Помощь в написании студенческих работ
Антистрессовый сервис

Расчет и проектирование фундаментов мелкого заложения и свайных фундаментов

КурсоваяПомощь в написанииУзнать стоимостьмоей работы

При определении усилий в конструкции фундамента (подошвы фундамента) в заданном сечении, за расчетную схему принимается консольная балка с жесткой заделкой в заданном сечении — оставшейся части фундамента, на которую действует нагрузка. При определении усилий в конструкции фундамента (подошвы фундамента) в заданном сечении, за расчетную схему принимается консольная балка с жесткой заделкой… Читать ещё >

Расчет и проектирование фундаментов мелкого заложения и свайных фундаментов (реферат, курсовая, диплом, контрольная)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ПРИДНЕПРОВСКАЯ АКАДЕМИЯ СТРОИТЕЛЬСТВА И АРХИТЕКТУРЫ Кафедра Основания и фундаменты

Курсовой проект

«Расчет и проектирование фундаментов мелкого заложения и

свайных фундаментов".

Выполнил студент 808 группы Проверил ассистент Днепропетровск

Исходные данные

(вариант 1/25)

Длина здания 48 м

Ширина здания 27 м

Количество пролётов 3

Ширина пролётов —;

АБ 9 м

БВ 6 м

ВГ 12 м

Количество этажей 5

Высота этажа 3,6 м

Шаг колонн по рядам —;

А 6 м

Б 12 м

В 12 м

Г 6 м

Вид колонн (материал) ЖБК

Сечение колонн (база) 0,4×0,4 м

Нагрузка на фундаменты 10 кН/м3

Ряд А

N 2500 кН

Mx 290 кН/м3

Mу 120 кН/м3

Ряд Б:

N 4500 кН

Mx 350 кН/м3

Mу 160 кН/м3

Ряд В:

N 5400 кН

Mx 420 кН/м3

Mу 90 кН/м3

Ряд Г:

N 3500 кН

Mx 470 кН/м3

Mу 45 кН/м3

Планировочная отметка — 0,15 м

Отметка пола подвала —;

Район строительства г. Днепропетровск

Здание (тип) неотапливаемое

Физико-механические свойства грунтов

Таблица 1

Наименование грунта

Мощность слоя, м

с, кН/м3

сs, кН/м3

W,

Wl,

Wp,

ц, ?

c, кг/см2

м

Кф, см/сек

Р, кг/см2

S, м

Чернозем

0.8 — 0.9

1,66

;

0,14

;

;

;

;

;

;

;

;

Песок мелкозернистый

6,0 — 5.6

1,93

2,65

0,2

;

;

— 

— 

0,27

;

;

;

Супесь пылеватая

4,5−3,8

1,5

2,66

0,21

0,2

0,2

7,0

0,3

0,1

0,62

0,2

1,22

0,3

1,83

0,4

2,8

Глина четвертичная

неогрн.

1,98

2,74

0,23

0,4

0,2

— 

— 

0.43

;

— 

— 

Ур.Гор.Вод.

2,0 м

Анализ инженерно-геологических условий площадки

Геологический разрез

По основным физическим характеристикам и классификационным показателям грунтов площадки определяются физико-механические характеристики грунтов площадки, обеспечивающие возможность определения расчетного сопротивления и деформации оснований, а именно:

1) песчаного грунта:

— коэффициент пористости е

где — плотность минеральных частиц

W — природная влажность — природная плотность

— степень влажности грунта

2) супеси пылеватой

— коэффициент пористости е

3) глина четвертичная

— коэффициент пористости е

— число пластичности грунта по значениям влажностей на пределе текучести и раскатывания

Ip = Wl — Wp = 0,4 — 0,2 = 0,2

— показатель текучести грунта

По вычисленным физико-механическим характеристикам и классификационным показателям грунта по табл.1 прил.1 СНиП 2.02.01−83 определяются прочностные и деформационные характеристики грунта С,, Е,

Все вычисленные и определенные физико-механические характеристики грунтов заносятся в сводную таблицу физико-механических характеристик грунтов площадки.

Таблица 2

кН/м3

s, кН/м3

C, кПа

E, Мпа

Чернозем

16,6

;

;

;

;

Песок мелкозернистый

19,3

26,5

Супесь пылеватая

26,6

9,52

Глина четвертичная

19,8

27,4

19,5

22,5

I. Проектирование фундамента мелкого заложения на естественном основании

1. Выбор глубины заложения фундамента

Глубина заложения фундамента зависит от:

— климатического района строительства (глубины промерзания грунта);

— технологических особенностей проектируемого здания (наличия подвалов, технологических каналов, расположенных в подземной части здания, технологических отстойников, водящих боровов, подводящих трубопроводов и др.);

— конструктивных особенностей проектируемого здания или сооружения;

— фактора инженерно-геологических условий.

1.1. С учетом глубины промерзания глубина заложения фундамента назначается по расчетной схеме глубины сезонного промерзания грунта df, которая устанавливается следующим образом:

Нормативная глубина сезонного промерзания грунта определяется по формуле:

м,

где Mt — безразмерный коэф., численно равный сумме абсолютных значений среднемесячных отрицательных температур за зиму в данном районе по СНиП 2.01.01−82 «Строительная климатология и геофизика» (для Днепропетровска Mt = -13,3).

d0 — величина в метрах, принимаемая равной:

· для суглинков и глин — 0,23

· для супесей, песков мелких и пылеватых — 0,25

· для песков средней круп-ности, крупных и гравелистых — 0,30

· для крупнообломочных грунтов — 0,34

Расчетная глубина сезонного промерзания грунта определяется: (м)

где kh — коэф., учитывающий влияние теплового режима сооружения принимаемый 0,8.

Глубина заложения фундаментов по первому фактору (глубине промерзания):

м

1.2. С учетом технологических особенностей проектируемого здания глубина заложения фундамента должна назначаться на 0,5 м ниже отметки технологических подвалов, т. е:

где dn — отметка пола подвала или пола технологического пространства проектируемого объекта.

Подвала в данном здании нет.

1.3. С учетом конструктивных особенностей здания глубину заложения фундамента рекомендуется назначать в зависимости от действующих нагрузок и принимать при

1000 < < 2000 кH d = 1,5 м

2000 < < 3000 кН d = 2,0 м

3000 < < 5000 кН d = 2,5 м

> 5000 кН d = 3,0 м (при N = 5400 кН)

1.4. При анализе инженерно-геологических условий учитывают следующие факторы:

· фундамент должен быть заглублён в несущий слой грунта минимум на 0,5 м;

· фундамент должен прорезать верхние слои слабого грунта;

· под подошвой фундамента нельзя оставлять тонкий слой несущего грунта.

Вывод: Исходя из анализа инженерно-геологических условий, конструктивных особенностей здания, принимаем глубину заложения фундамента

При этом несущим слоем является песок мелкозернистый с характеристиками: C = 2 кПа, E = 28 МПа, ц = 32?, =19,3 кН/м3.

2. Расчет площади подошвы с проверкой контактных напряжений

Предварительно размеры фундамента в плане определяются по краевому расчетному сопротивлению R кр. при ширине фундамента b = 1м:

(1)

где — коэффициенты условий работы оснований () и соору-жений () принимаются по табл.3 СНиП 2.02.01−83;

К — коэффициент, принимаемый равным 1, если прочностные характе-ристики грунта (и С) определены непосредственными ис-пытаниями, К = 1,1, если и С приняты по табл.1−3 прил.1 СНиП 2.02.01−83 «Основания зданий и сооружений» ;

— коэффициенты, принимаемые по табл.4 СНиП 2.02.01−83

kz — коэффициент влияния площади фундамента. Для фундаментов шириной

b < 10 м, кz = 1

b > 10 м, кz = Z0/ b+0,2 (Z0 = 8,0 м)

b — ширина фундамента (принятая нами b = 1м)

— расчетное значение удельного веса грунтов залегающих ниже подошвы фундамента;

— расчетное значение удельного веса грунтов залегающих выше подошвы фундамента,

кН/м3

— удельные весы грунтов, залегающих выше подошвы фундамента (см. рис.)

CII — расчетное значение удельного сцепления грунта, залегающего непосредственно под подошвой фундамента;

d1 — глубина заложения фундаментов без подвальных зданий (помещений) от уровня планировки или приведенная глубина заложения наружных и внутренних фундаментов от пола подвала, определяемая по формуле (если нет подвала, то d1 = d):

hs — толщина слоя грунта выше подошвы фундамента со стороны подвала, м;

hcf — толщина пола подвала, м.

— удельный вес конструкции пола подвала.

dв — глубина подвала — расстояние от уровня планировки до пола.

Определяется площадь фундамента в первом приближениям по формуле:

По определенной площади фундамента вычисляются размеры фундамента в плане:

где бсоотношение сторон фундамента (= l/b) или сторон сечения колонны или сооружения. По вычисленным размерам фундамента в плане устанавливается сопротивление грунта основания по формуле (1):

I. 1) При b = 1 м, R = 514,27 кПа

2) A = м2

3) м

4)

II. 1) При b = 3,45 м, R = 596,6 кПа

2) A = м2

3) м

III. 1) При b = 3,17 м, R = 587,26 кПа

2) A = м2

3) м

Прекращаем подбор.

Вычисленные размеры фундамента в плане округляют в большую сторону до кратных 0,1 м для гражданских зданий, т. е. принимаем b = 3,2 м, а l = 3,2 м, соответственно A = м2 R = 587,26 кПа.

2.1 Проверяем контактные напряжения.

1. ;

2. Проверяются контактные напряжения по подошве фундаментов по условию:

кПа

кПа

N, Mx, My — усилия, передаваемые на фундамент от сооружения (по заданию или расчету рамы)

Wx, Wy — момент сопротивления подошвы фундамента

м3

3. Конструирование фундамента

По заданию вид колонны — железобетонная, размерами 0,4×0,4 м.

3.1. Тип фундамента назначают из условия жесткости

мм

мм

Фундамент принимаем с подколонником.

3.2. Размеры подколонника в плане назначаются конструктивно и принимаются равными:

bпк= bк+0,6=0,4+0,6=1 м

lпк=lк+0,6 = 0,4+0,6 =1 м

Для выбранного типа фундаментов определяется высота конструкции фундамента или его плитной части по формуле:

м

где

l, b — размеры подошвы фундамента в плане;

— размеры сечения колоны (по заданию).

— расчётное сопротивление бетона на растяжение, кПа;

— среднее давление подошвы фундамента, кПа.

Реальная высота (с учётом защитного слоя) вычисляется по формуле:

Принимаем оптимальную высоту, равную 900 мм (кратную 150 мм)

При данной высоте конструктивно целесообразно установить 3 ступени по — 300 мм.

4. Расчет фундамента на продавливание

Проверяем условие жесткости конструкции фундамента по условию:

— фундамент гибкий.

Продавливание происходит по поверхности усеченной пирамиды, верхним основанием которой является нижнее сечение основание подколонника или колонны, а грани расположены под углом 45

где: Aтр — площадь поверхности грани пирамиды продавливания;

Aпр — площадь продавливания — площадь подошвы фундамента за пределами пирамиды продавливания.

кПа — расчетное сопротивление бетона на растяжение.

м2

м2

где м

кН

кн.

— условие выполняется.

5. Армирование конструкций фундамента (расчёт на изгиб)

При определении усилий в конструкции фундамента (подошвы фундамента) в заданном сечении, за расчетную схему принимается консольная балка с жесткой заделкой в заданном сечении — оставшейся части фундамента, на которую действует нагрузка.

Подбор рабочей арматуры производим по двум сторонам:

Сечение 1−1

кПа кНм

см2

Площадь сечения одного стержня:

см2

Из сортамента выбираем арматуру диаметром 12 мм с As1 = 1,313 см², тогда As = 5×1,313 = 6,565 см² .

Сечение 2−2

кПа

кНм

см2

Площадь сечения одного стержня: см2

Из сортамента выбираем арматуру диаметром 9 мм с As1 = 0,636 см², тогда As = 5×0,636 = 3,18 см²

Сечение 3−3

кПа

кНм

см2

Площадь сечения одного стержня: см2

Из сортамента выбираем арматуру Вр-1 диаметром 4 мм с As1 = 0,126 см², тогда As = 5×0,126 = 0,63 см²

Принимаем сетку С1 из арматуру А-400 диаметром 12 мм. По стороне l и b ее количество составит шт.

6. Расчет осадки методом послойного суммирования

1. Среднее давление подошвы фундамента Рср = 587,3 кПа

2. Природное давление грунта на уровне подошвы фундамента.

кПа

3. Дополнительное вертикальное давление под подошвой фундамента.

кПа

4. Разбиваем основание фундамента на элементарные слои м

4. Вычисляем и строим эпюру естественного давления

5. Вычисляем и строим эпюру, где

— коэффициент затухания напряжений. Зависит от соотношения сторон фундамента и относительной глубины, выбирается значение из таблицы СниПа.

6. Находим нижнюю границу сжимаемой толщи:

7. Считаем суммарную осадку по всем слоям:

Расчёты по данному алгоритму приведены ниже в таблице 3

Таблица 3

эл.

Z,

м

о

б

у zg0, кПа

0.2 у zg0, кПа

у zpi, кПа

у zpiср, кПа

Е, кПа

S,

м

1.000

55,60

11,12

531,70

0,64

0,6

0.972

67,95

13,59

515,75

523,72

0,009

1,28

1,2

0.848

80,30

16,06

450,88

483,32

0,884

1,92

1,8

0.682

92,654

18,53

362,62

406,75

0,0074

2,56

2,4

0.532

105,00

21,00

282,86

322,74

0,0059

3,2

3,0

0.414

117,36

23,47

220,12

251,49

0,459

3,84

3,6

0.325

128,33

25,66

172,80

196,46

0,359

4,48

4,2

0.260

137,93

27,59

138,24

155,52

0,836

5,12

4,8

0.210

147,53

29,51

111,66

124,95

0,672

5,76

5,4

0.173

157,13

31,43

91,98

101,82

0,547

6,4

6,0

0.145

166,73

33,35

77,09

84,54

0,0045

7,04

6,6

0.123

176,33

35,27

65,39

71,24

0,0038

7,68

7,2

0.105

189,00

37,8

55,82

60,60

0,138

8,32

7,8

0.091

201,67

40,33

48,38

52,10

0,0012

8,96

8,0

0,077

214,04

42,80

40,94

44,66

0,0010

У= 0,0717

Проверяем выполнение условия S < Su. В нашем случае 7,14 см < 8 см, где Su =8см — предельное значение осадки. Условие выполнилось.

Эпюра распределения напряжений zp, zg

II. Фундаменты мелкого заложения на искусственном основании в виде грунтовой подушки

1. Выбор глубины заложения фундамента

1.1. Глубина заложения фундамента зависит от:

— климатического района строительства (глубины промерзания грунта);

— технологических особенностей проектируемого здания (наличия подвалов, технологических каналов, расположенных в подземной части здания, технологических отстойников, водящих боровов, подводящих трубопроводов и др.);

— конструктивных особенностей проектируемого здания или сооружения;

— фактора инженерно-геологических условий.

Учитывая то, что данная расчётно-графическая работа — учебная, принимаем глубину заложения фундамента из предыдущем расчёте, т. е.

Под подошвой фундамента находится песок мелкозернистый, поэтому в учебных целях принимаем подушку из суглинка (гs = 26,3 кН/м3, г = 20 кН/м3, W = 15%) со следующими физико-механическими свойствами:

— определяем коэф. пористости Принимаем гd = 16,52 кН/м3 ;

— определяем показатель текучести Вывод: Исходя из анализа инженерно-геологических условий, конструктивных особенностей здания, принимаем глубину заложения фундамента d = 3,0 м. Грунтовую подушку выполняем из суглинка с характеристиками: C = 34 кПа, E = 24,5 МПа, ц = 24,5?.

2. Расчет площади подошвы с проверкой контактных напряжений

2.1. Предварительно размеры фундамента в плане определяются по краевому расчетному сопротивлению R кр. при ширине фундамента b = 1м:

(1)

где — коэффициенты условий работы оснований () и сооружений () принимаются по табл.3 СНиП 2.02.01−83;

К — коэффициент, принимаемый равным 1, если прочностные характеристики грунта (и С) определены непосредственными испытаниями, К = 1,1, если и С приняты по табл.1−3 прил.1 СНиП 2.02.01−83 «Основания зданий и сооружений» ;

— коэффициенты, принимаемые по табл.4 СНиП 2.02.01−83

kz — коэффициент влияния площади фундамента. Для фундаментов шириной

b < 10 м, кz = 1

b > 10 м, кz = Z0/ b+0,2 (Z0 = 8,0 м)

b — ширина фундамента (принятая нами b = 1м)

— расчетное значение удельного веса грунтов залегающих ниже подошвы фундамента;

— расчетное значение удельного веса грунтов залегающих выше подошвы фундамента,

кН/м3

— удельные весы грунтов, залегающих выше подошвы фундамента (см. рис.)

CII — расчетное значение удельного сцепления грунта, залегающего непосредственно под подошвой фундамента;

d1 — глубина заложения фундаментов бесподвальных (помещений) зданий от уровня планировки или приведенная глубина заложения наружных и внутренних фундаментов от пола подвала, определяемая по формуле (если нет подвала, то d1 = d):

hs — толщина слоя грунта выше подошвы фундамента со стороны подвала, м;

hcf — толщина пола подвала, м.

— удельный вес конструкции пола подвала.

dв — глубина подвала — расстояние от уровня планировки до пола.

Определяется площадь фундамента в первом приближениям по формуле:

По определенной площади фундамента вычисляются размеры фундамента в плане:

где бсоотношение сторон фундамента (= l/b = 1) или сторон сечения колонны или сооружения По вычисленным размерам фундамента в плане устанавливается со-противление грунта основания по формуле (1):

I. 1) При b = 1 м, R = 324,37 кПа

2) A = м2

3) м

4)

II. 1) При b = 4,5 м, R = 390,24 кПа

2) A = м2

3) м

III. 1) При b = 4,0 м, R = 380,83 кПа

2) A = м2

3) м Проверка целесообразности дальнейшего подбора:

Прекращаем подбор.

Вычисленные размеры фундамента в плане округляют в большую сторону до кратных 0,1 м для, т. е. принимаем b = 4,1 м, а l = 4,1 м, соответственно м2; R = 380,83 кПа.

2.2. Проверяем контактные напряжения.

1. ;

2. Проверяются контактные напряжения по подошве фундаментов по условию:

кПа

кПа

N, Mx, My — усилия, передаваемые на фундамент от сооружения (по заданию или расчету рамы)

Wx, Wy — момент сопротивления подошвы фундамента

м3

3. Конструирование фундамента

3.1. Размеры подколонника в плане назначаются конструктивно и принимаются равными:

bпк= bк + 0,6 = 1,0 м

lпк= lк + 0,6 = 1,0 м Для выбранного типа фундаментов определяется высота конструкции фундамента или его плитной части по формуле:

м где

l, b — размеры подошвы фундамента в плане;

— размеры сечения колоны (по заданию).

— расчётное сопротивление бетона на растяжение, кПа;

— среднее давление подошвы фундамента, кПа.

Реальная высота (с учётом защитного слоя) вычисляется по формуле:

Принимаем оптимальную высоту, равную 900 мм (кратную 150 мм)

При данной высоте конструктивно целесообразно установить 3 ступени по-300 мм.

4. Расчет на продавливание

Проверяем условие жесткости конструкции фундамента по условию:

— фундамент гибкий.

Продавливание происходит по поверхности усеченной пирамиды, верхним основанием которой является нижнее сечение основание подколонника или колонны, а грани расположены под углом 45

где: Aтр — площадь поверхности грани пирамиды продавливания;

Aпр — площадь продавливания — площадь подошвы фундамента за пределами пирамиды продавливания.

кПа — расчетное сопротивление бетона на растяжение.

м2

м2

где м

кН

кн.

— условие выполняется.

5. Армирование конструкций фундамента

При определении усилий в конструкции фундамента (подошвы фундамента) в заданном сечении, за расчетную схему принимается консольная балка с жесткой заделкой в заданном сечении — оставшейся части фундамента, на которую действует нагрузка.

Подбор рабочей арматуры производим по двум сторонам:

Сечение 1−1

кПа кНм

см2

Площадь сечения одного стержня:

см2

Из сортамента выбираем арматуру диаметром 12 мм с As1 = 1,313 см², тогда As = 5×1,313 =6,565 см²

Сечение 2−2

кПа

кНм

см2

Площадь сечения одного стержня: см2

Из сортамента выбираем арматуру диаметром 12 мм с As1 = 1,313 см², тогда As = 5×1,313 = 6,565 см²

Сечение 3−3

кПа

кНм

см2

Площадь сечения одного стержня: см2

Из сортамента выбираем арматуру диаметром 3 мм с As1 = 0,07 см², тогда As = 5×0,07 = 0,35 см²

Принимаем сетку С2 из арматуру А-400 диаметром 12 мм. По стороне l и b ее количество составит шт.

6. Выбор размеров подушки

6.1. Определение высоты подушки.

Исходя из условия, что, принимаем в расчёт м. Т.к. размеры подушки должны быть кратны 10 см, то принимаем hпод = 2,5 м.

6.2. Определение размеров подушки в плане.

Используем формулы:

;

где б — угол естественного откоса. Для суглинка (окружающего грунта) он равен 40.

В — угол распределения напряжений. Для песка (материал подушки) он равен 30?.

м. Для кратности принимаем

= 9,1 м;

м. Для кратности принимаем = 15,1 м, м.

м.

Итак, окончательно приняли следующие размеры грунтовой подушки:

— на уровне низа м;

— на уровне верха м.

7. Расчет осадки методом послойного суммирования

7.1. Среднее давление подошвы фундамента Рср = 381,23 кПа

7.2. Природное давление грунта на уровне подошвы фундамента.

кПа

7.3. Дополнительное вертикальное давление под подошвой фундамента.

кПа

7.4. Разбиваем основание фундамента на элементарные слои м

7.5. Вычисляем и строим эпюру естественного давления

7.6. Вычисляем и строим эпюру , где

— коэффициент затухания напряжений. Зависит от соотношения сторон фундамента и относительной глубины, выбирается значение из таблицы СниПа.

7.7. Находим нижнюю границу сжимаемой толщи:

7.8. Считаем суммарную осадку по всем слоям:

Расчёты по данному алгоритму приведены ниже в таблице 4.

Таблица 4

эл.

Z,

м

о

б

у zg0, кПа

0.2 у zg0, кПа

у zpi, кПа

у zpiср, кПа

Е, кПа

S,

м

1,000

55,60

11,12

325,63

0,82

0,4

0,972

72,00

14,40

316,51

321,07

0,0086

1,64

0,8

0,848

88,40

17,68

276,13

296,32

0,793

2,46

1,2

0,682

104,80

20,96

222,08

249,11

0,667

3,28

1,6

0,532

120,63

24,12

173,24

197,66

0,463

4,1

2,0

0,414

136,45

27,29

134,81

154,03

0,0036

4,92

2,4

0,325

152,28

30,45

105,83

120,32

0,0028

5,74

2,8

0,260

168,10

33,62

84,66

95,25

0,223

6,56

3,2

0,210

183,93

36,79

68,38

76,52

0,0018

7,38

3,6

0,173

196,23

39,25

56,33

62,36

0,0043

8,2

4,0

0,145

208,53

41,71

47,22

51,78

0,0036

9,02

4,4

0,123

220,83

44,16

40,05

43,64

0,003

У= 0,049

Проверяем выполнение условия S < Su. В нашем случае 4,90 см < 8 см, где Su =8см — предельное значение осадки. Условие выполнилось.

Эпюра распределения напряжений zp, zg

III Расчёт свайных фундаментов

1. Выбор глубины заложения ростверка

1.1. Определение глубины заложения ростверка зависит от нескольких факторов:

— Глубины промерзания грунта. Из предыдущих расчётов мы уже определили эту величину

м;

— Наличие конструктивных особенностей. В нашем случае подвальных помещений нет, поэтому

;

— Глубина заложения ростверка. Исходя из условия, что

мм, где

dр — глубина заложения ростверка, м;

hст — глубина стакана в фундаменте. Для наших фундаментов под ЖБК-колонны hст = 0.

Учитывая все перечисленные условия, принимаем глубину заложения ростверка dр = 1,5 м, исходя из кратности ростверка по высоте 15 см.

Принимаем шарнирное соединение ростверка и сваи. Голова сваи заходит в тело ростверка на 5 — 10 см. принимаем для расчёта 10 см.

Тогда отметка головы сваи будет равна -1,4 м.

2. Выбор несущего слоя

Считаем, что несущим слоем будет глина четвертичная, поэтому, заглубляем сваю в слой глины на 3,6 м (для применения стандартной длины сваи). При этом длина сваи равна hсв = 13 м.

Под нижним концом сваи находится сжимаемый грунт (Е < 50 МПа). Дальнейший расчёт ведём как для висячей сваи. Принимаем железобетонную забивную сваю квадратного сечения. Для выбранной нами длины можно принять сечение 40×40 см.

3. Определение несущей способности сваи

где n — количество слоёв с одинаковыми силами трения по длине сваи;

гс — коэффициент условий работы (гс = 1);

гсr и гсf — коэффициенты условий работы под подошвой сваи и по боковой поверхности, зависят от условий изготовления или погружения сваи. (гсr =1 и гсf = 1);

А — площадь сечения сваи;

R — расчётное сопротивление под подошвой сваи, зависит от длины сваи и грунта. (R = 6900 кПа);

U — периметр сечения сваи;

l — расстояние от середины слоя до поверхности земли;

f — расчётное сопротивление по боковой поверхности сваи, зависит от l (принимается из СниПа).

Таблица 5

hi, м

li, м

fi, кПа

hi * fi, кН/м

1,5

2,25

31,25

46,88

1,5

3,75

37,25

55,88

1,5

5,25

40,5

60,75

1,5

6,75

31,75

47,63

1,5

8,25

33,25

49,88

1,5

9,75

33,875

50,81

1,5

11,25

66,75

100,13

12,5

68,5

68,5

480,50

кН

4. Определение расчетной нагрузки на сваю

Определяем по формуле:

кН.

гк — коэффициент запаса. Для расчёта он равен 1,4, если для полевых испытаний, то равен 1,25.

Определим необходимое количество свай в фундаменте по формуле:

шт.,

где N — заданная нагрузка на фундамент.

5. Конструирование ростверка

Определяем фактическую нагрузку на сваю:

где y — расстояние от главной оси до оси самой нагруженной сваи

yi — расстояние до оси каждой сваи кН

P > Nф; 843,50 > 768 — условие выполняется.

Расчёт на продавливание. Расчет не производим, так как конструкция ростверка жёсткая.

7. Расчет деформаций свайных фундаментов

м;

м;

м2 ;

м;

м3 ;

кН;

Выполняем проверку давления под нижним концом сваи:

где

; кz = 1.

кПа.

кПа.

413,99 кПа. < 2375,52 кПа. — условие выполняется.

8. Расчет осадки линейно деформированного пространства

8.1. Среднее давление подошвы фундамента Рср = 479,7 кПа

8.2. Вычисляем и строим эпюру естественного давления

8.3. Рассчитываем дополнительную вертикальную нагрузку

8.4. Высота рассчитываемых слоёв hi = 0,2 ' b = 0,2 ' 4,09 = 0,82 м

8.5. Вычисляем и строим эпюру, где

б — коэффициент затухания напряжений. Зависит от соотношения сторон фундамента и относительной глубины, выбирается значение из таблицы СниПа.

8.6. Находим нижнюю границу сжимаемой толщи:

В нашем случае 60.305 кПа > 49,977 кПа, условие выполняется.

8.7. Считаем суммарную осадку по всем слоям:

8.8. Проверяем выполнение условия S < Su. В нашем случае 3,37 см < 12 см, где Su = 12 см — предельное значение осадки

Расчёты по данному алгоритму приведены ниже в таблице 6.

Таблица 6

эл.

Z,

м

о

б

у zg0, кПа

0.2 у zg0, кПа

у zpi, кПа

у zpiср, кПа

Е, кПа

S,

м

1,000

259,58

51,92

154,41

22,5×103

0,80

0,4

0,972

275,42

55,08

150,08

152,25

22,5×103

0,433

1,60

0,8

0,848

291,26

58,25

130,94

140,51

22,5×103

0,399

2,40

1,2

0,682

307,10

61,42

105,31

118,13

22,5×103

0,336

3,20

1,6

0,532

322,94

64,59

82,15

93,73

22,5×103

0,266

4,00

2,0

0,414

338,78

67,75

63,93

73,04

22,5×103

0,0020

4,80

2,4

0,325

354,62

70,92

50,18

57,05

22,5×103

0,162

0,0153

Эпюра распределения напряжений zp, zg

Фундамент на естественном основании

Фундамент на искусственном основании

Свайный фундамент

Объем земли м3

2747,52

14 808,81

3432,36

Объем бетона м3

165,63

295,66

662,48

Объем обратной засыпки

2581,89

113,63

2770,88

Количество арматуры, кг

792,12

1502,256

284,6

Доп. работы

устройство гидроизоляции и дренажа

уплотнение грунтовой подушки

забивка и доставка свай

Осадка, мм

IV. Технико-экономическое сравнение вариантов Таблица 7

Считаю, что самый рациональный фундамент будет фундамент мелкого заложения на естественном основании т.к. объем земляных работ и объем бетона меньше чем у других вариантов. Для дальнейшего расчета принимаем фундаменты мелкого заложения на естественном основании.

V. Расчет фундамента мелкого заложения на естественном основании по ряду Г

1. Выбор глубины заложения фундамента

Глубина заложения фундамента зависит от:

— климатического района строительства (глубины промерзания грунта);

— технологических особенностей проектируемого здания (наличия подвалов, технологических каналов, расположенных в подземной части здания, технологических отстойников, водящих боровов, подводящих трубопроводов и др.);

— конструктивных особенностей проектируемого здания или сооружения;

— фактора инженерно-геологических условий.

1.1. С учетом глубины промерзания глубина заложения фундамента назначается по расчетной схеме глубины сезонного промерзания грунта df, которая устанавливается следующим образом:

Нормативная глубина сезонного промерзания грунта определяется по формуле:

м, где Mt — безразмерный коэф., численно равный сумме абсолютных значений среднемесячных отрицательных температур за зиму в данном районе по СНиП 2.01.01−82 «Строительная климатология и геофизика» (для Днепропетровска Mt = -13,3).

d0 — величина в метрах, принимаемая равной:

· для суглинков и глин — 0,23

· для супесей, песков мелких и пылеватых — 0,25

· для песков средней круп-ности, крупных и гравелистых — 0,30

· для крупнообломочных грунтов — 0,34

Расчетная глубина сезонного промерзания грунта определяется: (м) где kh — коэф., учитывающий влияние теплового режима сооружения принимаемый 0,8.

Глубина заложения фундаментов по первому фактору (глубине промерзания):

м

1.2. С учетом технологических особенностей проектируемого здания глубина заложения фундамента должна назначаться на 0,5 м ниже отметки технологических подвалов, т. е:

где dn — отметка пола подвала или пола технологического пространства проектируемого объекта.

Подвал в данном здании нет.

1.3. С учетом конструктивных особенностей здания глубину заложения фундамента рекомендуется назначать в зависимости от действующих нагрузок и принимать при

1000 < < 2000 кH d = 1,5 м

2000 < < 3000 кН d = 2,0 м

3000 < < 5000 кН d = 2,5 м

> 5000 кН d = 3,0 м

1.4. При анализе инженерно-геологических условий учитывают следующие факторы:

· фундамент должен быть заглублён в несущий слой грунта минимум на 0,5 м;

· фундамент должен прорезать верхние слои слабого грунта;

· под подошвой фундамента нельзя оставлять тонкий слой несущего грунта.

Вывод: Исходя из анализа инженерно-геологических условий, конструктивных особенностей здания, принимаем глубину заложения фундамента м

При этом несущим слоем является песок мелкозернистый с характеристиками: C = 2 кПа, E = 28 МПа, ц = 32?, =19,3 кН/м3.

2. Расчет площади подошвы с проверкой контактных напряжений

Предварительно размеры фундамента в плане определяются по краевому расчетному сопротивлению R кр. при ширине фундамента b = 1м:

(1)

где — коэффициенты условий работы оснований () и соору-жений () принимаются по табл.3 СНиП 2.02.01−83;

К — коэффициент, принимаемый равным 1, если прочностные характеристики грунта (и С) определены непосредственными ис-пытаниями, К = 1,1, если и С приняты по табл.1−3 прил.1 СНиП 2.02.01−83 «Основания зданий и сооружений» ;

— коэффициенты, принимаемые по табл.4 СНиП 2.02.01−83

kz — коэффициент влияния площади фундамента. Для фундаментов шириной

b < 10 м, кz = 1

b > 10 м, кz = Z0/ b+0,2 (Z0 = 8,0 м)

b — ширина фундамента (принятая нами b = 1м)

— расчетное значение удельного веса грунтов залегающих ниже подошвы фундамента;

— расчетное значение удельного веса грунтов залегающих выше подошвы фундамента,

кН/м3

— удельные весы грунтов, залегающих выше подошвы фундамента (см. рис.)

CII — расчетное значение удельного сцепления грунта, залегающего непосредственно под подошвой фундамента;

d1 — глубина заложения фундаментов бесподвальных (помещений) зданий от уровня планировки или приведенная глубина заложения наружных и внутренних фундаментов от пола подвала, определяемая по формуле (если нет подвала, то d1 = d):

hs — толщина слоя грунта выше подошвы фундамента со стороны подвала, м;

hcf — толщина пола подвала, м.

— удельный вес конструкции пола подвала.

dв — глубина подвала — расстояние от уровня планировки до пола.

Определяется площадь фундамента в первом приближениям по формуле:

По определенной площади фундамента вычисляются размеры фундамента в плане:

где бсоотношение сторон фундамента (б = l/b) или сторон сечения колонны или сооружения. По вычисленным размерам фундамента в плане устанавливается сопротивление грунта основания по формуле (1):

I. 1) При b = 1 м, R = 273,14 кПа

2) A = м2

3) м

4)

II. 1) При b = 4,05 м, R = 352,14 кПа

2) A = м2

3) м

III. 1) При b = 3,46 м, R = 336,85 кПа

2) A = м2

3) м Прекращаем подбор.

Вычисленные размеры фундамента в плане округляют в большую сторону до кратных 0,1 м для гражданских зданий, т. е. принимаем b = 3,6 м, а l = 3,6 м, соответственно A = м2 R = 336,85 кПа.

3. Проверяем контактные напряжения

3.1. ;

3.2. Проверяются контактные напряжения по подошве фундаментов по условию:

кПа

кПа

N, Mx, My — усилия, передаваемые на фундамент от сооружения (по заданию или расчету рамы)

Wx, Wy — момент сопротивления подошвы фундамента

м3

4. Конструирование фундамента

По заданию вид колонны — железобетонная, размерами 0,4×0,4 м.

4.1. Тип фундамента назначают из условия жесткости

мм мм Фундамент принимаем с подколонником.

4.2. Размеры подколонника в плане назначаются конструктивно и принимаются равными:

bпк= bк+0,6=0,4+0,6=1 м

lпк=lк+0,6 = 0,4+0,6 =1 м Для выбранного типа фундаментов определяется высота конструкции фундамента или его плитной части по формуле:

м где

l, b — размеры подошвы фундамента в плане;

— размеры сечения колоны (по заданию).

— расчётное сопротивление бетона на растяжение, кПа;

— среднее давление подошвы фундамента, кПа.

Реальная высота (с учётом защитного слоя) вычисляется по формуле:

Принимаем оптимальную высоту, равную 900 мм (кратную 150 мм)

При данной высоте конструктивно целесообразно установить 3 ступени по — 300 мм.

5. Расчет фундамента на продавливание

Проверяем условие жесткости конструкции фундамента по условию:

— фундамент гибкий.

Продавливание происходит по поверхности усеченной пирамиды, верхним основанием которой является нижнее сечение основание подколонника или колонны, а грани расположены под углом 45

где: Aтр — площадь поверхности грани пирамиды продавливания;

Aпр — площадь продавливания — площадь подошвы фундамента за пределами пирамиды продавливания.

кПа — расчетное сопротивление бетона на растяжение.

м2

м2

где м

кН

кн.

— условие выполняется.

6. Армирование конструкции фундамента (расчёт на изгиб)

При определении усилий в конструкции фундамента (подошвы фундамента) в заданном сечении, за расчетную схему принимается консольная балка с жесткой заделкой в заданном сечении — оставшейся части фундамента, на которую действует нагрузка.

Подбор рабочей арматуры производим по двум сторонам:

Сечение 1−1

кПа кНм

см2

Площадь сечения одного стержня:

см2

Из сортамента выбираем арматуру диаметром 12 мм с As1 = 1,313 см², тогда As = 5×1,313 = 6,565 см² .

Сечение 2−2

кПа

кНм

см2

Площадь сечения одного стержня: см2

Из сортамента выбираем арматуру диаметром 8 мм с As1 = 0,503 см², тогда As = 5×0,503 = 4,024 см²

Сечение 3−3

кПа

кНм

см2

Площадь сечения одного стержня: см2

Из сортамента выбираем арматуру диаметром 6 мм с As1 = 0,283 см², тогда As = 5×0,283 = 1,415 см²

Принимаем сетку из арматуру А-400 диаметром 12 мм. По стороне l и b ее количество составит шт.

7. Расчет осадки методом послойного суммирования

7.1. Среднее давление подошвы фундамента Рср = 336,85 кПа

7.2. Природное давление грунта на уровне подошвы фундамента.

кПа

7.3. Дополнительное вертикальное давление под подошвой фундамента.

кПа

7.4. Разбиваем основание фундамента на элементарные слои м

Вычисляем и строим эпюру естественного давления

7.5. Вычисляем и строим эпюру, где

— коэффициент затухания напряжений. Зависит от соотношения сторон фундамента и относительной глубины, выбирается значение из таблицы СниПа.

7.6. Находим нижнюю границу сжимаемой толщи:

7.7. Считаем суммарную осадку по всем слоям:

Расчёты по данному алгоритму приведены ниже в таблице 8

Таблица 8

эл.

Z,

м

о

б

у zg0, кПа

0.2 у zg0, кПа

у zpi, кПа

у zpiср, кПа

Е, кПа

S,

м

1.000

36,31

7,26

300,54

0,72

0,6

0.972

50,20

10,04

291,52

296,03

0,0061

1,44

1,2

0.848

64,10

12,82

254,86

273,19

0,0056

2,16

1,8

0.682

77,99

15,60

204,97

229,92

0,473

2,88

2,4

0.532

91,89

18,37

159,89

182,43

0,375

3,6

3,0

0.414

105,79

21,16

124,42

142,16

0,292

4,32

3,6

0.325

119,68

23,94

97,67

111,05

0,228

5,04

4,2

0.260

133,58

26,72

78,14

87,91

0,0018

5,76

4,8

0.210

147,48

29,50

63,11

70,63

0,145

6,84

5,4

0.173

161,37

32,27

51,99

57,55

0,118

7,2

6,0

0.145

172,17

34,43

43,58

47,79

0,289

7,92

6,6

0.123

182,97

36,60

36,96

40,27

0,244

8,64

7,2

0.105

193,77

38,75

31,55

34,26

0,0020

У= 0,0371

Проверяем выполнение условия S < Su. В нашем случае 3,70 см < 8 см, где Su =8см — предельное значение осадки. Условие выполнилось.

Эпюра распределения напряжений zp, zg

Показать весь текст
Заполнить форму текущей работой