Понятие про биосферу
Круговорот азота (рис.5). Азот, которого очень много в атмосфере, усваивается растениями лишь после соединения его с водородом или кислородом. Это, как правило, происходит в результате различных физических явлений, протекающих в атмосфере (атмосферная фиксация) и производстве (промышленная фиксация), а также в результате действия азотфиксирующих бактерий или водорослей (биофиксация). Соединения… Читать ещё >
Понятие про биосферу (реферат, курсовая, диплом, контрольная)
1. Понятие, состав и структура биосферы
Биосфера — глобальная экологическая система планеты, включающая в себя все живые организмы вместе со средой их обитания.
Биосфера представляет собой совокупность частей земных оболочек (лито-, гидрои атмосферы), которая заселена живыми организмами, находится под их влиянием и занята продуктами их жизнедеятельности.
В 20-е годы X X - го столетия учение о биосфере было развито и преобразовано выдающимся естествоиспытателем академиком В. И. Вернадским. Он впервые подчеркнул исключительную роль живых организмов в образовании биосферы. По его определению, биосфера — структурная оболочка Земли, созданная самой жизнью, где не только живут, но которая преобразована живыми организмами и связана с их жизнедеятельностью. Таким образом, биосфера — это и среда жизни, и результат жизнедеятельности организмов.
Размеры биосферы. По учению В. И. Вернадского, биосфера — это область нашей планеты, в которой существует или когда-либо существовала жизнь и которая постоянно подвергается воздействию живых организмов. Поэтому биосфера представляет собой область существования не только современных экосистем, но и включает области, где находятся вещества, возникшие в результате жизнедеятельности живых организмов. Такие вещества называют биогенными. Почти весь кислород атмосферы имеет биогенное происхождение. Биогенными являются также многие полезные ископаемые (нефть, уголь, газ и др.).
Благодаря такому подходу В. И. Вернадский существенно расширил границы биосферы, включив в нее всю гидросферу (глубиной до 11 км), нижние слои атмосферы (до озонового слоя, высотой 25−35 км), где сосредоточен практически весь кислород, и часть литосферы до глубины залегания полезных ископаемых биогенного происхождения (8−10 м, реже 3 км).
Структура биосферы. Биосфера имеет иерархическую структуру. Традиционно в структуре биосферы выделяют атмосферу, гидросферу и литосферу. Атмосфера делится на слои в зависимости от температуры воздуха: ниже 0°Сальтобиосфера, выше 0 «С — тропобиосфера. Гидросфера включает в себя океанобиосферу и аквабиосферу, т. е. соленои пресноводную среду, и также делится на слои в зависимости от освещенности: фото-, дисфотои афотосферы. Гео (био)сфера состоит из террабиосферы (твердо-водной среды) и литобиосферы (твердо-воздушной среды). Выделенные подсферы включают экосистемы различного иерархического уровня.
Состав биосферы включает 7 глубоко разнородных частей:
живое вещество;
биогенное вещество:
косное вещество:
биокосное вещество;
вещество в радиоактивном распаде:
вещество рассеянных атомов, не связанных химическими реакциями;
вещество космического происхождения.
Живое вещество совокупность организмов на планете (растительный и животный мир, микроорганизмы).
Биогенное вещество — совокупность веществ, возникших в результате жизнедеятельности организмов (торф, нефть, мел, природный газ и др.).
Косное вещество — совокупность веществ, в образовании которых живые организмы не участвуют, т. е. горные породы магматического, неорганического происхождения, вода,
Биокосное вещество — продукты распада и переработки горных и осадочных пород живыми организмами (почва, природные воды).
2. Основные функции биосферы
Благодаря способности трансформировать солнечную энергию в энергию химических связей, растения и другие организмы выполняют ряд фундаментальных биологических функций планетарного масштаба.
Газовая функция. Живые существа постоянно обмениваются кислородом и углекислым газом с окружающей средой в процессах фотосинтеза и дыхания. Растения сыграли решающую роль в формировании состава современной атмосферы. Они строго контролируют концентрации кислорода и углекислого газа, оптимальные для современной биоты.
Концентрационная функция. В процессе эволюции организмы научились извлекать из разбавленного водного раствора и других компонентов природной среды необходимые для них вещества, многократно увеличивая их концентрацию в своем теле.
Таким образом, пропуская через свое тело большие объемы воздуха и природных растворов, живые организмы осуществляют биогенную миграцию и концентрирование химических элементов и их соединений.
Окислительно-восстановительная функция. Многие вещества в природе крайне устойчивы и не подвергаются окислению при обычных условиях. Живые клетки обладают настолько эффективным катализатором — ферментами, что способны осуществлять многие окислительно-восстановительные реакции в миллионы раз быстрее, чем это может происходить в абиотической среде. Благодаря этому живые организмы существенно ускоряют процессы миграции химических элементов в биосфере.
Информационная функция. С появлением первых живых существ на планете появилась и активная («живая») информация, отличающаяся от той «мертвой» информации, которая является простым отражением структуры. Организмы оказались способными к получению информации путем соединения потока энергии с активной молекулярной структурой, играющей роль программы. Способность воспринимать, хранить и передавать молекулярную информацию совершила опережающую эволюцию в природе и стала важнейшим экологическим системообразующим фактором.
Перечисленные функции живого вещества образуют мощную средообразующую функцию биосферы. Деятельность живых организмов обусловила современный состав атмосферы. Растительный покров существенно определяет водный баланс, распределение влаги и климатические особенности больших пространств. Живые организмы играют ведущую роль в самоочищении воздушной и водной сред. Благодаря растениям, животным и микроорганизмам создается почва и поддерживается ее плодородие. Таким образом, биота биосферы формирует и контролирует состояние окружающей среды.
Следует четко представлять, что окружающая нас среда — это не возникшая когда-то фиксированная и непреходящая физическая должность, а живое дыхание природы, каждое мгновение создаваемое работой множества живых существ.
3. Биогеохимические круговороты веществ в биосфере
Круговорот веществ — закономерный процесс многократного участия веществ в явлениях, протекающих в биосфере планеты. Вещество, вовлеченное в круговорот, не только перемещается, но и испытывает трансформацию и нередко меняет свое физическое и химическое состояния. Особенно активную роль в ускорении круговорота и трансформации играют живые организмы.
Солнечная энергия на Земле вызывает два вида круговоротов веществ:
большой (биогеохимический) — в пределах биосферы;
малый (биотический) — в пределах элементарных экологических систем.
Большой круговорот веществ — это безостановочный планетарный процесс закономерного циклического, неравномерного во времени и пространстве перераспределения вещества, энергии и информации, многократно входящих в непрерывно обновляющиеся экологические системы биосферы.
Малый круговорот веществ развивается на основе большого и заключается в круговой циркуляции веществ между почвой, растениями, микроорганизмами и животными.
Оба круговорота взаимосвязаны и представляют собой единый процесс, который обеспечивает воспроизводство живого вещества и оказывает активное влияние на облик биосферы.
На нашей планете всегда существовал геохимический круговорот веществ, но с появлением жизни на Земле геохимические связи стали биогеохимическими — более сложными и разнообразными. Поэтому говорят о биогеохимическом круговороте веществ или биогеохимическом цикле.
Различают три основных типа биогеохимических круговоротов:
1) круговорот воды;
круговорот элементов преимущественно в газовой фазе (кислорода, углерода, азота и др.);
круговорот элементов преимущественно в твердой и жидкой фазах (фосфора и др.).
Круговорот углерода на суше начинается с фиксации углекислого газа растениями в процессе фотосинтеза.
Из СО2 и НзО образуются углеводы и высвобождается кислород, Фиксированный в растениях углерод в некоторой степени потребляется животными. Отжившие животные и растения разлагаются микроорганизмами, в результате чего углерод мертвого органического вещества окисляется до углекислого газа и снова попадает в атмосферу. Кроме того, углерод частично выделяется на всех стадиях круговорота в составе CO2 во время дыхания растений и животных. Подобный круговорот углерода совершается и в океане.
Круговорот азота (рис.5). Азот, которого очень много в атмосфере, усваивается растениями лишь после соединения его с водородом или кислородом. Это, как правило, происходит в результате различных физических явлений, протекающих в атмосфере (атмосферная фиксация) и производстве (промышленная фиксация), а также в результате действия азотфиксирующих бактерий или водорослей (биофиксация). Соединения азота используются растениями и через них по пищевым цепям попадают к животным. Растительные и животные отходы, мертвые организмы разлагаются, и с помощью денитрифицирующих бактерий происходит восстановление азота и возвращение его в атмосферу.
Рис. 5 — Круговорот азота В настоящее время сельское хозяйство и промышленность дают почти на 60% больше фиксированного азота, чем естественные наземные экосистемы, что приводит к накоплению нитратов в почве и далее в трофических цепях.
Биогеохимические круговороты веществ и связанные с ними превращения энергии являются основой динамического равновесия и устойчивости биосферы. Нормальные, ненарушенные биогеохимические циклы имеют почти круговой, почти замкнутый характер. Этим поддерживается известное постоянство и равновесие состава, количества и концентрации компонентов в биосфере, например состава атмосферного воздуха, концентрации солей в воде океанов и т. п. В свою очередь, подобное постоянство обусловливает генетическую и физиологическую приспособленность живых организмов к существованию на Земле,
4. Эволюция биосферы. Понятие ноосферы. Понятие техносферы
Возникновение и существование всех экологических систем в биосфере обусловлено эволюцией. Самоподдерживающиеся динамические системы эволюционируют в сторону усложнения организации и возникновения системной иерархии, Первопричиной, источником движущей силы последовательных качественных изменений экологических систем служит поток энергии через систему и отбор наиболее эффективных преобразователей энергии, вещества и информации.
Эволюция биосферы состоит из добиотической фазы, в ходе которой химическая эволюция подготовила возникновение жизни и, собственно, биотической эволюции.
Добиотическая эволюция.
1. Образование планеты (около 4,5 млрд. лет назад). Первичная атмосфера имела высокую температуру и содержала водород, азот, пары воды, метан, аммиак, инертные газы и другие простые соединения.
2. Возникновение абиотического круговорота веществ в атмосфере за счет ее постепенного остывания и энергии солнечного излучения. Появляется жидкая вода, формируются гидросфера, круговорот воды, водная миграция элементов и многофазные химические реакции в растворах. Происходит отбор и рост молекул.
3. Образование органических соединений в процессах конденсации и полимеризации простых соединений С, Н, О, N за счет энергии ультрафиолетового излучения Солнца, радиоактивности, электрических разрядов и других энергетических импульсов. Аккумуляция лучистой энергии в органических веществах.
4. Возникновение круговорота органических соединений углерода. Далънейшее усложнение органических веществ и появление устойчивых комплексов макромолекул; возникновение молекулярных систем самовоспроизведения.
Биотическая эволюция.
Возникновение жизни (около 3,5 млрд. лет назад). Структуризация белков и нуклеиновых кислот с участием биомембран приводит к появлению вирусоподобных тел и первичных клеток, способных к делению. Возникает биотический круговорот, и формируются функции живого вещества.
5. Развитие фотосинтеза и обусловленное им изменение состава среды: увеличение количества кислорода. Ускоряется биогенная миграция элементов.
6. Появление многоклеточных организмов, наземных растений и животных приводит к дальнейшему усложнению биогеохимического круговорота. Возникают сложные экологические системы, содержащие все уровни трофической организации. Достигается высокая ступень замкнутости биогеохимического круговорота.
7.Увеличение биотического разнообразия и усложнение строения и функциональной организации живых существ и биосферы в целом. Организмами заняты все экологические ниши на планете.
8. Появление человека — лидера эволюции. Возникновение и развитие человеческого общества, вовлечение в техногенез непропорционально больших потоков вещества и энергии нарушают замкнутость биогеохимических круговоротов, вызывают антропогенные экологические кризисы и становятся негативным фактором эволюции биосферы.
Хозяйственная деятельность человека вызвала появление на Земле качественно новой среды обитания — техносферы. Техносфера — часть биосферы, преобразованной людьми с помощью прямого или косвенного действия технических средств и занятая продуктами его деятельности. Некоторые ученые считают техносферу синонимом ноосферы, другие — признают техносферу как переходное состояние от биосферы к ноосфере.
В переводе с греческого «ноосфера» — это сфера разума, С научной точки зрения, ноосфера — это коллективное сознание, которое станет контролировать направление будущей эволюции планеты. Развивая концепцию ноосферы, В. И, Вернадский определил ее как этап эволюции биосферы, который характеризуется ведущей ролью разумной и сознательной деятельности человеческого общества в развитии биосферы. Разумная деятельность человека должна стать главным фактором развития биосферы.
Ноосфера, но В. И. Вернадскому, — это биосфера, разумно управляемая человеком. «…Все человечество, вместе взятое, представляет ничтожную массу вещества планеты, Мощь его связана не с его материей, но с его мозгом, разумом и направленным этим разумом его трудом». Человек должен понять, «что он не есть случайное, независимое от окружающего свободно действующее природное явление. Он составляет неизбежное проявление большого природного процесса, закономерно длящегося в течение, по крайней мере, 2-х миллионов лет.
Согласно закону ноосферы B.И. Вернадского: биосфера неизбежно превратится в ноосферу, т. е. сферу, где разум человека будет играть доминирующую роль в развитии системы человек-природа. Иными словами, хаотичное саморазвитие, основанное на процессах естественной саморегуляции, будет заменено разумной стратегией, базирующейся на прогнозно-плановых началах, регулировании процессов естественного развития.
Если ноосфера — это будущее гармоничное единство человека и природы при главенствующем положении в этой системе человеческого разума, то техносфера — это то окружение, в котором мы сейчас живем.
Литертатура
1. Шимова, О. С. Основы экологии и экономика природопользования: Учебник / О. С. Шимова, Н. К. Соколовский. — Мн.: БГЭУ, 2001 -367 с.
2. Акимова, Т. А. Экология: Учебник для вузов / Т. А. Акимова, ВЛЗ. Хаскин. — М: ЮНИТИ, 1998, — 445 с.
З.Маврищев, В. В. Основы общей экологии: Учеб. пособие / В. В. Маврищев. — Мн.: Выш. шк., 2000, — 317 с.
4. Экология: Учебное пособие / Общая ред. С. А. Боголюбова. — М: Знание, 1997.-288 с.
4. Экология и безопасность жизнедеятельности: Учеб. пособие для вузов / Под ред. Л. А. Муравья. — М. ЮНИТИ-ДАНА, 2000. — 447 с.
5.Кормилицин, В. И. Основы экологии: Учеб, пособие / В. Ц. Кормилидин. — М.: Интерстиль. 1997. — 368 с.
6. Реймерс, Н. Ф. Охрана природы и окружающей человека среды: Словарь-справочник / Н. Ф. Реймерс. — М: Просвещение, 1992. — 320 с.
7. Охрана окружающей среды: Учеб, для техн. спец, вузов / Под ред. С. З. Белова. — М.: Высшая школа, 1991. — 319 с.