Проектирование теплообменных аппаратов нефтеперерабатывающей промышленности
Распределительные камеры теплообменного аппарата предназначены для распределения потока теплоносителя по трубам и представляют собой обечайку с фланцами, соединенными с трубной решеткой и съемной эллиптической или плоской крышкой. В некоторых конструкциях крышка приварена к цилиндрической обечайке. Для образования ходов теплоносителя по трубам распределительную камеру снабжают продольной… Читать ещё >
Проектирование теплообменных аппаратов нефтеперерабатывающей промышленности (реферат, курсовая, диплом, контрольная)
Содержание Введение
1. Конструкция теплообменных аппаратов
1.1 Классификация теплообменных аппаратов и предъявляемые к ним требования
1.2 Кожухотрубчатые теплообменные аппараты, типы и конструктивное исполнение
1.2.1 Кожухи и распределительные камеры
1.3 Аппараты воздушного охлаждения
1.4 Теплообменные аппараты типа — «труба в трубе»
1.5 Погружные аппараты
1.6 Оросительные аппараты
1.7 Пластинчатые теплообменники
1.8 Спиральные теплообменные аппараты
2. Технологический расчет оборудования
2.1 Теплотехнический расчет теплообменных аппаратов
2.2 Тепловые балансы теплообменных аппаратов
2.3 Средняя разность температур теплоносителей
2.4 Коэффициенты теплоотдачи и теплопередачи
2.5 Теплопередача в поверхностных теплообменниках
2.6 Последовательность расчета и подбора кожухотрубчатого теплообменника
2.7 Гидравлический расчет кожухотрубчатых теплообменных аппаратов
2.7.1 Расчет потери давления в трубном пространстве
2.7.2 Расчет потери давления в межтрубном пространстве
3. Механический расчёт теплообменника
3.1 Выбор конструкционных материалов
3.2 Механические свойства сталей
3.3 Определение допускаемых напряжений
3.4 Определение пробного давления испытания
3.5 Определение прибавки к расчётной толщине стенки
3.6 Расчёт на прочность цилиндрической обечайки
3.7 Определение толщины крышки
3.8 Определение толщины трубной решётки
3.9 Выбор фланцевого соединения
3.10 Расчёт температурных напряжений в трубах и корпусе Варианты контрольных заданий Литература Приложение
Введение
В большинстве процессов нефтегазопереработки используется нагрев исходного сырья, а также применяемых при его переработке растворителей, реагентов, катализаторов и др. Полученные в результате того или иного технологического процесса целевые продукты или полуфабрикаты обычно требуется охлаждать до температуры, при которой возможны их хранение и транспорт.
На современном нефтеперерабатывающем заводе, где осуществляется глубокая переработка нефти, на изготовление аппаратов, предназначенных для нагрева и охлаждения, затрачивается до 30% общего расхода металла на все технологические установки. Высокая эффективность работы подобных аппаратов позволяет сократить расход топлива и электроэнергии, затрачиваемой на тот или иной технологический процесс, и оказывает существенное влияние на его технико-экономические показатели. Поэтому изучению устройства и работы этих аппаратов, а также освоению методов их расчета необходимо уделять особое внимание.
1. Конструкция теплообменных аппаратов
1.1 Классификация теплообменных аппаратов и предъявляемые к ним требования В аппаратах, где идет нагрев или охлаждение, происходит теплообмен между двумя потоками, при этом один из них нагревается, другой охлаждается. Поэтому их называют теплообменными аппаратами вне зависимости оттого, что является целевым назначением аппарата — нагрев или охлаждение, какие потоки обмениваются теплом, происходит ли при этом только нагрев и охлаждение или же теплообмен сопровождается испарением или конденсацией.
Применительно к нефтеперерабатывающей промышленности, теплообменные аппараты классифицируются по таким основным признакам, как способ передачи тепла и назначение.
1. В зависимости от способа передачи тепла аппараты делятся на следующие группы:
— поверхностные теплообменные аппараты, в которых передача тепла между теплообменивающимися средами осуществляется через поверхность, разделяющую эти среды;
— аппараты смешения, в которых передача тепла между теплообменивающимися средами происходит путем их соприкосновения. Для изготовления теплообменных аппаратов смешения требуется, как правило, меньше металла; кроме того, во многих случаях они обеспечивают более эффективный теплообмен. Однако, несмотря на эти преимущества, аппараты смешения часто нельзя использовать вследствие недопустимости прямого соприкосновения потоков.
2. В зависимости от назначения аппараты делятся на следующие группы: — теплообменники, в которых один поток нагревается за счет использования тепла другого, получаемого в процессе и подлежащего охлаждению. В таких теплообменниках нагрев одного и охлаждение другого потока позволяет сократить расход подводимого извне тепла (сократить расход топлива, греющего водяного пара и т. д.) и охлаждающего агента. К этой группе аппаратов относятся теплообменники для нагрева нефти на установке, осуществляемого за счет использования тепла отходящих с установки дистиллятов, остатка, а также промежуточного циркуляционного орошения. Сюда относятся также котлы-утилизаторы, где получают водяной пар за счет использования тепла нефтепродуктов, дымовых газов или катализатора на установках каталитического крекинга. К этой группе относятся и регенераторы холода;
— нагреватели, испарители, кипятильники, в которых нагрев или нагрев и частичное испарение осуществляются за счет использования высокотемпературных потоков нефтепродуктов и специальных теплоносителей (водяной пар, пары углеводородов, специальные высококипящие жидкости и др.). В таких аппаратах нагрев или испарение одной среды является целевым процессом, тогда как охлаждение горячего потока является побочным и обусловливается необходимостью нагрева исходного холодного потока. Примером аппаратов этой группы могут служить нагреватели сырья, использующие тепло водяного пара, кипятильники, при помощи которых в низ ректификационной колонны подводится тепло, необходимое для ректификации, и т. д.;
— холодильники и конденсаторы, предназначенные для охлаждения жидкого потока или конденсации и охлаждения паров с использованием специального охлаждающего агента (вода, воздух, испаряющийся аммиак, пропан и др.). Охлаждение и конденсация в этих аппаратах являются целевыми процессами, а нагрев охлаждающего агента — побочным. К таким аппаратам относятся холодильники и конденсаторы любой нефтеперерабатывающей установки, предназначенные для охлаждения и конденсации получаемых продуктов. При регенерации тепла того или иного продукта его окончательное охлаждение до температуры, требуемой для безопасного транспорта и хранения, обычно завершается в холодильниках.
В зависимости от конкретных условий применения, к промышленным теплообменным аппаратам выдвигаются различные требования:
— обеспечение наиболее высокого коэффициента теплопередачи при возможно меньшем гидравлическом сопротивлении;
— компактность и наименьший расход материала;
— надежность и герметичность в сочетании с разборностью и доступностью поверхности теплообмена для механической очистки от загрязнения;
— унификация узлов и деталей;
— технологичность механизированного изготовления широких рядов поверхностей теплообмена для различного диапазона рабочих температур, давлений и т. д.
1.2 Кожухотрубчатые теплообменные аппараты, типы и конструктивное исполнение Кожухотрубчатые теплообменники — наиболее распространенная конструкция теплообменной аппаратуры. По ГОСТ 9929 стальные кожухотрубчатые теплообменные аппараты изготовляют следующих типов: ТН — с неподвижными трубными решетками; ТК — с температурным компенсатором на кожухе; ТП — с плавающей головкой; ТУ — с U-образными трубами; ТПК — с плавающей головкой и компенсатором на ней. В зависимости от назначения кожухотрубчатые аппараты могут быть теплообменниками, холодильниками, конденсаторами и испарителями; их изготовляют однои многоходовыми.
Кожухотрубчатый аппарат с неподвижной трубной решеткой (типа ТН) изображен на рисунке 1а. Такие аппараты имеют цилиндрический кожух 1, в котором расположен трубный пучок 2; трубные решетки 3 с развальцованными трубками крепятся к корпусу аппарата. С обоих концов теплообменный аппарат закрыт крышками 4. Аппарат оборудован штуцерами 5 для теплообмениващихся сред; одна среда идет по трубкам, другая проходит через межтрубное пространство.
Теплообменники этой группы изготовляют на условное давление 0,6…4,0 МПа, диаметром 159…1200 мм, с поверхностью теплообмена До 960 м2; длина их до 10 м, масса до 20 т. Теплообменники этого типа применяют до температуры 350 «С.
Предусмотрены различные варианты материального исполнения конструктивных элементов теплообменных аппаратов. Корпус аппарата изготовляют из сталей ВСтЗсп, 16ГС или биметаллическим с защитным слоем из сталей 08X13,12Х18Н10Т, 10Х17Н13М2Т. Для трубного пучка применяют трубы из сталей 10, 20 и Х8 с размерами 25×2, 25×2,5 и 20×2 мм, из высоколегированных сталей 08X13, 08Х22Н6Т, 08Х18Н10Т, 08Х17Н13М2Т с размерами 25×1,8 и 20×1,6 мм, а также трубы из алюминиевых сплавов и латуни. Трубные решетки изготовляют из сталей 16ГС, 15Х5М, 12Х18Н10Т, а также биметаллическими с наплавкой высоколегированного хромоникелевого сплава или слоя латуни толщиной до 10 мм.
Рисунок 1- Основные типы кожухотрубчатых теплообменных аппаратов: а) — с неподвижными решетками (ТН) или с компенсатором на кожухе (ТК); б) — с плавающей головкой; в) — с U-образными трубками
Особенностью аппаратов типа ТН является то, что трубы жестко соединены с трубными решетками, а решетки с корпусом. В связи с этим исключена возможность взаимных перемещений труб и кожуха; поэтому аппараты этого типа называют еще теплообменниками жесткой конструкции. Некоторые варианты крепления трубных решеток к кожуху в стальных приведены на рисунке.
Трубы в кожухотрубчатых теплообменниках размещают так, чтобы зазор между внутренней стенкой кожуха и поверхностью, огибающей пучок труб, был минимальным; в противном случае значительная часть теплоносителя может миновать основную поверхность теплообмена. Для уменьшения количества теплоносителя, проходящего между трубным пучком и кожухом, в этом пространстве устанавливают специальные заполнители, например приваренные к кожуху продольные полосы или глухие трубы, которые не проходят через трубные решетки и могут быть расположены непосредственно у внутренней поверхности кожуха.
Рисунок 2- Некоторые варианты крепления трубных решеток к кожуху аппарата Рисунок 3- Способы расположения в пространстве между трубным пучком и кожухом полос (а) и заглушённых труб (б)
В кожухотрубчатых теплообменниках для достижения больших коэффициентов теплоотдачи необходимы достаточно высокие скорости теплоносителей: для газов 8…30 м/с, для жидкостей не менее 1,5 м/с. Скорость теплоносителей обеспечивают при проектировании соответствующим подбором площади сечения трубного и межтрубного пространства.
Рисунок 4- Вертикальный кожухотрубчатый теплообменник типа ТК Теплообменные аппараты с температурным компенсатором типа ТК (рисунок 4) имеют неподвижные трубные решетки и снабжены специальными гибкими элементами для компенсации различия в удлинении кожуха и труб, возникающего вследствие различия их температур.
Вертикальный кожухотрубчатый теплообменник типа ТК отличается от теплообменника типа ТН наличием вваренного между двумя частями кожуха 1 линзового компенсатора 2 и обтекателя 3 (рисунок 5). Обтекатель уменьшает гидравлическое сопротивление межтрубного пространства такого аппарата; обтекатель приваривают к кожуху со стороны входа теплоносителя в межтрубное пространство.
Рисунок 5- Компенсаторы: а — однолинзовый; б — сваренный из двух полулинз; в — двухлинзовый При установке линзового компенсатора на горизонтальных аппаратах в нижней части каждой линзы сверлят дренажные отверстия с заглушками для слива воды после гидравлических испытаний аппарата.
Теплообменники с U-образными трубками типа ТУ имеют одну трубную решетку, в которую завальцованы оба конца U-образных трубок, что обеспечивает свободное удлинение трубок при изменении их температуры. Недостатком таких аппаратов является трудность чистки внутренней поверхности труб, вследствие которой они используются преимущественно для чистых продуктов.
Такие аппараты (рисунок 6) состоят из кожуха 2 и трубного пучка, имеющего одну трубную решетку 3 и U-образные трубы 1. Трубная решетка вместе с распределительной камерой 4 крепится к кожуху аппарата на фланце.
Рисунок 6- Теплообменник с U-образными трубами Теплообменники этого типа могут быть в горизонтальном и вертикальном исполнении. Их изготовляют диаметром 325…1400 мм с трубами длиной 6…9 м, на условное давление до 6,4 МПа и для рабочих температур до 450 °C. Масса теплообменников до 30 т.
Для обеспечения раздельного ввода и вывода теплоносителя в распределительной камере предусмотрена перегородка 5. В аппаратах типа ТУ обеспечивается свободное температурное удлинение труб: каждая труба может расширяться независимо от кожуха и соседних труб. Разность температур стенок труб по ходам в этих аппаратах не должна превышать 100° С. В противном случае могут возникнуть опасные температурные напряжения в трубной решетке вследствие температурного скачка на линии стыка двух ее частей. Преимуществом конструкции аппарата типа ТУ является возможность периодического извлечения трубного пучка для очистки наружной поверхности труб или полной замены пучка. Однако следует отметить, что наружная поверхность труб в этих аппаратах неудобна для механической очистки.
Поскольку механическая очистка внутренней поверхности труб в аппаратах типа ТУ практически невозможна, в трубное пространство таких аппаратов следует направлять среду, не образующую отложений, которые требуют механической очистки. Внутреннюю поверхность труб в этих аппаратах очищают водой, водяным паром, горячими нефтепродуктами или химическими реагентами. Иногда используют гидромеханический способ (подача в трубное пространство потока жидкости, содержащей абразивный материал, твердые шары и др.).
Крепление фланца 4 распределительной камеры к фланцу 1 кожуха аппарата показано на рисунке 7. Специальная шпилька 3 с коническим стопорным выступом позволяет снимать распределительную камеру без нарушения соединения трубной решетки 2 с кожухом.
Один из наиболее распространенных дефектов кожухотрубчатого теплообменника типа ТУ — нарушение герметичности узла соединения труб с трубной решеткой из-за весьма значительных изгибающих напряжений, возникающих от массы труб и протекающей в них среды. В связи с этим теплообменные аппараты типа ТУ диаметром от 800 мм и более для удобства монтажа и уменьшения изгибающих напряжений в трубном пучке снабжают роликовыми опорами.
К недостаткам теплообменных аппаратов типа ТУ следует отнести относительно плохое заполнение кожуха трубами из-за ограничений, обусловленных изгибом труб. Обычно U-образные трубы изготовляют гибкой труб в холодном или нагретом состоянии.
К существенным недостаткам аппаратов типа ТУ следует отнести невозможность замены труб (за исключением наружных труб) при выходе их из строя, а также сложность размещения труб, особенно при большом их числе. Из-за указанных недостатков теплообменные аппараты этого типа не нашли широкого применения.
Теплообменные аппараты с плавающей головкой типа ТП (с подвижной трубной решеткой) являются наиболее распространенным типом поверхностных аппаратов (рисунок 8). Подвижная трубная решетка позволяет трубному пучку свободно перемещаться независимо от корпуса. В аппаратах этой конструкции температурные напряжения могут возникать лишь при существенном различии температур трубок.
Рисунок 7 — Способ крепления распределительной камеры к кожуху теплообменника Рисунок 8 — Горизонтальный двухходовой конденсатор с плавающей головкой
Теплообменники этой группы стандартизованы по условным давлениям р = 1,6…6,4 МПа, по диаметрам корпуса 325… 1400 мм и поверхностям нагрева 10…1200 м2 с длиной труб 3…9 м. Масса их достигает 35 т. Теплообменники применяют при температурах до 450 °C. В теплообменных аппаратах подобного типа трубные пучки сравнительно легко могут быть удалены из корпуса, что облегчает их ремонт, чистку или замену.
Горизонтальный двухходовой конденсатор типа ТП состоит из кожуха 10 и трубного пучка. Левая трубная решетка 1 соединена фланцевым соединением с кожухом и распределительной камерой 2, снабженной перегородкой 4. Камера закрыта плоской крышкой 3. Правая, подвижная, трубная решетка установлена внутри кожуха свободно и образует вместе с присоединенной к ней крышкой 8 «плавающую головку». Со стороны плавающей головки аппарат закрыт крышкой 7. При нагревании и удлинении трубок плавающая головка перемещается внутри кожуха. Для обеспечения свободного перемещения трубного пучка внутри кожуха в аппаратах диаметром 800 мм и более трубный пучок снабжают опорной платформой 6. Верхний штуцер 9 предназначен для ввода пара и поэтому имеет большое проходное сечение; нижний штуцер 5 предназначен для вывода конденсата и имеет меньшие размеры.
Значительные коэффициенты теплоотдачи при конденсации практически не зависят от режима движения среды. Поперечные перегородки межтрубного пространства этого аппарата служат лишь для поддержания труб и придания трубному пучку жесткости. Аппараты с плавающей головкой обычно выполняют одноходовыми по межтрубному пространству, однако установкой продольных перегородок в межтрубном пространстве можно получить многоходовые конструкции. На рисунке 9 показаны двухходовые по межтрубному пространству теплообменники.
Рисунок 9- Двухходовой теплообменник типа ТП с плавающей головкой: а — цельной; б — разрезной Хотя в аппаратах типа ТП обеспечивается хорошая компенсация температурных деформаций, эта компенсация не является полной, поскольку различие температурных расширений самих трубок приводит к короблению трубной решетки. В связи с этим в многоходовых теплообменниках типа ТП диаметром более 1000 мм при значительной (выше 100°С) разности температур входа и выхода среды в трубном пучке, как правило, устанавливают разрезную по диаметру плавающую головку.
Особенно часто трубные пучки с плавающей головкой используют в испарителях с паровым пространством. В этих аппаратах должна быть создана большая поверхность зеркала испарения, поэтому диаметр кожуха испарителя значительно превышает диаметр трубного пучка, а перегородки в пучке служат лишь для увеличения его жесткости.
В испарителе (рисунок 10) уровень жидкости в кожухе 11 поддерживается перегородкой 2. Для обеспечения достаточного объема парового пространства и увеличения поверхности испарения расстояние от уровня жидкости до верха корпуса составляет примерно 30% его диаметра. Трубный пучок 3 расположен в корпусе испарителя на поперечных балках 4. Для удобства монтажа трубного пучка в перегородке 2 и левом днище предусмотрен люк 10, через который в аппарат можно завести трос от лебедки.
Рисунок 10 — Испаритель Продукт вводится в испаритель через штуцер 5; для защиты трубного пучка от эрозии над этим штуцером установлен отбойник 6. Пары отводятся через штуцер 9, продукт — через штуцер 1. Теплоноситель подводится в трубный пучок и отводится через штуцеры 7, 8. В таких аппаратах можно устанавливать несколько трубных пучков.
Теплообменники с плавающей головкой и компенсатором (тип ТПК) представляют собой аппараты полужесткой конструкции, в которых компенсацию температурных напряжений обеспечивает гибкий элемент — компенсатор, установленный на плавающей головке.
Теплообменники типа ТПК выполняют одноходовыми с противоточным движением теплоносителей и используют при повышенном давлении теплообменивающихся сред (5… 10 МПа).
Теплообменник этой конструкции (рисунок 11) отличается от рассмотренных выше наличием на крышке 2 удлиненного штуцера (горловины) 3, внутри которого размещен компенсатор 4. Последний соединен одним концом с плавающей головкой 1, другим — со штуцером на крышке теплообменника. Конструкции остальных узлов теплообменника аналогичны используемым в аппаратах типа ТП.
Рисунок 11- Теплообменник с плавающей головкой и компенсатором: 1 — плавающая головка; 2 — крышка; 3 — штуцер; 4 — компенсатор
Компенсаторы, используемые в аппаратах типа ТПК, отличаются от линзовых компенсаторов аппаратов типа ТК относительно меньшими диаметрами, большим числом волн (гофров), меньшей толщиной стенки. Такие компенсаторы можно использовать при перепаде давлений не более 2,5 МПа, поэтому аппараты типа ТПК разрешается эксплуатировать только при одновременной подаче теплоносителей в трубное и межтрубное пространства.
Пример частичной компенсации разности температурных деформаций кожуха и труб — использование в кожухотрубчатых аппаратах сальникового уплотнения. Основные элементы кожухотрубчатых теплообменных аппаратов: кожух (корпус), распределительная камера и трубный пучок. Последний состоит из труб, трубных решеток и перегородок. Элементы стальных кожухотрубчатых аппаратов изготовляют из стали.
Для каждого из рассмотренных выше типов стальных кожухотрубчатых аппаратов в зависимости от их назначения материалы регламентированы соответствующими стандартами.
1.2.1 Кожухи и распределительные камеры Кожух (корпус) теплообменного аппарата малого диаметра (менее 600 мм) чаще всего изготовляют из труб, а кожух большого диаметра вальцуют из листовой стали. В последнем случае, особенно при большой длине аппарата, кожух может быть сварным из трех обечаек: центральной и двух концевых.
Для теплообменных аппаратов, особенно аппаратов типа ТУ, ТП и ТК, должна быть обеспечена необходимая устойчивость формы кожуха; к этой характеристике обечайки предъявляют особые требования, потому что для очистки указанных аппаратов приходится периодически извлекать трубный пучок с перегородками. Так как зазор между кожухом и перегородкой невелик (несколько миллиметров), появление овальности кожуха приведет к невозможности монтажа и демонтажа трубного пучка. Для аппаратов типа ТН должна быть обеспечена способность кожуха и труб к самокомпенсации, т. е. способность противостоять напряжениям, возникающим из-за различия их температурных удлинений.
Распределительные камеры теплообменного аппарата предназначены для распределения потока теплоносителя по трубам и представляют собой обечайку с фланцами, соединенными с трубной решеткой и съемной эллиптической или плоской крышкой. В некоторых конструкциях крышка приварена к цилиндрической обечайке. Для образования ходов теплоносителя по трубам распределительную камеру снабжают продольной перегородкой. Для аппаратов небольшого диаметра (до 800 мм) крышку распределительной камеры выполняют плоской, поскольку такие крышки дешевле и проще в изготовлении. В некоторых случаях для удобства обслуживания аппарата распределительные камеры и крышки к ним навешивают в шарнирных устройствах, закрепленных на кожухе. Толщину стенок распределительной камеры принимают равной толщине стенки кожуха аппарата. Камеру и крышку обычно изготовляют из того же материала, что и кожух аппарата.
Фланцы теплообменных аппаратов выполняют с привалочной поверхностью выступ-впадина или под прокладку восьмиугольного сечения. В стальных кожухотрубчатых теплообменниках используют металлические и асбометаллические прокладки. Во всех случаях прокладку следует изготовлять цельной без сварки, пайки или склеивания. Прокладка в плавающей головке обычно металлическая.
Теплообменные трубы кожухотрубчатых стальных аппаратов — это серийно выпускаемые промышленностью трубы из углеродистых, коррозионно-стойких сталей и латуни. Диаметр теплообменных труб значительно влияет на скорость теплоносителя, коэффициент теплоотдачи в трубном пространстве и габариты аппарата; чем меньше диаметр труб, тем большее их число можно разместить по окружностям в кожухе данного диаметра. Однако трубы малого диаметра быстрее засоряются при работе с загрязненными теплоносителями, определенные сложности возникают при механической очистке и закреплении таких труб развальцовкой. В связи с этим наиболее употребительны стальные трубы размером 20×2 мм, 25×2 мм, 25×2,5 мм. Трубы диаметром 38 и 57 мм применяют при работе с загрязненными или вязкими жидкостями. С увеличением длины труб и уменьшением диаметра аппарата его стоимость снижается. Наиболее дешевый теплообменный аппаратпри длине труб 5…7 м.
Трубные решетки кожухотрубчатых теплообменников изготовляют из цельных стальных листов или поковок. Для аппаратов большого диаметра используют сварные трубные решетки. В этом случае сварные швы не должны пересекаться, а расстояние от кромки сварного шва до отверстий должно быть не менее 0,8 диаметра отверстия. Схема расположения труб в трубных решетках и шаг отверстий для труб регламентируются ГОСТ 9929. Для теплообменников типов ТН и ТК трубы размещают в трубных решетках по вершинам равносторонних треугольников (рисунке 12а), а для теплообменников типов ТП, ТУ и ТПК — по вершинам квадратов (рисунке 126) или равносторонних треугольников. При размещении труб определенного диаметра по вершинам равносторонних треугольников обеспечивается более компактное расположение труб в трубной решетке, чем при размещении их по вершинам квадратов при одинаковом шаге.
Рисунок 12- Схема размещения труб в трубной решетке: а — по вершинам равностороннего треугольника; б — по вершинам квадратов; в — по окружности
Однако последняя схема имеет важное эксплуатационное преимущество: она позволяет очищать трубки снаружи механическим способом, поскольку между трубами образуются сквозные ряды. При размещении по вершинам треугольников такие ряды можно получить, только увеличив шаг. По окружностям (рисунок 12в) трубы располагают лишь в кислородной аппаратуре. Трубы закрепляют в решетках чаще всего развальцовкой (рисунок 13а, б) причем особенно прочное соединение (необходимое в случае работы аппарата при повышенных давлениях) достигается при устройстве в трубных решетках отверстий с кольцевыми канавками, которые заполняются металлом трубы в процессе ее развальцовки (рисунок 136). Кроме того, используют закрепление труб сваркой (рисунок 13в), если материал трубы не поддается вытяжке и допустимо жесткое соединение труб с трубной решеткой, а также пайкой (рисунок 13г), применяемой для соединения главным образом медных и латунных труб. Изредка используют соединение труб с решеткой посредством сальников (рисунок 13), допускающих свободное продольное перемещение труб и возможность их быстрой замены. Такое соединение позволяет значительно уменьшить температурную деформацию труб, но является сложным, дорогим и недостаточно надежным. Наиболее распространенный способ крепления труб в решетке — развальцовка. Трубы вставляют в отверстия решетки с некоторым зазором, а затем обкатывают изнутри специальным инструментом, снабженным роликами (вальцовкой). При этом в стенках трубы создаются остаточные пластические деформации, а в трубной решетке — упругие деформации, благодаря чему материал решетки после развальцовки плотно сжимает концы труб. Однако при этом материал труб подвергается наклепу (металл упрочняется с частичной потерей пластичности), что может привести к растрескиванию труб. С уменьшением начального зазора между трубой и отверстием в решетке наклеп уменьшается, поэтому обычно принимают зазор 0,25 мм. Кроме этого для обеспечения качественной развальцовки и возможности замены труб необходимо, чтобы твердость материала трубной решетки превышала твердость материала труб. Крепление труб сваркой с развальцовкой применяют без ограничений давления и температуры теплоносителей. В этом случае сначала выполняют сварку, а затем развальцовку трубы.
Рисунок 13 — Закрепление труб в трубных решетках: а — развальцовкой, б — развальцовкой с канавками, в — сваркой, г — пайкой, д — сальниковыми устройствами В кожухотрубчатых теплообменниках устанавливают поперечные и продольные перегородки. Поперечные перегородки (рисунок 14), размещаемые в межтрубном пространстве теплообменников, предназначены для организации движения теплоносителя в направлении, перпендикулярном оси труб, и увеличения скорости теплоносителя в межтрубном пространстве. В обоих случаях возрастает коэффициент теплоотдачи на наружной поверхности труб.
Рисунок 14- Поперечные перегородки: а — сплошные; б — с секторным вырезом; в — с щелевым вырезом; г — с сегментным вырезом; д — кольцевые
Поперечные перегородки устанавливают и в межтрубном пространстве конденсаторов и испарителей, в которых коэффициент теплоотдачи на наружной поверхности труб на порядок выше коэффициента на их внутренней поверхности. В этом случае перегородки выполняют роль опор трубного пучка, фиксируя трубы на заданном расстоянии одна от другой, а также уменьшают вибрацию труб. Интенсификация теплообмена поперечными перегородками может значительно снижаться из-за утечек теплоносителя в зазорах между корпусом и перегородками. Для уменьшения утечек устанавливают следующие ограничения: при наружном диаметре кожуха аппарата, не более 600 мм зазор между корпусом и перегородкой не должен превышать 1,5 мм. В остальных случаях диаметр поперечных перегородок выбирают по соответствующим нормативным документам.
Пространство для движения теплоносителей в теплообменнике любого типа выбирают так, чтобы улучшить теплоотдачу того потока, коэффициент теплоотдачи которого меньше. Поэтому жидкость (или газ), расход которой меньше или которая обладает большей вязкостью, рекомендуется направлять в трубное пространство. Через него пропускают также более загрязненные потоки, чтобы облегчить очистку поверхности теплообмена, теплоносители, находящиеся под избыточным давлением, а также химически активные вещества, так как в этом случае для изготовления корпуса аппарата не требуется дорогого коррозионно-стойкого материала.
Теплообмен значительно улучшается при ликвидации застойных зон в межтрубном пространстве. Особенно часто такие зоны образуются вблизи трубных решеток, поскольку штуцера ввода и вывода теплоносителя из межтрубного пространства расположены на некотором расстоянии от них. Наиболее радикальный способ исключения образования таких зон — установка распределительных камер на входе и выходе теплоносителя из межтрубного пространства.
Для интенсификации теплообмена иногда используют турбулизаторы — элементы, турбулизирующие или разрушающие пограничный слой теплоносителя на наружной поверхности труб. Эффект теплоотдачи на наружной поверхности труб существенно повышают кольцевые канавки, интенсифицирующие теплообмен в межтрубном пространстве примерно в 2 раза турбулизацией потока в пограничном слое.
Естественно, что применение гладких труб в таких теплообменниках приводит к резкому увеличению их массы и размеров. Стремление интенсифицировать теплоотдачу со стороны малоэффективного теплоносителя (газы, вязкие жидкости) привело к разработке различных конструкций оребренных труб. Установлено, что оребрение увеличивает не только теплообменную поверхность, но и коэффициент теплоотдачи от оребренной поверхности к теплоносителю вследствие турбулизации потока ребрами. При этом, однако, надо учитывать возрастание затрат на прокачивание теплоносителя. Применяют трубы с продольными (рисунок 15а) и разрезными (рисунок 156) ребрами, с поперечными ребрами различного профиля (рисунок 15в). Оребрение на трубах можно выполнить в виде спиральных ребер (рисунок 15г), иголок различной толщины и др.
Эффективность ребра, которую можно характеризовать коэффициентом теплоотдачи, зависит от его формы, высоты и материала. Если требуется невысокий коэффициент теплоотдачи, необходимую эффективность могут обеспечить стальные ребра, при необходимости достижения больших коэффициентов целесообразно применение медных или алюминиевых ребер. Эффективность ребра резко снижается, если оно не изготовлено за одно целое с трубой, не приварено или не припаяно к ней.
Рисунок 15 -Трубы с оребрением Кроме вставок и насадок теплообмен в трубах можно интенсифицировать применением шероховатых поверхностей, накаткой упомянутых кольцевых канавок, изменением поперечного сечения трубы ее сжатием. В этом случае даже при ламинарном режиме течения теплоносителя теплоотдача в трубах на 20…100% выше, чем в гладких трубах.
Если коэффициент теплоотдачи от среды, проходящей в трубах, на порядок ниже, чем коэффициент для наружной стороны труб, весьма выгодно использование в теплообменниках труб с внутренним оребрением. Примером является конструкция, показанная на рисунке 2.45а.
При теплообмене в системе газ-газ рационально в качестве теплообменной поверхности использовать пучки труб с внешними и внутренними ребрами. Для обеспечения направленного потока газа между наружными ребрами труб помещены треугольные вставки (рис. 2.456).
Кроме перечисленных методов, в отечественной и зарубежной практике делают попытки интенсифицировать теплопередачу и другими способами, например использованием вращающихся турбулизаторов.
1.3 Аппараты воздушного охлаждения Широкое распространение в промышленности получили аппараты воздушного охлаждения (АВО), в которых в качестве охлаждающего агента используется поток атмосферного воздуха, нагнетаемый специально установленными вентиляторами. Использование аппаратов этого типа позволяет осуществить значительную экономию охлаждающей воды, уменьшить количество сточных вод, исключает необходимость очистки наружной поверхности теплообменных труб. Такие аппараты используются в качестве конденсаторов и холодильников. Сравнительно низкий коэффициент теплоотдачи со стороны потока воздуха, характерный для этих аппаратов, компенсируется значительным оребрением наружной поверхности труб, а также сравнительно высокими скоростями движения потока воздуха.
Аппараты воздушного охлаждения различного типа изготовляются по соответствующим стандартам, в которых предусмотрены большие диапазоны по величине поверхности, степени оребрения и виду конструкционного материала, используемого для их изготовления (сталь различных марок, латунь, алюминиевые сплавы, биметалл). Аппараты воздушного охлаждения (АВО) подразделяются на следующие типы: горизонтальные АВГ, зигзагообразные АВЗ, малопоточные АВМ, для вязких продуктов АВГ-В, для высоковязких продуктов АВГ-ВВ. На рисунке 16 приведен аппарат горизонтального типа, в котором оребренные пучки теплообменных труб расположены горизонтально, а на рисунке 17 — аппараты, где пучки труб расположены в виде шатра и зигзагообразно. Размещение пучков оребренных труб в виде шатра и зигзагообразное позволяет иметь большую поверхность теплообмена при той же занятой площади.
Для повышения эффективности аппарата в его конструкции предусмотрен коллектор впрыски очищенной воды 4, автоматически включающийся при повышенной температуре окружающей среды в летний период работы. При низких температурах (зимой) можно отключать электродвигатель и вентилятор; при этом конденсация и охлаждение происходят естественной конвекцией.
Рисунок 16- Схема горизонтального аппарата воздушного охлаждения: 1 — секция оребренных труб; 2 — колесо вентилятора; 3 — электродвигатель; 4 — коллектор впрыска очищенной воды; 5 — жалюзи Кроме этого интенсивность теплосъема можно регулировать, меняя расход прокачиваемого воздуха изменением угла наклона лопастей вентилятора. Для этого в аппаратах воздушного охлаждения предусмотрены механизм дистанционного поворота лопастей с ручным или пневматическим приводом и жалюзи, установленные над теплообменными секциями. Жалюзийные заслонки можно поворачивать вручную или автоматически с помощью пневмопривода.
Рисунок 17- Схемы аппаратов воздушного охлаждения АВЗ: а — шатровый; б — зигзагообразный Теплообменная секция аппарата воздушного охлаждения состоит из четырех, шести или восьми рядов труб 3, размещенных по вершинам равносторонних треугольников в двух трубных решетках 1. Трубы закреплены развальцовкой или развальцовкой со сваркой. Для обеспечения жесткости трубного пучка секция укреплена металлическим каркасом 4. Однако при эксплуатации гайки на шпильках 2, соединяющих решетку с каркасом, должны быть отвинчены на расстояние, превышающее возможное температурное удлинение труб. В трубном пучке каждая труба может иметь индивидуальный прогиб. Для исключения контакта ребер верхнего ряда труб с ребрами труб нижнего ряда между соседними рядами в нескольких местах по длине трубы помещают дистанционные прокладки 5 шириной около 15 мм из алюминиевой ленты толщиной 2 мм.
Рисунок 18- Теплообменная секция ABO
Крышки 6 крепят к трубным решеткам теплообменных секций при высоком давлении неразъемно или на шпильках. Если секция аппарата многоходовая, крышки снабжают перегородками, которые делят трубный пучок на ходы. Съемные крышки обычно выполняют литыми из стали. Как указано, трубы в аппаратах воздушного охлаждения имеют оребрение по наружной поверхности, поскольку коэффициент теплоотдачи на наружной поверхности труб примерно на порядок меньше коэффициента для внутренней поверхности. В аппаратах воздушного охлаждения используют вентиляторы с диаметром колеса до 7 м. Колеса вентиляторов изготовляют сварными из алюминия или из стеклопласта, диффузор — из листовой стали толщиной 2 мм. Электродвигатели привода могут быть однои двухскоростными. При использовании двухскоростных электродвигателей с понижением температуры окружающей среды можно работать при меньшей частоте вращения вентилятора.
1.4 Теплообменные аппараты типа -" труба в трубе"
Теплообменные аппараты «труба в трубе» используют главным образом для охлаждения или нагревания в системе жидкость-жидкость, когда расходы теплоносителей невелики и последние не меняют своего агрегатного состояния. Иногда такие теплообменники применяют при высоком давлении для жидких и газообразных сред, например, в качестве конденсаторов в производстве метанола, аммиака и др. Также их используют для загрязненных коксообразующими веществами и механическими примесями теплоносителей, в которых обеспечивается хороший теплообмен за счет больших скоростей и турбулентности потоков в трубном и межтрубном пространствах. Высокие скорости и турбулентность потока уменьшают возможность отложения на стенках труб кокса или других образований.
Рисунок 19 -Теплообменник типа «труба в трубе»: а — общий вид; б — вариант жесткого крепления труб; в — вариант крепления труб с компенсирующим устройством
По сравнению с кожухотрубчатыми теплообменники «труба в трубе» имеют меньшее гидравлическое сопротивление межтрубного пространства. Однако при равных теплообменных характеристиках они менее компактны и более металлоемки, чем кожухотрубчатые. Теплообменники «труба в трубе» могут быть разборными или неразборными, однои многопоточными.
Однопоточный неразборный теплообменник (рисунок 20) состоит из отдельных звеньев, в каждый из которых входят трубы наружная (или кожуховая) 1 и внутренняя (или теплообменная) 2. Наружная труба двумя приварными кольцами связана с внутренней трубой 2 в звено. Звенья, в свою очередь, собраны в вертикальный Ряд и составляют теплообменную секцию. При этом внутренние трубы соединены между собой коленами 3, а наружные — штуцерами 4 на фланцах или сваркой. Звенья закреплены скобами на металлическом каркасе 5.
Неразборные теплообменники являются конструкцией жесткого типа, поэтому при разности температур более 70 °C их не используют. При большей разности температур труб, а также при необходимости механической очистки межтрубного пространства применяют теплообменники с компенсирующим устройством на наружной трубе. В этом случае кольцевую щель между трубами с одной стороны наглухо заваривают, а с другой — уплотняют сальником 6.
Однопоточные неразборные теплообменники изготовляют из труб длиной 3…12 м с диаметром внутренних труб 25…159 мм и наружных соответственно 48… 219 мм на условное давление для наружных труб до 6,4 МПа и для внутренних до 16 МПа. В разборных конструкциях теплообменников обеспечивается компенсация деформаций теплообменных труб. На рис. 2.50 показана конструкция разборного многопоточного теплообменника «труба в трубе», конструктивно напоминающего кожухотрубчатый теплообменник типа ТУ.
Аппарат состоит из кожуховых труб 5, развальцованных в двух трубных решетках: средней 4 и правой 7. Внутри кожуховых труб размещены теплообменные трубы 6, один конец которых жестко связан с левой трубной решеткой 2, а другой — может перемещаться. Свободные концы теплообменных труб попарно соединены коленами 8 и закрыты камерой 9. Для распределения потока теплоносителя по теплообменным трубам служит распределительная камера 1, а для распределения теплоносителя в межтрубном пространстве — распределительная камера 3. Пластинами 11 кожуховые трубы жестко связаны с опорами 10.
Теплообменник имеет два хода по внутренним трубам и два по наружным. Узлы соединения теплообменных труб с трубной решеткой (узел I) и с коленами (узел II) уплотнены за счет прижима и деформации полушаровых ниппелей в конических гнездах.
Эти аппараты могут работать с загрязненными теплоносителями, так как внутреннюю поверхность теплообменных труб можно подвергать механической очистке. Поскольку возможность температурных удлинений кожуховых труб из-за жесткого соединения их с опорами ограниченна, перепад температур входа и выхода среды, текущей по кольцевому зазору, не должен превышать 150 °C.
Рисунок 20 -Разборный двухпоточный теплообменник типа «труба в трубе»
1.5 Погружные аппараты Специфической особенностью аппаратов этого типа является наличие емкости-ящика, в которую погружены теплообменные трубы. В ящике находится охлаждающая среда, например вода. Аппараты этого типа используют в качестве холодильников или конденсаторов-холодильников. Различают змеевиковые и секционные аппараты. Принципиальное устройство однопоточного погружного конденсатора-холодильника показано на рисунке 21. Теплообменная поверхность состоит из труб, соединенных при помощи сварки или на фланцах; переход из одной трубы в другую осуществлен при помощи двойников. Охлаждаемый поток последовательно проходит трубы, расположенные в данном горизонтальном Ряду, после чего переходит в трубы следующего ряда и т. д.
Рисунок 21- Схема однопоточного погружного змеевикового конденсатора-холодильника: І — пары нефтепродукта; ІІ — охлажденный нефтепродукт; ІІІ — холодная вода; IV — нагретая вода При большом расходе охлаждающегося потока для уменьшения гидравлического сопротивления применяют коллекторные змеевиковые холодильники, в которых охлаждаемый поток при помощи специального коллектора разбивается на несколько параллельных потоков. Меньшее гидравлическое сопротивление коллекторного аппарата по сравнению с однопоточным достигается за счет снижения скорости потока и длины пути.
В случае использования подобного аппарата в качестве конденсатора-холодильника, когда вследствие частичной или полной конденсации объем потока резко уменьшается, можно применять коллекторные погружные аппараты с переменным числом потоков. В начале аппарата, где движутся в основном пары, объем которых значителен, число параллельных потоков может быть более высоким, чем в той части аппарата, где завершена конденсация паров и происходит охлаждение конденсата. Такое устройство полезно для повышения теплового эффекта аппарата, так как при сохранении первоначального числа потоков по всему их пути скорость движения конденсата в конечной части аппарата может оказаться небольшой, а следовательно, коэффициент теплопередачи в этой части аппарата будет низким. Следует иметь в виду, что неправильный выбор места сокращения числа потоков по пути конденсирующейся среды может привести к повышению гидравлических сопротивлений, как это имело место на некоторых действующих установках.
К недостаткам аппаратов подобного типа относится их громоздкость и повышенный расход металла. Кроме того, в ящике свободное сечение для прохода воды велико, вследствие чего скорость движения воды мала и относительно малы коэффициенты теплоотдачи от стенок змеевика к воде. Такие аппараты используются на ряде действующих нефтеперерабатывающих заводов и при строительстве новых установок, как правило, не применяют.
1.6 Оросительные аппараты Аппараты этого типа применяются в качестве холодильников и конденсаторов. Они представляют собой змеевик, состоящий из соединенных двойниками труб, которые расположены горизонтальными и вертикальными рядами.
Рисунок 22 — Схема оросительного коллекторного конденсатора-холодильника: І — охлаждаемый нефтепродукт; ІІ — охлажденный нефтепродукт; ІІІ — холодная вода; IV — нагретая вода Чаще всего это коллекторные змеевики. В верхней части аппарата имеется распределительное приспособление для орошения наружной поверхности змеевиков водой. Подобное распределительное устройство выполняется в виде либо желобов, либо специальных распылителей. Вследствие высокого значения скрытой теплоты испарения воды даже незначительное ее испарение сопровождается отводом большого количества тепла.
Опыт работы оросительных конденсаторов и холодильников показывает, что около 50% тепла отводится испаряющейся водой. Таким образом, в оросительном холодильнике и конденсаторе расход воды примерно в два раза меньше, чем в обычном водяном холодильнике. К недостаткам таких аппаратов относится их громоздкость, интенсивная коррозия наружной поверхности труб вследствие воздействия кислорода воздуха и отложение накипи на поверхности труб, особенно усиливающееся при высокой температуре охлаждаемого потока, трудность эксплуатации в зимних условиях.
1.7 Пластинчатые теплообменники Пластинчатые теплообменники представляют собой аппараты, теплообменная поверхность которых образована набором тонких штампованных пластин с гофрированной поверхностью. Их разделяют по степени доступности поверхности теплообмена для механической очистки и осмотра на разборные, полуразборные и неразборные (сварные). Наиболее широко применяют разборные пластинчатые теплообменники, в которых пластины отделены одна от другой прокладками. Монтаж и демонтаж этих аппаратов осуществляют достаточно быстро, очистка теплообменных поверхностей требует незначительных затрат труда. Пластины полуразборных теплообменников попарно сварены, и доступ к поверхности теплообмена возможен только со стороны хода одной из рабочих сред. Пластины неразборных теплообменников сварены в блоки, соединенные на прокладках в общий пакет.
Основные размеры и параметры наиболее распространенных в промышленности пластинчатых теплообменников определены ГОСТ 15 518. Их изготовляют с поверхностью теплообмена от 2 до 600 м2 в зависимости от типоразмера пластин; эти теплообменники используют при давлении до 1,6 МПа и температуре рабочих сред от -30 до +180°С для теплообмена между жидкостями и парами (газами) в качестве холодильников, подогревателей и конденсаторов. Серийно выпускаемые разборные пластинчатые теплообменники могут работать с загрязненными рабочими средами при размере твердых включений не более 4 мм.
Разборные пластинчатые теплообменники изготовляют в пяти исполнениях, в том числе на консольной раме (исполнение 1), на двух-опорной раме (исполнение 2), на трехопорной раме (исполнение 3). Разборный пластинчатый теплообменник на двухопорной раме (исполнение 2) показан на рисунке 23. Аппарат состоит из ряда теплообменных пластин 4, размещенных на верхней и нижней горизонтальных штангах 3. Концы штанг закреплены в неподвижной плите 2 и на стойке 7. Нажимной плитой 11 и винтом 8 пластины сжимаются, образуя теплообменную секцию.
Рисунок 23 — Разборный пластинчатый теплообменник (исполнение 2): 1, 9, 10 и 12 — штуцера; 2 — неподвижная плита; 3 — штанга; 4 — теплообменная пластин 5 и 6 — прокладки; 7 — стойка; 8 — винт; 11 — нажимная плита; а, б, в и г — проходные отверстия Теплообменные пластины имеют четыре проходных отверстия (а, б, в, г), которые образуют две изолированные одна от другой системы каналов. Для уплотнения пластин и каналов имеются резиновые прокладки. Прокладка 6 уложена в паз по контуру пластины и охватывает два отверстия на пластине, через которые происходят приток и вывод теплоносителя в канал между смежными пластинами, а прокладки 5 герметизируют два других отверстия на пластине. Для ввода теплоносителей в аппарат и их вывода предназначены штуцера 1, 9, 10, 12, расположенные на неподвижной и подвижной плитах.
Теплообменные пластины различаются расположением в них отверстий для теплоносителей на пластины с диагональным расположением отверстий. И те, и друг выполняют левыми и правыми. Благодаря чередованию в пакете лев! и правых пластин образуются две изолированные системы каналов.
Рисунок 24- Пластины с диагональным (а) и односторонним (б) расположением отверстий
Пластины с односторонним расположением отверстий взаимозаменяемы. При сборке правые пластины получают поворотом их относительно левых на 180°. Левые и правые пластины с диагональным расположением отличаются расположением прокладки и поэтому не являются взаимозаменяемыми. Кроме рассмотренных теплообменных пластин в аппаратах используют граничные пластины, устанавливаемые на концах пакетов.
Серийно выпускаемые пластинчатые теплообменники комплектуют пластинами, штампованными из листового металла толщиной 1 мм. Гофры пластин обычно имеют в сечении профиль равностороннего треугольника высотой 4…7 мм и основанием длиной 14…30 мм (для вязких жидкостей до 75 мм). Гофры выполняют горизонтальными, «в елочку», под углом к горизонтали и др. Материал пластин — оцинкованная или коррозионно-стойкая сталь, титан, алюминий, мельхиор.
В разборных теплообменниках пластины 2 обычно крепят скобой 3 на верхней штанге 1. Нижняя штанга не несет нагрузки от массы пластин и служит лишь для фиксации их в заданном положении. Такое закрепление пластин позволяет легко извлечь их из пакета или вставить в него без снятия подвижной плиты и остальных пластин.
Рисунок 25-Узел крепления пластины на верхней штанге: 1 — верхняя штанга; 2 — пластины; 3 — скоба Прокладки пластинчатых теплообменников изготовляют из резины формованием и укрепляют в пазу пластины на клею. Стойки и прижимные плиты пластинчатых теплообменников изготовляют из углеродистых сталей толщиной 8…12 мм. К недостаткам пластинчатых теплообменников следует отнести невозможность их использования при давлении более 1,6 МПа.
1.8 Спиральные теплообменные аппараты Спиральные теплообменники получили в промышленности сравнительно широкое распространение, что объясняется рядом важных преимуществ по сравнению с теплообменными аппаратами других типов. Спиральные теплообменники могут изготовляться из любого рулонного материала, подвергаемого холодной обработке и свариванию. Теплообменники компактны, их конструкция предусматривает возможность полного противотока. Площадь поперечного сечения каналов по всей длине остается неизменной, и поток не имеет резких изменений направлений, благодаря чему загрязнение поверхности спиральных теплообменников меньше, чем теплообменных аппаратов других типов, кроме того, ряд конструкций их позволяет проводить сравнительно легкую очистку в случае, не требующем для удаления осадка механического воздействия. Гидравлическое сопротивление спиральных теплообменников при одинаковой скорости движения жидкости меньше, чем у кожухотрубчатых.