Причины ухудшающие качество тротуарной плитки
Часто от производителей бетона можно услышать, что скорость вращения активатора имеет определяющее значение в интенсивности поризации бетона. Мнение в корне не верное, хотя некоторые производители бетоносмесительного оборудования, не понимая сути процесса поризации, увеличивают скорость вращения активатора турбулентных смесителей. На рынке смесительного оборудования можно встретить забавных… Читать ещё >
Причины ухудшающие качество тротуарной плитки (реферат, курсовая, диплом, контрольная)
Попробуем разобраться с причинами получения некачественной продукции. Качество тротуарной плитки напрямую зависит от качества бетона.
Прочность бетона плитки определяется прочностью межпоровых стенок. Соотношение пустот (пор) и цементных (цементнопесчанных) стенок определяет плотность и прочность готового материала.
Чем больше количество пустот и соответственно тоньше межпоровые стенки, тем меньше плотность и соответственно прочность материала. И наоборот, чем меньше пустот, тем более прочный получается материал.
Перечисленные типы пустот и оказывают основное влияние на физико-технические свойства получаемого бетона.
Цемент, песок, вода при постоянном, интенсивном перемешивании из состояния жидкого раствора, постепенно густеет, подвижность раствора уменьшается, а пластичность увеличивается. Если используется смеситель турбулентного типа, на поверхности приготавливаемого раствора наблюдается устойчивая воронка, вызванная быстро вращающимся активатором. При повышении пластичности приготавливаемого бетонного раствора иногда наблюдается обрыв воронки, которая впрочем, появляется снова, в противном случае перемешивание прекращается, так как активатор смесителя турбулентного типа не способен перемещать малоподвижный раствор. Бетон, полученный таким образом ни в коей мере нельзя назвать качественным материалом. При огромном перерасходе цемента ни показатели прочности, ни морозостойкости не будут соответствовать требованиям ГОСТа! Несущие стенки «полезных» пустот будут пронизаны ослабляющими «вредными, первого вида» порами, образовавшимися вследствие повышенного содержания воды в растворе (В/Ц более 0.5).
Так что же происходит с цементнопесчанным раствором, приготавливаемым в турбулентном смесителе после добавления пенообразователя?
Вращающийся активатор перемешивает приготавливаемую массу, способствуя активному вовлечению воздуха в раствор, пенообразователь запирает «пойманный» воздух в оболочку. Образовавшиеся воздушные пузырьки более-менее равномерно распределяются по всей массе приготавливаемого раствора поризуя его. Вот именно на этом этапе производители пенобетона и допускают главную ошибку! Как говорилось выше, объем вовлеченного воздуха во многом зависит от количества свободной воды в растворе, если свободной воды не достаточно смесь не поризуется. Однако при увеличении количества воды, хотя поризация смеси и протекает более активно, образуется большое количество капиллярных пор «вредные, первого вида». Так, где же выход из этой ситуации? Выход в оптимальном подборе водоцементного отношения, с обязательной поправкой на водопотребность используемого песка и цемента. При увеличении доли цемента в смеси, следует увеличить водотвердое (В/Т) отношение, если используется песок увеличенного модуля крупности водотвердое (В/Т) отношение следует уменьшить.
Часто от производителей бетона можно услышать, что скорость вращения активатора имеет определяющее значение в интенсивности поризации бетона. Мнение в корне не верное, хотя некоторые производители бетоносмесительного оборудования, не понимая сути процесса поризации, увеличивают скорость вращения активатора турбулентных смесителей. На рынке смесительного оборудования можно встретить забавных бетоносмесительных монстров, имеющих 1000−1500 об/мин на валу активатора. Такие «чудо"-агрегаты при демонстрационных запусках производят неизгладимое впечатление на будущих производителей пенобетона. Приготавливаемая масса быстро растет в объеме, на поверхности раствора наблюдается могучая воронка, заглядывая в верхнюю часть которой можно ясно увидеть вращающийся активатор. Причем создается впечатление, что активатор вращается в свободном от раствора пространстве. Так оно и есть, при таких скоростях совершенно не важно, какая форма лопастей активатора. Активатор просто отбрасывает от себя раствор, поэтому, несмотря на хороший визуальный эффект, практическая производительность таких активаторов смехотворно мала! К тому же для работы им необходимы подвижные растворы, а хаотичные завихрения создаваемые таким «буйным» перемешиванием создают огромное количество капиллярных пор (вредные, первого вида). Бетоном данный материал никак нельзя назвать. При повышенном расходе цемента прочностные характеристики такого материала, не выдерживает ни какой критики. Если скорость вращения активатора, как и его конструкция подобранны не правильно, в бетонном растворе наблюдаются не только капиллярные поры (вредные, первого вида), но и появляется большое количество «вредных пор, второго вида». Вредные поры второго вида, это бывшие «полезные» поры, разрушенные в результате варварского перемешивания. На практике производство бетона часто сопровождается странным эффектом: при правильно подобранном В/Ц отношении активная поризация смеси протекает лишь первые 30−60 секунд, затем наблюдается постепенное прекращение увеличения объема смеси и, наконец, уменьшение достигнутого объема. Это связанно с тем, что при увеличении времени перемешивания в силу механического воздействия на смесь активатора и турбулентных возмущений, происходит разрушение «полезных» пор и их деление на множество более мелких пор «вредные, второго вида». Зачастую размер этих раздробленных пор сопоставим с размерами цементного зерна. И если крупные «полезные» пузырьки принимают на свою поверхность зерна цемента и песка, затем сцепляются с такой же подготовленной поверхностью соседнего пузырька, образуя тем самым прочный каркас из межпоровых стенок, то мелкие, раздробленные пузырьки не могут этого сделать. В силу сопоставимости размеров пузырька и цементного зерна, образованные пустоты имеют не сферическую форму с хорошо развитыми межпоровыми стенками, а вид хитропереплетенных пустот разного объема и протяженности. Естественно, что бетон поризованный таким образом, хотя и будет иметь низкую плотность, однако по показателям прочности будет значительно уступать «правильно» поризованному бетону, причем не зависимо от расхода цемента.
Также еще одной причиной ухудшения качества бетона является процесс его производства. Производство эффективного по теплофизическим характеристикам неавтоклавного бетона является проблемным из-за сложности обеспечения стабильности тонкодисперсной ячеистой структуры и высокой прочности, зависящих от целого комплекса рецептурных, структурных и технологических факторов. Это сдерживает применение неавтоклавного пенобетона для производства крупногабаритных изделий и в монолитном строительстве.
Одним из негативных факторов в технологии неавтоклавного бетона является замедленное схватывание, низкая скорость твердения смеси и прочность на ранних этапах твердения.
Стремление увеличить прочность неавтоклавного бетона за счет повышенного расхода портландцемента приводит, как правило, к обратному эффекту. Образуется большое количество эттрингита на единицу объема бетона, что на поздних стадиях твердения приводит к его растрескиванию и снижению прочности.
Существующие технологии производства бетона базируются, как правило, на циклических процессах приготовления строительных растворов и их последующей поризации также в циклическом режиме. Данный подход не позволяет достигнуть как необходимой в производственных условиях производительности, так и высокого качества и стабильных характеристик бетона.