Достижения в математике
С годами у Гаусса исчезает нерасположенность к педагогической деятельности, к чтению лекций. К этому времени его окружают ученики и друзья. 16 июля 1849 года в Гёттингене праздновали пятидесятилетний юбилей получения Гауссом докторской степени. Собрались многочисленные ученики и почитатели, коллеги и друзья. Ему вручили дипломы почетного гражданина Гёттингена и Брауншвейга, ордена различных… Читать ещё >
Достижения в математике (реферат, курсовая, диплом, контрольная)
В разностороннем творчестве Гаусса органично сочетались исследования по теоретической и прикладной математике. Работы Гаусса оказали большое влияние на все дальнейшее развитие высшей алгебры, теории чисел, дифференциальной геометрии, теории притяжения, классической теории электричества и магнетизма, геодезии, многих отраслей теоретической астрономии. В «Арифметических исследованиях» содержатся вопросы теории чисел и высшей алгебры, обстоятельная теория квадратичных вычетов, дано первое доказательство квадратичного закона взаимности — одной из центральных теорем теории чисел, подробно излагаются теория квадратичных форм, до того построенная Ж. Лагранжем, и замечательная теория уравнений деления круга, которая во многом была прообразом теории Галуа. Гаусс дал построение правильного 17-угольника с помощью циркуля и линейки. Эти работы были выполнены в 1796 г., когда Гауссу было около 19 лет. Тогда же Гаусс, благодаря постоянным упражнениям, достигает изумительной виртуозности в технике вычислений, составляет большие таблицы простых чисел, квадратичных вычетов и невычетов, выражает все дроби вида 1/p для р от 1 до 1000 десятичными дробями, доведя эти вычисления до полного периода, что в иных случаях требовало несколько сотен десятичных знаков.
В алгебре Гаусс занимался преимущественно основной теоремой, которой он неоднократно возвращался и дал не менее шести различных доказательств. Все они опубликованы в работах, относящихся к 1803−1817; в этих работах даются также указания относительно кубических и биквадратичных вычетов. Теоремы о биквадратичных вычетах содержатся в работах 1825−1831; эти работы чрезвычайно расширяют область теории чисел, благодаря введению целых гауссовых чисел, т. е. чисел вида a+bi, где, а и b-целые числа.
В связи с астрономическими вычислениями, основанными на разложении интегралов соответствующих дифференциальных уравнений в бесконечные ряды, Гаусс занялся исследованием вопроса о сходимости бесконечных рядов, которые он связал с изучением гипергеометрического ряда («О гипергеометрическом ряде», 1812). Эти исследования вместе с основанными на них работами О. Коши и Н. Абеля привели к прогрессу в общей теории рядов. Астрономические труды Гаусса (1800−20) также значительны. Он вычислил орбиту малой планеты Цереры, занимался теорией возмущений, написал книге «Теория движения небесных тел» (1809), в которой содержатся положения, до сих пор лежащие в основе вычисления планетных орбит. При составлении детальной карты Ганноверского королевства (прибл. 1820−30) Гаусс фактически создал высшую геодезию, основы которой он изложил в сочинении «Исследования о предметах высшей геодезии» (1842−47). Геодезические съемки требовали усовершенствования оптической сигнализации. С этой целью Гаусс изобрел специальный прибор-гелиотроп. В 1821—1823 Гаусс опубликовал метод наименьших квадратов. Изучение формы земной поверхности потребовало общего геометрического метода для исследования поверхностей. Выдвинутые Гауссом в этой области идеи изложены в сочинении «Общие исследования о кривых поверхностях» (1828). Теория поверхностей Гаусса содержит новую теорему о том, что гауссова кривизна (произведение кривизны главных нормальных сечений) не изменяется при изгибаниях поверхности, т. е. характеризует внутреннее ее свойство (созданная внутренняя геометрия поверхностей послужила образцом для создания n-мерной римановой геометрии). В этой же работе Гаусс ввел криволинейные координаты произвольного вида, доказал формулу Гаусса — Бонне для геодезического многоугольника, определил полную кривизну в точке поверхности. Гаусс измерял углы треугольника, образованного тремя горными вершинами, чтобы выяснить, будет ли сумма углов указанного треугольника равна двум прямым.
Исследования Гаусса в теоретической физике (1830−1840) явились результатом тесного общения и совместной научной работы с В. Вебером. Вместе с В. Вебером Гаусс создал абсолютную систему электромагнитных единиц (1832) и построил (1833) первый в Германии электромагнитный телеграф. Гаусс создал общую теорию магнетизма, заложил основы теории потенциала. Трудно назвать такую отрасль теоретической и прикладной математики, в которую Гаусс не внес бы существенного вклада. Многие исследования Гаусса не были опубликованы (очерки, незаконченные работы, переписка с друзьями). Очевидно, Гаусс пришел к мысли о возможности неевклидовой геометрии в 1818 г. Опасение, что эти идеи не будут поняты и, по-видимому, недостаточное сознание их научной важности были причиной того, что Гаусс их не разрабатывал далее и не публиковал.
С годами у Гаусса исчезает нерасположенность к педагогической деятельности, к чтению лекций. К этому времени его окружают ученики и друзья. 16 июля 1849 года в Гёттингене праздновали пятидесятилетний юбилей получения Гауссом докторской степени. Собрались многочисленные ученики и почитатели, коллеги и друзья. Ему вручили дипломы почетного гражданина Гёттингена и Брауншвейга, ордена различных государств. Состоялся торжественный обед, на котором он сказал, что в Гёттингене существуют все условия для развития таланта, здесь помогают и в житейских трудностях, и в науке, и еще, что «…банальные фразы никогда не имели силы в Гёттингене». Карл Гаусс постарел. Теперь он работает менее интенсивно, но круг его занятий по-прежнему широк: сходимость рядов, практическая астрономия, физика.
Зима 1852 года была для него очень тяжелой, резко ухудшается его здоровье. Он никогда не обращался к врачам, так как не доверял медицинской науке. Его друг, профессор Баум, осмотрел ученого и сказал, что положение очень тяжелое и это связано с сердечной недостаточностью. Здоровье великого математика неуклонно ухудшается, он перестает ходить и 23 февраля 1855 года умирает.
Современники Карла Гаусса чувствовали превосходство гения. На медали, отчеканенной в 1855 году, выгравировано: Mathematicorum princeps (Принцепс математиков). В астрономии память о нем осталась в названии одной из фундаментальных постоянных, система единиц, теорема, принцип, формулы — все это носит имя Карла Гаусса.