Помощь в написании студенческих работ
Антистрессовый сервис

Метод «Монте-Карло». Теория вероятности

РефератПомощь в написанииУзнать стоимостьмоей работы

С помощью Метода можно смоделировать любой процесс, протекание которого связано со случайными величинами. Так же можно искусственно придумать вероятностную модель для задач, не связанных со случайностью. Теоретическая основа метода была известно давно, однако только с появлением компьютеров он нашел широкое применение, т.к. моделировать случайные величины вручную — трудоемкое занятие. Разные… Читать ещё >

Метод «Монте-Карло». Теория вероятности (реферат, курсовая, диплом, контрольная)

Метод Монте-Карло — это численный метод решения математических задач при помощи моделирования случайных величин.

Датой рождения метода принято считать 1949 г., когда появилась в свет статья «The Monte Carlo Method». Создатели метода — американские математики Дж. Неймана и С. Улама.

Теоретическая основа метода была известно давно, однако только с появлением компьютеров он нашел широкое применение, т.к. моделировать случайные величины вручную — трудоемкое занятие.

Само название метода — «Монте-Карло» происходит от названия города в княжестве Монако, знаменитого своими игорными домами. Дело в том, что простейшим прибором для моделирования случайных величин является… рулетка. Наиболее часто задаваемый вопрос, естественно: «Помогает ли метод выигрывать в рулетку». Нет, к сожалению, не помогает.

Теперь перейдем непосредственно к математике. Чтобы было понятно, о чем идет речь, приведем простейший пример применения метода.

Пример 1.

Предположим, нам надо вычислить площадь фигуры, изображенной на рисунке. Предположим, что она расположена внутри единичного квадрата.

Выберем внутри единичного квадрата N случайных точек. Обозначим через N' число точек, попавших внутрь этой фигуры. Тогда площадь этой фигуры будет приближенно равна .

На рисунке всего 30 точек. 12 из них попали в фигуру,, в то время как истинная площадь фигуры равна 0,48.

Метод «Монте-Карло». Теория вероятности.

Особенности Метода.

Первая особенность — простота вычислительного алгоритма. Как правило, составляется программа для проведения одного случайного испытания, и повторять его N раз. Поэтому Метод часто называют методом статистических испытаний Вторая особенность — погрешность, как правило, пропорциональна.

.

где D = const, N — число испытаний.

Разные задачи можно решать разными вариантами Метода, которых, кстати, очень много. Для каждого варианта — свое значение D и, соответственно, свое значение погрешности.

С помощью Метода можно смоделировать любой процесс, протекание которого связано со случайными величинами. Так же можно искусственно придумать вероятностную модель для задач, не связанных со случайностью.

Для получения случайных чисел существуют специальные таблицы, которыми особенно удобно пользоваться на компьютерах: каждый раз мы просто берем очередное число и используем его как случайное. Но составить такую таблицу не так просто, как может показаться. Существуют специальные тесты, чтобы проверить правильность случайной последовательности.

Практическое значение Метода очень велико. С его помощью, например, можно рассчитать надежность любого изделия, или рассчитать траекторию прохождения нейтронов сквозь пластину или положение электрона в данный момент времени и т. д.

Показать весь текст
Заполнить форму текущей работой