Помощь в написании студенческих работ
Антистрессовый сервис

Особенности проектирования контроллеров систем ввода-вывода аналоговой информации

РефератПомощь в написанииУзнать стоимостьмоей работы

Часто цифровые фильтры находятся в том же корпусе (микросхеме), что и другие узлы АЦП. Применяется Oversampling и в цифро-аналоговых преобразователях (ЦАП). В ЦАП также есть проблема сложности аналоговых восстанавливающих (интерполирующих) фильтров. Ведь сразу после ЦАП сигнал представляет собой серию дискретных импульсов имеющих многочисленные алиазинговые спектральные компоненты. На аналоговый… Читать ещё >

Особенности проектирования контроллеров систем ввода-вывода аналоговой информации (реферат, курсовая, диплом, контрольная)

Аналоговый сигнал представляет собой непрерывный во времени и по амплитуде процесс, а его цифровое представление есть последовательность или ряд чисел, состоящих из конечного числа бит. Поэтому преобразование аналогового сигнала в цифровой состоит из двух этапов: дискретизации по времени и квантовании по амплитуде. Дискретизация по времени означает, что сигнал представляется рядом своих отсчётов (дискретов) непрерывных по амплитуде и взятых через равные промежутки времени (в некоторых специальных случаях может применяться и неравномерная по времени дискретизация, например при оцифровке узкополосных сигналов).

Основной вопрос на первом этапе преобразования аналогового сигнала в цифровой (оцифровки) состоит в выборе частоты дискретизации аналогового процесса. Ответ на него даёт известная теорема Найквиста, утверждающая, что для того чтобы аналоговый (непрерывный по времени) сигнал занимающий полосу частот от 0 Гц до F Гц можно было абсолютно точно восстановить по его отсчётам, частота дискретизации должна быть не меньше 2*F Гц или отсчёты сигнала должны браться не реже чем через 1/(2*F) секунды. Таким образом, если реальный аналоговый сигнал, который необходимо преобразовать в цифровую форму содержит частотные компоненты от 0 Гц до 20 кГц, то частота дискретизации такого сигнала должна быть не меньше чем 40 кГц. Если же необходимо дискретизировать сигнал с полосой больше, чем частота дискретизации делённая на 2, то предварительно необходимо с помощью аналогового фильтра низких частот подавить ту высокочастотную «часть» сигнала, спектральные компоненты которой находятся выше по частоте, чем частота дискретизации делённая на два. интерфейс компьютер сеть маршрутизатор Частотный спектр дискретизированного сигнала такой же по форме, как и спектр аналогового (непрерывного) сигнала и повторяется на частотах, кратных частоте дискретизации. Например, если аналоговый сигнал занимает полосу 0.20 кГц и дискретизирован с частотой 50 кГц, то копии спектра (alias или алиазинг) появятся на частотах 30.70 кГц, 80.120 кГц и т. д. Для точного восстановления непрерывного аналогового сигнала по его дискретным отсчётам алиазинговые спектры не должны искажать (накладываться) друг друга, из чего и следует требование дискретизации сигнала на частоте равной удвоенной полосе аналогового сигнала.

Аналого-цифровое преобразование по существу является операцией, устанавливающей отношение двух величин. Входной аналоговый сигнал vi преобразуется в дробь x путем сопоставления его значения с уровнем опорного сигнала Vr. Цифровой сигнал преобразователя есть кодовое представление этой дроби. Если выходной код преобразователя является n-разрядным, то число дискретных выходных уровней равно 2. Для взаимно-однозначного соответствия диапазон изменения входного сигнала должен быть разбит на такое же число уровней. Каждый квант (величина интервала) такого разбиения представляет собой значение аналоговой величины, на которое отличаются уровни входного сигнала, представляемые двумя соседними кодовыми комбинациями. Этот квант называют также величиной младшего значащего разряда (МЗР). Таким образом,.

Q = МЗР ПД/2,.

Где Q — квант, МЗР — аналоговый эквивалент МЗР и ПД — полный диапазон изменения входного аналогового сигнала.

Реальные аналоговые сигналы содержат компоненты (полезные и помехи), имеющие частотные составляющие, расположенные выше по частоте, чем часто применяемые на практике частоты дискретизации 44.1 кГц или 48.0 кГц делённые на два. Поэтому перед дискретизацией необходима аналоговая фильтрация, представляющая собой довольно сложную задачу. Аналоговые фильтры не могут пропустить, все частоты от 0 Гц до 24 кГц и подавить все частоты выше 24 кГц. Любой аналоговый фильтр имеет ненулевую переходную от пропускания к подавлению область и, следовательно, вместе с «вредными» компонентами будут подавлены и полезные сигналы из области частот ниже 24 кГц. Кроме того, ещё одна проблема состоит в том, что чем уже необходимо сделать переходную область между полосой пропускания и полосой подавления, тем сильнее вносимые фазовые искажения, длиннее переходный процесс (фильтр начинает «звенеть») и тем сложнее и капризнее в настройке такой аналоговый фильтр.

В современных АЦП эта проблема решается методом «Oversampling». По этому методу диапазон частот входного аналоговый сигнала ограничивается с помощью сравнительно несложного аналогового фильтра. Причём частота среза фильтра выбирается значительно выше высшей полезной частоты, а переходная полоса фильтра делается достаточно широкой. Таким образом, исключаются и завал «полезных» высших частот, и фазовые искажения характерные для аналоговых фильтров с узкой переходной полосой. Далее отфильтрованный, с ограниченным по частоте спектром сигнал дискретизируется на достаточно высокой частоте, исключающей наложение и искажение спектра (алиазинг). Затем дискретные отсчёты сигнала преобразуются в последовательность чисел с помощью АЦП. После этого получается поток цифровых данных, представляющих аналоговый сигнал, включая и нежелательные высокочастотные компоненты и помехи. Эти цифровые данные пропускаются через цифровой фильтр с очень узкой переходной полосой и очень большим подавлением нежелательных высокочастотных компонент.

В настоящее время расчёт и создание таких цифровых фильтров, к тому же не вносящих никаких фазовых искажений, не представляет больших трудностей. После цифрового фильтра получается цифровое представление сигнала, имеющего спектр, правильно ограниченный по частоте. Применяя к такому сигналу теорему Найквиста, можно резко понизить частоту его дискретизации до удвоенной величины наивысшей полезной частотной составляющей.

Часто цифровые фильтры находятся в том же корпусе (микросхеме), что и другие узлы АЦП. Применяется Oversampling и в цифро-аналоговых преобразователях (ЦАП). В ЦАП также есть проблема сложности аналоговых восстанавливающих (интерполирующих) фильтров. Ведь сразу после ЦАП сигнал представляет собой серию дискретных импульсов имеющих многочисленные алиазинговые спектральные компоненты. На аналоговый фильтр в этом случае возлагается задача полностью пропустить сигнал нужного частотного диапазона (0.24 кГц) и, по возможности, наиболее полно подавить ненужные высокочастотные компоненты. И конечно, чисто аналоговому фильтру выполнить такие противоречивые требования очень сложно. Поэтому сначала цифровой сигнал интерполируют, т. е. вставляют дополнительные отсчёты, вычисленные по специальным алгоритмам и, тем самым резко увеличивают частоту дискретизации. При этом исходный спектр полезного сигнала не искажается, но сигнал уже дискретизирован на значительно более высокой частоте. Это приводит к тому, что алиазинговые спектральные компоненты на выходе ЦАП далеко отстоят от частотных компонент основного сигнала и, соответственно, чтобы отфильтровать (подавить) их достаточно применить простой аналоговый фильтр.

Показать весь текст
Заполнить форму текущей работой