, на поверхность коронки наносят индивидуальные характеристики зуба, которых с возрастом становится все больше и больше. Для создания блеска коронки в конце ее изготовления проводят полирование. Для полирования используют тонко измельченный порошок (пудру) пемзы и резиновые полировальные колесики.
В последнее время врачи стоматологи-ортопеды всерьез заинтересовались титаном. Наметилась тенденция замены существующих сплавов для съемного и несъемного протезирования на биосовместимый и относительно недорогой металл — титан. Аллергенные свойства базисных сплавов, используемых в стоматологии, и, в частности, сплавов, содержащих никель и беррилий, вызвали отрицательное отношение к ним ряда стоматологов. Титан же, напротив, обладает 100%-ной биосовместимостью с костной тканью и тканями полости рта — у пациентов полностью отсутствует металлический привкус во рту и аллергические реакции (Дьяконенко Е.Е., 2001). Легкий вес и высокая прочность на единицу массы, хорошая ковкость и низкая теплопроводность титана позволяют создать съемные и несъемные зубные протезы самых разных конструкций, удобные для пациента и обладающие неплохими функциональными свойствами. До недавних пор существовали ограничения использования титановых каркасов, связанные со сложностью их литья и пористотью (Дьяконенко Е.Е., 2001). Однако теперь эти ограничения сняты. В Москве появился ряд литейных лабораторий, оснащенных самым современным оборудованием, в которых могут быть отлиты высококачественные каркасы зубных протезов из титана.
Однако использовать для облицовки каркасов из титана обычную керамику невозможно по двум причинам.
Во-первых, титан имеет очень низкий по сравнению с другими сплавами коэффициент термического расширения (ТКЛР), который приблизительно равен (100 r 10−7) 1/°С. Для сравнения: коэффициенты термического расширения обычных стоматологических сплавов находятся в пределах от 130 r 10−71 /°С до 150 r 10−7 1/°С.
Во-вторых, температура обжига керамики на титановых каркасах ограничена 810 °C, поскольку при температуре 882 °C происходит фазовое превращение кристаллической решетки титана (переход из ав b-модификацию), что сопровождается утратой механической прочности.
Для облицовки титановых каркасов нужна специальная низкотемпературная керамика. Одним из самых удачных материалов, применяемых для этой цели, является супер-фарфор ТI-22.
Отличительные особенности керамики TI -22:
- 1. Сведена к минимуму обжиговая деформация (оплавление краев) на стадии глазурования, свойственная всем низкотемпературным фарфорам;
- 2. Поскольку коэффициент термического расширения ТI-22 прекрасно согласуется с ТКЛР чистого титана, керамическое покрытие отличается замечательной устойчивостью к появлению трещин;
- 3. В то время, как большинство низкотемпературных керамических покрытий после обжига приобретает сероватый оттенок, нанесение супер-фарфора ТI-22 позволяет воспроизвести светлую окраску натурального зуба;
- 4. При нанесении Т1−22 на паяные протезы, независимо от того, когда проведена пайка, до или после облицовки, позеленение этой керамики будет минимальным даже в случае использования печи, загрязненной серебром;
- 5. Для создания эстетичных металлокерамических протезов на основе титановых сплавов используется то же самое оборудование и те же методы, что и при нанесении обычного фарфора;
- 6. Применение ТI-22 позволяет получить флюоресцентную расцветку коронок и мостовидных протезов, подобную наблюдаемой у натуральных зубов;
- 7. Поскольку супер-фарфор ТI-22, наряду с высокой кроющей способностью (укрывистостью массы), отличается сильной заглушенностью, он хорошо маскирует черную оксидную пленку, характерную для титана;
- 8. Одним из недостатков большинства низкотемпературных керамических материалов является их повышенная химическая растворимость (недостаточная устойчивость к агрессивному воздействию кислых сред). Исследовательскому коллективу фирмы Норитакэ удалось создать поистине уникальный материал, обладающий высокой кислотостойкостью.
Для испытания устойчивости керамики к агрессивному воздействию кислых сред (кислотостойкости) оценивали уменьшение веса керамических образцов после их 6-дневной выдержки в 20,4%-ном растворе гидрохлористой и 4% -ом растворе уксусной кислот. Для ужесточения условий испытания растворы кислот подогревали на водяной бане до температуры 80 °C. Кроме того оценивали утрату блеска поверхностью керамики. Она составила при выдержке в гидрохлористой кислоте 93,2%, в уксусной — 100% (степень блеска поверхности образца до выдержки в кислоте была принята за 100%).
- 9. Супер-фарфор ТI-22 отличается повышенной механической прочностью — он существенно прочнее, чем обычный стоматологический фарфор. В то время как проч-ность при изгибе обычного стоматологического фарфора находится в пределах от 50 до 80 МПа, аналогичный показатель супер-фарфора ТI-22 равен 92 Мпа;
- 10. Для усиления прочности связи супер-фарфора ТI-22 с титановым каркасом был создан специальный адгезивный подслой — Noritake Bonding Porcelain (ВР). Применение адгезивного подслоя Noritake Bonding перед нанесением супер-фарфора ТI-22 позволяет существенно увеличить прочность соединения керамического покрытия с титановым каркасом зубного протеза. Так, прочность связи супер-фарфора ТI-22 с титаном без применения адгезивного подслоя составляет 25 Мпа. Согласно норме международного стандарта ИСО 9692−98 «Стоматологическая керамика для зубного протезирования», минимальная величина прочности связи керамики с металлом должна составлять не менее 25 Мпа. Применение специального адгезивного подслоя Noritake Bonding позволяет увеличить это значение до 59 Мпа (т.е. более, чем в два раза). Применение адгезивных подслоев (бондингов) других компаний также способствует увеличению прочности связи супер-фарфора ТI-22 с титаном, но до меньшего значения (до 44 МПа).
До недавних пор для воспроизведения окраски и опалесценции естественных зубов в составы стоматологических фарфоров вводились оксиды металлов с диаметром частиц от 1 до 5 мкм. Благодаря тому, что в состав люстрового фарфора введены существенно меньшие размеру сверхтонкие частицы неорганических веществ, этот материал по поверхностному рельефу, блеску и яркости окраски стал больше напоминать естественные зубы. Более того, этот материал обладает более выраженной естественной опалесценцией по сравнению с материалами предшествующих поколений.
Проблема неестественного вида металлокерамических конструкций, по мнению Х. Аосима, состоит в том, что опорный зуб по-прежнему остается закрытым непрозрачным металлическим каркасом, а свет, падающий на коронку, проходя сквозь полупрозрачное керамическое покрытие, отражается от металла; отраженный свет частично поглощается в придесневой области. Решение проблемы только с помощью краевого фарфора будет недостаточным для обеспечения эстетического совершенства металлокерамического зубного протеза.
Кроме того, проблема заключается и том, что не воспроизводится опалесценция, наблюдаемая у естественных зубов человека, а эмалевый слой керамики недостаточно точно передает вид поверхности естественной эмали. При взгляде на коронку автор статьи обращал внимание на то, что воспроизведена не голубоватая прозрачность, присущая режущему краю естественного зуба, а темная прозрачность, свойственная стеклу.
Более того, существенным недостатком таких коронок являлось то, что они выглядели неестественными из-за ограниченных возможностей воспроизведения особенностей рельефа поверхности естественного зуба. Фирма Норитакэ разработала и выпустила новый стоматологический материал люстровый фарфор для металлокерами ки, с помощью которого можно успешно разрешить все перечисленные выше проблемы. Слово «люстровый» означает «блестящий» («переливающийся»). При рассмотрении поверхности естественного зуба можно заметить, что блеск естественной эмали похож на переливы жемчужины. Иследователями фирмы Норитакэ был создан люстровый фарфор, позволяющий передать «жемчужный» блеск на поверхности коронки после обжига и воспроизвести ультратонкую (гладкую и однородную) структуру поверхности естественной эмали. Люстровый фарфор Норитакэ обладает также опалесцентной расцветкой, что делает его удивительно похожим на естественную эмаль.
Синтетическая керамика более трудоемка в изготовлении, более дорогостоящая и менее распространена среди производителей. В сущности задачи, стоящие перед обеими технологиями, одни и те же. В стекле альбитового состава необходимо получить кристаллы лейцита-минерала, обладающего высоким коэффициентом термического расширения КТР (28,5×10−6/Со). В классическом случае это достигается перикристаллизацией полевого шпата при высоких температурах, а в случае синтетической керамики лейцит кристаллизуется непосредственно из расплава оксидов. Для облегчения этого процесса в исходную шихту вводят специальные вещества, которые впоследствии выступают в качестве центров зародышеобразования. Ученые и технологи видят по меньшей мере два преимущества синтетической массы по сравнению с полевошпатной. Первое преимущество, которое можно назвать технологическим, заключается в том, что в случае полевошпатной керамики производитель сталкивается с проблемой чистоты исходного минерального сырья. Технология синтетической керамики свободна от этой проблемы. Другое преимущество связано с механической прочностью керамического материала. С точки зрения материаловедения, стоматологическая керамика — это менее прочное стекло альбитового состава, в котором распределены более прочные кристаллы лейцита, обладающие к тому же более высоким КТР.
Количество лейцита в случае обеих технологий должно быть одинаковым, поскольку именно оно определяет КТР стоматологической керамики, но размеры кристаллитов лейцита в случае синтетической керамики будут меньшими, а их распределение в стеклянной матрице — более равномерным. Такое строение синтетической керамики позволяет ей более эффективно препятствовать распространению микротрещин, возникающих вследствие высоких термомеханических нагрузок, которые изделие испытывает при остывании в процессе изготовления или же находясь во рту пациента. Микротрещины распостраняются по менее прочной стеклянной фазе, а кристаллы лейцита служат своеобразными стопорами распространения этих микротрещин. Таким образом, чем больше кристаллов лейцита и чем равномерно они распределены, тем меньше вероятность увеличения микротрещин до размеров, угрожающих прочности всего изделия. Эксперименты авторов статьи по термоциклированию полевошпатных, и синтетических масс подтверждают правильность описанной физической модели.
Флис П.С. с соавт. (2000) подчеркивает высокие эстетические возможности массы «Ultropaline». Благодаря авторской технологии была решена проблема уменьшения прозрачности дентиновых масс при переходе к более светлым оттенкам. Увеличение степени белизны массы при переходе к более светлым оттенкам достигается не введением дополнительного количества белых пигментов, а использованием такого оптического явления, как опалесценция. Опалесценция — это рассеяние света частичками, размер которых примерно равен 40 нм, т. е. соизмерим с длинами волн видимого света. Более коротковолновые, голубая и синяя части спектра, эффективно рассеиваются на таких частичках, в то время, как длинноволновые части — желтая, оранжевая и красная проникают в опалесцирующие структуры значительно глубже. Авторы статьи отмечают, что ими выработана технология выращивания нанокристаллов в дентинах, эмалях и транспарантах, а также получения керамики с ярко выраженным опаловым эффектом. На просвет такая керамика выглядит желто-оранжевой, а на отражение — белой и слегка голубоватой. Если такую керамику использовать для повышения белизны дентинов, то проблема уменьшения прозрачности будет в значительной степени снята, поскольку для основных дентальных оттенков — желтого и оранжевого прозрачность изменится крайне незначительно. Светлые дентины, изготовленные по такой технологии, будут демонстрировать ту же живость и глубину цвета, что и более темные их собратья.
Эффект опалесценции используется в системе «Ultropaline» и для решения проблемы яркости эмали. Для этого предусмотрен опаловый модификатор эмали, который можно подмешивать к стандартным эмалям, достигая таким образом нужной степени яркости и опаковости. Предусмотрен, также, опаловый транспарант, дающий прекрасные результаты при воспроизведении молодых, но более прозрачных эмалей, и обычные неопаловые транспаранты — ординарный и сверхпрозрачный. Транспарентность — это оптическая светопроводность, характеризующая соотношение между падающим и отраженным видимым светом при стандартной силе цвета (Бахминов А., 2000).
Несмотря на более дорогостоящую технологию и то, что многие компоненты производители массы получают от партнера из США, стоимость данной керамики, в среднем, в три раза ниже стоимости импортных аналогов.
Масса «Ultropaline» успешно прошла испытания во многих стоматологических центрах Украины и России, разрешена к использованию в медицинской практике, зарегистрирована МЗ Украины. Регистрационное свидетельство № 779/99. В ближайшее время авторы статьи вместе с партнерами приступят к регистрации массы «Ultropaline» в России.
Максимальный опыт эксплуатации работ из массы «Ultropaline» во рту пациента насчитывает около 4-х лет.
Флис П.С. с соавт., 2000 указывает также на некоторые недостатки массы «Ultropaline»:
- 1. реологические свойства пастообразной опаковой массы. Это выражается в том, что визуально технику сложно определить, достаточна ли толщина наносимого слоя опакера для того, чтобы полностью закрыть металл, поскольку после спекания он оказывается тоньше, чем казался до обжига. Подобное приводит к тому, что приходится наносить три опаковых слоя, а это дополнительные затраты сил и времени. Авторы статьи работали над устранением недостатка данной массы.
- 2. высокую чувствительность опаковой массы к соблюдению технологии ее нанесения. Так, скажем, если нанести первый слой опаковой массы излишне плотным или недостаточно подсушить работу у входа в печь, то возможно появление усадочных трещинок на поверхности изделия. Работа по исправлению этих недостатков велась непрерывно авторами статьи и, по их мнению, в новых партиях опаковых масс эти два недостатка в значительной степени устранены.
«Ultropaline» совместима практически со всеми массами для металлокерамики импортного производства, сходными по КТР и режимам обжига. Усадка при спекании составляет 10 — 15%, что является обычным показателем и для большинства керамических масс зарубежного производства.
Флис П.С. с соавт., 2000 рекомендуют замешивать дентиновые, эмалевые, транспарентные массы на специальной жидкости «Ultropaline». Смысл этой процедуры заключается в том, что жидкость для замешивания содержит поверхностно-активные вещества и специальные стабилизаторы. При наличии этих веществ коллоидная система «порошок-жидкость» приобретает новые полезные свойства. Она хуже отдает влагу, что позволяет с большим удобством моделировать протяженные конструкции, уплотняет и связывает частицы керамики, препятствуя оплыванию работы и уменьшая усадку при спекании.
В настоящее время производители данной массы выпускают на российский стоматологический рынок разноцветные жидкости для замешивания масс, что несомненно дает потребителю дополнительное удобство в работе с керамическим материалом.