Разработка автоматизированной технологии защиты системы доступа к банковской компьютерной сети
Получение доступа к паролям благодаря недокументированным возможностям систем встречается в настоящее время крайне редко. Ранее эта методика использовалась разработчиками намного чаще в основном в целях отладки, либо для экстренного восстановления работоспособности системы. Но постепенно с развитием, как технологий обратной компиляции, так и информационной связанности мира она постепенно стала… Читать ещё >
Разработка автоматизированной технологии защиты системы доступа к банковской компьютерной сети (реферат, курсовая, диплом, контрольная)
Реферат
Пояснювальна записка дипломної роботи в об'ємі ____ сторінок, містить ____ рисунків та _____ літературних джерел.
Об'єктом розробки даної дипломної роботи є банківська комп’ютерна мережа.
Метою роботи є розробка автоматизованої технології захисту системи доступу до банківської комп’ютерної мережі.
У поданій дипломні роботі розглянуто різноманітні схеми підключення брандмауерів, що відрізняються як економічними показниками, так і ступенем захисту банківської комп’ютерної мережі.
Наведено, що найбільш оптимальною, с точки зору безпеки та надійності захисту, є схема підключення через зовнішній маршрутизатор. Крім цього, обґрунтовано, що важливим компонентом брандмауера є система збору статистики та попереджень про атаку.
Розроблено алгоритм роботи та програму контролю доступу користувачів до банківської мережі, яку виконано на мові програмування Perl. Також розроблено платформо-незалежний WEB-інтерфейс.
адміністрування, банківська система, локальна КОМП’ЮТЕРНА мережа, точка доступу, брандмауер, проксі-сервер, маршрутизатор, WEB-технології, алгоритм захисту, протокол обробки.
Abstract
The explanatory slip to degree work in volume ____ of sheets, contains ____ of figures and ____ of the references.
Plant of development of the given degree work is the bank computer network.
The purpose of degree work is the development of an automated process engineering of a guard of a system of access to a bank computer network.
In the given degree work the various schemes of connection Brynmawr’s are considered which differ both economic indexes, and degree of a guard a bank computer network.
Is shown, that most preferable, from a point of view of safety and reliability of a guard, is the scheme of connection through exterior router. Besides is shown, that the important component Brynmawr is the system of gathering of a statistician and warning about attack.
The algorithm of work and control program of access of the users to a bank web is developed which is carried out on the programming language Perl. The interface also was developed platform-independent WEB.
Administration, bank system, local COMPUTER network, point to access, BRYNMAWR, proxy-server, router, WEB-process engineering, algorithm of a guard, protocol of handling.
- Перечень условных обозначений, символов, единиц, сокращений и терминов
- Введение
- 1. Анализ исходной информации и требований технического задания
- 1.1 Основные виды и источники атак на информацию
- 1.2 Обзор наиболее распространенных методов «взлома»
- 1.3 Получение пароля на основе ошибок в реализации
- 1.3 Атакуемые сетевые компоненты
- 1.4 Рабочие станции
- 1.5 Среда передачи информации
- 1.6 Узлы коммутации сетей
- 1.7 Уровни сетевых атак согласно модели OSI
- 1.8 Предварительные выводы
- 2. Разработка технологии защиты банковской компьютерной сети
- 2.1 Архитектуры брандмауэра
- 2.2 Сервера уровня соединения
- 2.3 Сравнительные характеристики
- 2.4 Виртуальные сети
- 2.5 Схемы подключения
- 2.6 Предварительные выводы
- 3. Разработка алгоритма программы контроля доступа пользователей к банковской сети
- 3.1 Описание алгоритма работы программы
- 3.2 Предварительные выводы
- 4. Разработка программы контроля доступа пользователей к банковской сети
- 4.1 Описание работы программы
- 4.2 Предварительные выводы
- Выводы
- Перечень ссылок
- Приложения
Перечень условных обозначений, символов, единиц, сокращений и терминов
БС — банковская система
ОС — операционная система
ПО — программное обеспечение
ЭВМ — электронная вычислительная машина
ASCDII — American Standard Code for Information Interchange
DNS — Domain Name System
FTP — File Transfer Protocol
IP — Internet Protocol
IPS — Internet Protocol Suite
LAN — Local Area Networks
OSI — Open Systems Interconnection
RPC — Remote Procedure Call
SYN — Synchronization
TCP — Transmission Control Protocol
UDP — User Datagram Protocol
VPN — Virtual Private Network
Еще несколько лет назад сеть Internet использовалась в основном только для обмена почтовыми сообщениями и пересылки файлов. Однако в последнее время современные технологии превратили Internet в развитую инфраструктуру, которая охватывает все основные информационные центры, мировые библиотеки, базы данных научной и правовой информации, многие государственные и коммерческие организации, биржи и банки. Сегодня Internet может рассматриваться как огромный рынок, способный охватить в потенциале практически все население Земли. Именно поэтому производители программных и аппаратных решений, торговые и финансовые организации активно развивают различные виды и методы ведения коммерческой деятельности в Internet — электронной коммерции.
Последнее время сообщения об атаках на информацию, о хакерах и компьютерных взломах наполнили все средства массовой информации.
Сегодня неотъемлемым элементом деятельности многих банков становится осуществление электронных транзакций по Internet и другим публичным сетям. Прогнозируемое превращение, в недалеком будущем, Internet в новую публичную сеть (New Public Network), предоставляющую массовому пользователю все виды информационных услуг и переносящую все виды трафика в глобальном масштабе, должно превратить эту тенденцию в норму жизни. Электронная коммерция, продажа информации, оказание консультационных услуг в режиме on-line и многие другие услуги становятся для предприятий в новых условиях основными видами деятельности, поэтому разрушение информационного ресурса, его временная недоступность или несанкционированное использование могут нанести банку значительный материальный ущерб. В связи с этим информационные ресурсы и средства осуществления электронных сетевых транзакций (серверы, маршрутизаторы, серверы удаленного доступа, каналы связи, операционные системы, базы данных и приложения) нужно защищать особенно надежно и качественно — цена каждой бреши в средствах защиты быстро растет и этот рост будет в ближайшем будущем продолжаться.
Поддержание массовых и разнообразных связей банка через Internet с одновременным обеспечением безопасности этих коммуникаций является сегодня основным фактором, влияющим на развитие средств защиты предприятия.
Трансформация Internet в глобальную публичную сеть означает для средств безопасности банка не только резкое увеличение количества внешних пользователей и разнообразие типов коммуникационных связей, но и сосуществование с новыми сетевыми и информационными технологиями. Для создания прочной основы массовой глобальной сети IP-технологии быстро приобретают такие новые свойства как поддержка дифференцированного по пользователям и приложениям качества обслуживания (QoS), управление сетью на основе централизованной политики, групповое вещание и т. д., и т. п. Постоянно появляются и новые информационные сервисы, например, сервис передачи голоса — VoIP, сервис поиска и доставки новостей PointCast и другие. Средства безопасности должны учитывать эти изменения, так как каждая новая технология и новый сервис могут потребовать своих адекватных средств защиты, а также оказать влияние на уже применяемые. Например, дифференцированное обслуживание трафика на основе признаков, находящихся в заголовке и поле данных IP-пакета, может быть затруднено работой средств инкапсуляции и шифрации IP-пакетов, применяемых в защищенных каналах VPN и закрывающих доступ к нужным признакам. На средства защиты может оказать значительное влияние и появление новых отдельных продуктов, особенно в том случае, когда ожидается массовое применение такого продукта (свежий пример этого рода — выход в свет Windows Vista).
Перспективные средства защиты данных банка должны учитывать появление новых технологий и сервисов, а также удовлетворять общим требованиям, предъявляемым сегодня к любым элементам корпоративной сети:
1. Основываться на открытых стандартах. Средства защиты особенно тяготеют к фирменным решениям, т. к отсутствие информации о способе защиты безусловно повышает эффективность защиты. Однако без следования открытым стандартам невозможно построить систему защиты коммуникаций с банками-партнерами и массовыми клиентами, которых поставляет сегодня Intеrnet. Принятие таких стандартов как IPSec и IKE представляет значительный шаг в направлении открытости стандартов и эта тенденция должна поддерживаться.
2. Обеспечивать интегрированные решения. Интеграция требуется в разных аспектах:
интеграция различных технологий безопасности между собой для обеспечения комплексной защиты информационных ресурсов банка — например, интеграция межсетевого экрана с VPN-шлюзом и транслятором IP-адресов.
интеграция средств защиты с остальными элементами сети — операционными системами, маршрутизаторами, службами каталогов, серверами QoS-политики и т. п.
3. Допускать масштабирование в широких пределах, то есть обеспечивать эффективную работу при наличии у банка многочисленных филиалов, десятков банков-партнеров, сотен удаленных сотрудников и миллионы потенциальных клиентов.
В таких случаях используются Proxy-сервера. Конечно, защита не является самым большим достоинством прокси-серверов, но в случае коммутируемого соединения она достаточна.
Целью данной дипломной работы является разработка автоматизированной технологии защиты системы доступа к банковской компьютерной сети.
Для достижения поставленной цели необходимо выполнить ряд взаимосвязанных задач:
определение возможных направлений атак на локальную сеть банка со стороны Интернет;
разработка технологии защиты банковской;
разработка алгоритма контроля доступа пользователей к банковской сети;
разработка программного средства для контроля доступа пользователей к банковской сети.
В первой главе дипломной работы производится обзор основных видов и источников атак на информацию локальной компьютерной сети банка. Также произведен обзор наиболее распространенных методов «взлома» .
Рассмотрены возможные цели злоумышленников, которые можно классифицировать как:
получение доступа к информации,
получение несанкционированного доступа к услугам,
попытка вывода из рабочего режима определенного класса услуг,
попытка изменения информации или услуг, как вспомогательный этап какой-либо более крупной атаки.
Произведена постановка задачи исследования.
Во втором разделе дипломной работы разработана технология защиты банковской компьютерной сети от атак на информацию локальной сети со стороны Интернет.
Рассмотрены различные схема подключения брандмауэров, которые отличаются как экономическим показателями, так и степенью защиты банковской сети.
Показано, что наиболее предпочтительной с точки зрения безопасности и надежности защиты, является схема, изображенная на рис. 2.3
Кроме того показано, что важным компонентом брандмауэра является система сбора статистики и предупреждения об атаке.
В третьем разделе дипломной работы был разработан алгоритм работы программы контроля доступа пользователей к банковской сети через internet.
Разработанный алгоритм предусматривает два режима работы:
режим контроля за работой пользователя в сети;
режим администрирования.
В четвертом разделе дипломной работы была разработана программа контроля доступа пользователей к банковской сети. В качестве языка программирования был выбран язык Perl, что позволило гибко управлять работой прокси-сервера. Для достижения поставленной задачи — возможности удаленного управления сервером, был разработан платформо-независимый WEB интерфейс. Таким образом, разработанное программное средство выполняет следующие функции:
удаленное администрирование прокси-сервера при помощи WEB-интерфейса;
просмотр списка пользователей;
добавление/удаление пользователей;
выбор пользователя для изменения его свойств;
определение размера получаемой информации для каждого пользователя в отдельности;
предоставление расширенного отчета о работе пользователя за определенный период.
1. Анализ исходной информации и требований технического задания
1.1 Основные виды и источники атак на информацию
Последнее время сообщения об атаках на информацию, о хакерах и компьютерных взломах наполнили все средства массовой информации.
Каковы возможные последствия атак на информацию? В первую очередь, конечно, нас будут интересовать экономические потери:
1. Раскрытие коммерческой информации может привести к серьезным прямым убыткам банка
2. Известие о краже большого объема информации обычно серьезно влияет на репутацию банка, приводя, косвенно, к потерям в объемах торговых операций
3. Банки-конкуренты могут воспользоваться кражей информации, если та осталась незамеченной, для того чтобы полностью разорить банк, навязывая ему фиктивные либо заведомо убыточные сделки
4. Подмена информации, как на этапе передачи, так и на этапе хранения в банке может привести к огромным убыткам
5. Многократные успешные атаки на банк, предоставляющий какой-либо вид информационных услуг, снижают доверие к банку у клиентов, что сказывается на объеме доходов
Естественно, компьютерные атаки могут принести и огромный моральный ущерб.
Категории информационной безопасности.
Информация с точки зрения информационной безопасности обладает следующими категориями:
конфиденциальность — гарантия того, что конкретная информация доступна только тому кругу лиц, для кого она предназначена; нарушение этой категории называется хищением либо раскрытием информации
целостность — гарантия того, что информация сейчас существует в ее исходном виде, то есть при ее хранении или передаче не было произведено несанкционированных изменений; нарушение этой категории называется фальсификацией сообщения
аутентичность — гарантия того, что источником информации является именно то лицо, которое заявлено как ее автор; нарушение этой категории также называется фальсификацией, но уже автора сообщения
апеллируемость — довольно сложная категория, но часто применяемая в электронной коммерции — гарантия того, что при необходимости можно будет доказать, что автором сообщения является именно заявленный человек, и не может являться никто другой; отличие этой категории от предыдущей в том, что при подмене автора, кто-то другой пытается заявить, что он автор сообщения, а при нарушении апеллируемости — сам автор пытается «откреститься» от своих слов, подписанных им однажды.
В отношении информационных систем применяются иные категории:
надежность — гарантия того, что система ведет себя в нормальном и внештатном режимах так, как запланировано
точность — гарантия точного и полного выполнения всех команд
контроль доступа — гарантия того, что различные группы лиц имеют различный доступ к информационным объектам, и эти ограничения доступа постоянно выполняются
контролируемость — гарантия того, что в любой момент может быть произведена полноценная проверка любого компонента программного комплекса
контроль идентификации — гарантия того, что клиент, подключенный в данный момент к системе, является именно тем, за кого себя выдает
устойчивость к умышленным сбоям — гарантия того, что при умышленном внесении ошибок в пределах заранее оговоренных норм система будет вести себя так, как оговорено заранее.
1.2 Обзор наиболее распространенных методов «взлома»
Комплексный поиск возможных методов доступа.
Обратимся к наиболее популярным и очевидным технологиям несанкционированного доступа. Например, как бы ни была прочна система, если пароль на доступ к ней лежит в текстовом файле в центральном каталоге или записан на экране монитора — это уже не конфиденциальная система. А примеров, в которых разработчики системы защиты забывают или просто не учитывают какие-либо примитивнейшие методы проникновения в систему, можно найти сотни.
Например, при работе в сети Internet не существует надежного автоматического подтверждения того, что данный пакет пришел именно от того отправителя (IP-адреса), который заявлен в пакете. А это позволяет даже при применении самого надежного метода идентификации первого пакета подменять все остальные, просто заявляя, что все они пришли тоже с этого же самого IP-адреса.
Примерно та же проблема существует в сети Novell NetWare 3.11 — в ней сервер может поддерживать одновременно до 254 станций, и при этом при наличии мощной системы идентификации аутентификация пакета ведется только по номеру станции. Это позволяло проводить следующую атаку — в присутствии в сети клиента-супервизора злоумышленнику достаточно послать 254 пакета с командой серверу, которую он хочет исполнить, перебрав в качестве псевдо-отправителя все 254 станции. Один из отправленных пакетов совпадет с номером соединения, на котором сейчас действительно находится клиент-супервизор, и команда будет принята сервером к исполнению, а остальные 253 пакета просто проигнорированы.
А в отношении шифрования — мощного средства защиты передаваемой информации от прослушивания и изменения — можно привести следующий метод, неоднократно использованный на практике. Действительно злоумышленник, не зная пароля, которым зашифрованы данные или команды, передаваемые по сети, не может прочесть их или изменить. Но если у него есть возможность наблюдать, что происходит в системе после получения конкретного блока данных (например, стирается определенный файл или выключается какое-либо аппаратное устройство), то он может, не раскодируя информацию, послать ее повторно и добьется результатов, аналогичных команде супервизора.
Все это заставляет разработчиков защищенных систем постоянно помнить и о самых простых и очевидных способах проникновения в систему и предупреждать их в комплексе.
Получение пароля на основе ошибок администратора и пользователей
Перебор паролей по словарю являлся некоторое время одной из самых распространенных техник подбора паролей. В настоящее время, как хоть самый малый результат пропаганды информационной безопасности, он стал сдавать свои позиции. Хотя развитие быстродействия вычислительной техники и все более сложные алгоритмы составления слов-паролей не дают «погибнуть» этому методу. Технология перебора паролей родилась в то время, когда самым сложным паролем было скажем слово «brilliant», а в русифицированных ЭВМ оно же, но для «хитрости» набранное в латинском режиме, но глядя на русские буквы (эта тактика к сожалению до сих пор чрезвычайно распространена, хотя и увеличивает информационную насыщенность пароля всего на 1 бит). В то время простенькая программа со словарем в 5000 существительных давала положительный результат в 60% случаев. Огромное число инцидентов со взломами систем заставило пользователей добавлять к словам 1−2 цифры с конца, записывать первую и/или последнюю букву в верхнем регистре, но это увеличило время на перебор вариантов с учетом роста быстродействия ЭВМ всего в несколько раз. Так в 1998 году было официально заявлено, что даже составление двух совершенно не связанных осмысленных слов подряд, не дает сколь либо реальной надежности паролю. К этому же времени получили широкое распространение языки составления паролей, записывающие в абстрактной форме основные принципы составления паролей среднестатистическими пользователями ЭВМ.
Следующей модификацией подбора паролей является проверка паролей, устанавливаемых в системах по умолчанию. В некоторых случаях администратор программного обеспечения, проинсталлировав или получив новый продукт от разработчика, не удосуживается проверить, из чего состоит система безопасности. Как следствие, пароль, установленный в фирме разработчике по умолчанию, остается основным паролем в системе. В сети Интернет можно найти огромные списки паролей по умолчанию практически ко всем версиям программного обеспечения, если они устанавливаются на нем производителем.
Основные требования к информационной безопасности, основанные на анализе данного метода, следующие:
1. Вход всех пользователей в систему должен подтверждаться вводом уникального для клиента пароля.
2. Пароль должен тщательно подбираться так, чтобы его информационная емкость соответствовала времени полного перебора пароля. (Данная задача будет рассмотрена на практическом занятии). Для этого необходимо детально инструктировать клиентов о понятии «простой к подбору пароль», либо передать операцию выбора пароля в ведение инженера по безопасности.
3. Пароли по умолчанию должны быть сменены до официального запуска системы и даже до сколь либо публичных испытаний программного комплекса. Особенно это относится к сетевому программному обеспечению.
4. Все ошибочные попытки войти в систему должны учитываться, записываться в файл журнала событий и анализироваться через «разумный» промежуток времени. Если в системе предусмотрена возможность блокирования клиента либо всей системы после определенного количества неудачных попыток входа, этой возможностью необходимо воспользоваться. Если же Вы являетесь разработчиком системы безопасности, данную возможность несомненно необходимо предусмотреть, так как она является основным барьером к подбору паролей полным перебором. Разумно блокировать клиента после 3-ей подряд неправильной попытки набора пароля, и, соответственно, блокировать систему после K=max (int (N*0.1*3) +1,3) неудачных попыток входа за некоторый период (час, смену, сутки). В данной формуле N — среднее количество подключающихся за этот период к системе клиентов, 0.1 — 10% -ный предел «забывчивости пароля», 3 — те же самые три попытки на вспоминание пароля. Естественно, информация о блокировании клиента или системы должна автоматически поступать на пульт контроля за системой.
5. В момент отправки пакета подтверждения или отвержения пароля в системе должна быть установлена разумная задержка (2−5 секунд). Это не позволит злоумышленнику, попав на линию с хорошей связью до объекта атаки перебирать по сотне тысяч паролей за секунду.
6. Все действительные в системе пароли желательно проверять современными программами подбора паролей, либо оценивать лично администратору системы.
7. Через определенные промежутки времени необходима принудительная смена пароля у клиентов. Наиболее часто используемыми интервалами смены пароля являются год, месяц и неделя (в зависимости от уровня конфиденциальности информации и частоты входа в систему).
8. Все неиспользуемые в течение долгого времени имена регистрации должны переводиться в закрытое (недоступное для регистрации) состояние. Это относится к сотрудникам, находящимся в отпуске, на больничном, в командировке, а также к именам регистрации, созданным для тестов, испытаний системы и т. п.
9. От сотрудников и всех операторов терминала необходимо требовать строгое неразглашение паролей, отсутствие каких-либо взаимосвязей пароля с широкоизвестными фактами и данными, и отсутствие бумажных записей пароля «из-за плохой памяти» .
1.3 Получение пароля на основе ошибок в реализации
Следующей по частоте использования является методика получения паролей из самой системы. Однако здесь уже нет возможности дать какие-либо общие рекомендации, поскольку все методы атаки зависят только от программной и аппаратной реализации конкретной системы. Основными двумя возможностями выяснения пароля являются несанкционированный доступ к носителю, содержащему их, либо использование недокументированных возможностей и ошибок в реализации системы.
Первая группа методов основана на том, что любой системе приходится где-либо хранить подлинники паролей всех клиентов для того, чтобы сверять их в момент регистрации. При этом пароли могут храниться как в открытом текстовом виде, как это имеет место во многих клонах UNIX, так и представленные в виде малозначащих контрольных сумм (хеш-значений), как это реализовано в ОС Windows, Novell NetWare и многих других. Проблема в том, что в данном случае для хранения паролей на носителе не может быть использована основная методика защиты — шифрование. Действительно, если все пароли зашифрованы каким-либо ключом, то этот ключ тоже должен храниться в самой системе для того, чтобы она работала автоматически, не спрашивая каждый раз у администратора разрешение «Пускать или не пускать пользователя Anton, Larisa, Victor и т. д.?». Поэтому, получив доступ к подобной информации, злоумышленник может либо восстановить пароль в читабельном виде (что бывает довольно редко), либо отправлять запросы, подтвержденные данным хеш-значением, не раскодируя его. Все рекомендации по предотвращению хищений паролей состоят в проверке не доступен ли файл с паролями, либо таблица в базе данных, хранящая эти пароли, кому-либо еще кроме администраторов системы, не создается ли системой резервных файлов, в местах доступных другим пользователям и т. п. В принципе, поскольку кража паролей является самым грубым вторжением в систему, разработчики уделяют ей довольно пристальное внимание, и соблюдения всех рекомендаций по использованию системы обычно достаточно для предотвращения подобных ситуаций.
Получение доступа к паролям благодаря недокументированным возможностям систем встречается в настоящее время крайне редко. Ранее эта методика использовалась разработчиками намного чаще в основном в целях отладки, либо для экстренного восстановления работоспособности системы. Но постепенно с развитием, как технологий обратной компиляции, так и информационной связанности мира она постепенно стала исчезать. Любые недокументированные возможности рано или поздно становятся известными, после чего новость об этом с головокружительной быстротой облетает мир и разработчикам приходится рассылать всем пользователям скомпрометированной системы «программные заплатки» либо новые версии программного продукта. Единственной мерой профилактики данного метода является постоянный поиск на серверах, посвященных компьютерной безопасности, объявлений обо всех неприятностях с программным обеспечением, установленным в Вашем учреждении. Для разработчиков же необходимо помнить, что любая подобная встроенная возможность может на порядок снизить общую безопасность системы, как бы хорошо она не была завуалирована в коде программного продукта.
Следующей распространенной технологией получения паролей является копирование буфера клавиатуры в момент набора пароля на терминале. Этот метод используется редко, так для него необходим доступ к терминальной машине с возможностью запуска программ. Но если злоумышленник все-таки получает подобный доступ, действенность данного метода очень высока:
1. Работа программы-перехватчика паролей (так называемого «троянского коня») на рабочей станции незаметна.
2. Подобная программа сама может отправлять результаты работы на заранее заданные сервера или анонимным пользователям, что резко упрощает саму процедуру получения паролей хакером, и затрудняет поиск и доказательство его вины. У нас в России, например, широкое распространение получила подобная троянская программа, подписывающаяся к самораспаковывающимся архивам.
Двумя основными методами борьбы с копированием паролей являются:
адекватная защита рабочих станций от запуска сторонних программ:
а) отключение сменных носителей информации (гибких дисков),
б) специальные драйверы, блокирующие запуск исполнимых файлов без ведома оператора, либо администратора,
в) мониторы, уведомляющие о любых изменениях системных настроек и списка автоматически запускаемых программ,
очень мощная, но неудобная мера — система единовременных паролей (при каждой регистрации в системе клиентам с очень высоким уровнем ответственности самой системой генерируется новый пароль).
Сканирование современными антивирусными программами также может помочь в обнаружении «троянских» программ, но только тех из них, которые получили широкое распространение по стране. А следовательно, программы, написанные злоумышленниками специально для атаки на Вашу систему, будут пропущены антивирусными программами без каких-либо сигналов.
Следующий метод получения паролей относится только к сетевому программному обеспечению. Проблема заключается в том, что во многих программах не учитывается возможность перехвата любой информации, идущей по сети — так называемого сетевого трафика. Первоначально, с внедрением локальных компьютерных сетей так оно и было. Сеть располагалась в пределах 2−3 кабинетов, либо здания с ограниченным физическим доступом к кабелям. Однако, стремительное развитие глобальных сетей затребовало на общий рынок те же версии программного обеспечения без какого-либо промедления для усиления безопасности. Теперь мы пожинаем плоды этой тенденции. Более половины протоколов сети Интернет передают пароли в нешифрованном виде — открытым текстом. К ним относятся протоколы передачи электронной почты SMTP и POP3, протокол передачи файлов FTP, одна из схем авторизации на WWW-серверах.
Современное аппаратное и программное обеспечение позволяет получать всю информацию, проходящую по сегменту сети, к которому подключен конкретный компьютер, и анализировать ее в реальном масштабе времени. Возможны несколько вариантов прослушивания трафика:
1) это может сделать служащий компании со своего рабочего компьютера,
2) злоумышленник, подключившийся к сегменту с помощью портативной ЭВМ или более мобильного устройства. Наконец, трафик, идущий от Вас к Вашему партнеру или в другой офис по сети Интернет, технически может прослушиваться со стороны Вашего непосредственного провайдера, со стороны любой организации, предоставляющей транспортные услуги для сети Интернет (переписка внутри страны в среднем идет через 3−4 компании, за пределы страны — через 5−8). Кроме того, если в должной мере будет реализовываться план СОРМ (система оперативно-розыскных мероприятий в компьютерных сетях), то возможно прослушивание и со стороны силовых ведомств страны.
Для комплексной защиты от подобной возможности кражи паролей необходимо выполнять следующие меры:
1. Физический доступ к сетевым кабелям должен соответствовать уровню доступа к информации.
2. При определении топологии сети следует при любых возможностях избегать широковещательных топологий. Оптимальной единицей сегментирования является группа операторов с равными правами доступа, либо если эта группа составляет более 10 человек, то комната или отдел внутри группы. Ни в коем случае на одном кабеле не должны находиться операторы с разными уровнями доступа, если только весь передаваемый трафик не шифруется, а идентификация не производится по скрытой схеме без открытой передачи пароля.
3. Ко всем информационным потокам, выходящим за пределы фирмы, должны применяться те же правила, что и только что описанные выше для объединения разноуровневых терминалов.
1.4 Атакуемые сетевые компоненты
Серверы.
Основными компонентами любой информационной сети являются сервера и рабочие станции. Сервера предоставляют информационные или вычислительные ресурсы, на рабочих станциях работает персонал. В принципе любая ЭВМ в сети может быть одновременно и сервером и рабочей станцией — в этом случае к ней применимы описания атак, посвященные и серверам и рабочим станциям.
Основными задачами серверов являются хранение и предоставление доступа к информации и некоторые виды сервисов. Следовательно, и все возможные цели злоумышленников можно классифицировать как
получение доступа к информации,
получение несанкционированного доступа к услугам,
попытка вывода из рабочего режима определенного класса услуг,
попытка изменения информации или услуг, как вспомогательный этап какой-либо более крупной атаки.
Попытки получения доступа к информации, находящейся на сервере, в принципе ничем не отличаются от подобных попыток для рабочих станций, и мы рассмотрим их позднее. Проблема получения несанкционированного доступа к услугам принимает чрезвычайно разнообразные формы и основывается в основном на ошибках или недокументированных возможностях самого программного обеспечения, предоставляющего подобные услуги.
А вот проблема вывода из строя (нарушения нормального функционирования) сервисов довольно актуальна в современном компьютерном мире. Класс подобных атак получил название атака «отказ в сервисе» (англ. deny of service — DoS). Атака «отказ в сервисе» может быть реализована на целом диапазоне уровней модели OSI: физическом, канальном, сетевом, сеансовом.
Изменение информации или услуг как часть более крупномасштабной атаки является также очень важной проблемой в защите серверов. Если на сервере хранятся пароли пользователей или какие-либо данные, которые могут позволить злоумышленнику, изменив их, войти в систему (например, сертификаты ключей), то естественно, сама атака на систему начнется с атаки на подобный сервер. В качестве серверов услуг, наиболее часто подвергающимся модификации, следует назвать DNS-сервера.
DNS-служба (англ. Domain Name System — служба доменных имен) в сетях Intra — и Inter — Net отвечает за сопоставление «произносимых» и легко запоминаемых доменных имен (например, www.intel.com или mail. metacom.ru) к их IP-адресам (например, 165.140.12.200 или 194.186.106.26). Пакеты между станциями всегда передаются только на основании IP-адресов (маршрутизаторы ориентируются только на их значения при выборе направления отправки пакета — доменное имя вообще не включается в отправляемый пакет), а служба DNS была создана в основном для удобства пользователей сети. Как следствие и во многих сетевых программах имя удаленного компьютера для большей гибкости или для удобства операторов заносится не в виде 4-байтного IP-адреса, а в виде доменного имени. Да, действительно, два указанных преимущества будут достигнуты в этом случае, а вот безопасность пострадает.
Дело в том, что, если злоумышленнику удастся заполучить права доступа к DNS-серверу, обслуживающему данный участок сети, то он вполне может изменить программу DNS-сервиса. Обычно изменение делается таким образом, чтобы по некоторым видам запросов вместо правильного IP-адреса клиенту выдавался IP-адрес какой-либо вспомогательной машины злоумышленника, а все остальные запросы обрабатывались корректно. Это дает возможность изменять путь прохождения трафика, который возможно содержит конфиденциальную информацию, и делать так, что весь поток информации, который в нормальном режиме прошел бы вне досягаемости от прослушивания, теперь поступал сначала прямо в руки злоумышленника (а затем его уже можно переправлять по настоящему IP-адресу второго абонента).
1.5 Рабочие станции
Основной целью атаки рабочей станции является, конечно, получение данных, обрабатываемых, либо локально хранимых на ней. А основным средством подобных атак до сих пор остаются «троянские» программы. Эти программы по своей структуре ничем не отличаются от компьютерных вирусов, однако при попадании на ЭВМ стараются вести себя как можно незаметнее. При этом они позволяют любому постороннему лицу, знающему протокол работы с данной троянской программой, производить удаленно с ЭВМ любые действия. То есть основной целью работы подобных программ является разрушение системы сетевой защиты станции изнутри — пробивание в ней огромной бреши.
Для борьбы с троянскими программами используется как обычное антивирусное ПО, так и несколько специфичных методов, ориентированных исключительно на них. В отношении первого метода как и с компьютерными вирусами необходимо помнить, что антивирусное ПО обнаруживает огромное количество вирусов, но только таких, которые широко разошлись по стране и имели многочисленные прецеденты заражения. В тех же случаях, когда вирус или троянская программа пишется с целью получения доступа именно к конкретной ЭВМ или корпоративной сети, то она практически с вероятностью 90% не будет обнаружена стандартным антивирусным ПО.
Те троянские программы, которые постоянно обеспечивают доступ к зараженной ЭВМ, а, следовательно, держат на ней открытый порт какого-либо транспортного протокола, можно обнаруживать с помощью утилит контроля за сетевыми портами. Например, для операционных систем клона Microsoft Windows такой утилитой является программа NetStat. Запуск ее с ключом «netstat — a» выведет на экран все активные порты ЭВМ. От оператора в этом случае требуется знать порты стандартных сервисов, которые постоянно открыты на ЭВМ, и тогда, любая новая запись на мониторе должна привлечь его внимание. На сегодняшний день существует уже несколько программных продуктов, производящих подобный контроль автоматически.
В отношении троянских программ, которые не держат постоянно открытых транспортных портов, а просто методически пересылают на сервер злоумышленника какую-либо информацию (например, файлы паролей или полную копию текста, набираемого с клавиатуры), возможен только сетевой мониторинг. Это достаточно сложная задача, требующая либо участия квалифицированного сотрудника, либо громоздкой системы принятия решений.
Поэтому наиболее простой путь, надежно защищающий как от компьютерных вирусов, так и от троянских программ — это установка на каждой рабочей станции программ контроля за изменениями в системных файлах и служебных областях данных (реестре, загрузочных областях дисков и т. п.) — так называемых адвизоров (англ. adviser — уведомитель).
1.6 Среда передачи информации
Основным видом атак на среду передачи информации является ее прослушивание. В отношении возможности прослушивания все линии связи делятся на:
широковещательные с неограниченным доступом
широковещательные с ограниченным доступом
каналы «точка-точка»
К первой категории относятся схемы передачи информации, возможность считывания информации с которых ничем не контролируется. Такими схемами, например, являются инфракрасные и радиоволновые сети. Ко второй и третьей категориям относятся уже только проводные линии: чтение информации с них возможно либо всеми станциями, подключенными к данному проводу (широковещательная категория), либо только теми станциями и узлами коммутации через которые идет пакет от пункта отправки до пункта назначения (категория «точка-точка»).
К широковещательной категории сетей относятся сеть TokenRing, сеть EtherNet на коаксиальной жиле и на повторителях (хабах — англ. hub). Целенаправленную (защищенную от прослушивания другими рабочими станциями) передачу данных в сетях EtherNet производят сетевые коммутаторы типа свич (англ. switch) и различного рода маршрутизаторы (роутеры — англ. router). Сеть, построенная по схеме с защитой трафика от прослушивания смежными рабочими станциями, почти всегда будет стоить дороже, чем широковещательная топология, но за безопасность нужно платить.
В отношении прослушивания сетевого трафика подключаемыми извне устройствами существует следующий список кабельных соединений по возрастанию сложности их прослушивания:
невитая пара — сигнал может прослушиваться на расстоянии в несколько сантиметров без непосредственного контакта,
витая пара — сигнал несколько слабее, но прослушивание без непосредственного контакта также возможно,
коаксиальный провод — центральная жила надежно экранирована оплеткой: необходим специальный контакт, раздвигающий или режущий часть оплетки, и проникающий к центральной жиле,
оптическое волокно — для прослушивания информации необходимо вклинивание в кабель и дорогостоящее оборудование, сам процесс подсоединения к кабелю сопровождается прерыванием связи и может быть обнаружен, если по кабелю постоянно передается какой-либо контрольный блок данных.
Вывод систем передачи информации из строя (атака «отказ в сервисе») на уровне среды передачи информации возможен, но обычно он расценивается уже как внешнее механическое или электронное (а не программное) воздействие. Возможны физическое разрушение кабелей, постановка шумов в кабеле и в инфра — и радио — трактах.
1.7 Узлы коммутации сетей
Узлы коммутации сетей представляют для злоумышленников 1) как инструмент маршрутизации сетевого трафика, и 2) как необходимый компонент работоспособности сети.
В отношении первой цели получение доступа к таблице маршрутизации позволяет изменить путь потока возможно конфиденциальной информации в интересующую злоумышленника сторону. Дальнейшие его действия могут быть подобны атаке на DNS-сервер. Достичь этого можно либо непосредственным администрированием, если злоумышленник каким-либо получил права администратора (чаще всего узнал пароль администратора или воспользовался несмененным паролем по умолчанию). В этом плане возможность удаленного управления устройствами коммутации не всегда благо: получить физический доступ к устройству, управляемому только через физический порт, гораздо сложнее.
Либо же возможен второй путь атаки с целью изменения таблицы маршрутизации — он основан на динамической маршрутизации пакетов, включенной на многих узлах коммутации. В таком режиме устройство определяет наиболее выгодный путь отправки конкретного пакета, основываясь на истории прихода определенных служебных пакетов сети — сообщений маршрутизации (протоколы ARP, RIP и другие). В этом случае при фальсификации по определенным законам нескольких подобных служебных пакетов можно добиться того, что устройство начнет отправлять пакеты по пути, интересующем злоумышленника, думая, что это и есть самый быстрый путь к пункту назначения.
При атаке класса «отказ в сервисе» злоумышленник обычно заставляет узел коммутации либо передавать сообщения по неверному «тупиковому» пути (как этого можно добиться мы рассмотрели выше), либо вообще перестать передавать сообщения. Для достижения второй цели обычно используют ошибки в программном обеспечении, запущенном на самом маршрутизаторе, с целью его «зависания». Так, например, совсем недавно было обнаружено, что целый модельный ряд маршрутизаторов одной известной фирмы при поступлении на его IP-адрес довольно небольшого потока неправильных пакетов протокола TCP либо перестает передавать все остальные пакеты до тех пор, пока атака не прекратиться, либо вообще зацикливается.
1.8 Уровни сетевых атак согласно модели OSI
Эталонная модель взаимодействия открытых систем OSI (англ. Open Systems Interconnection) была разработана институтом стандартизации ISO с целью разграничить функции различных протоколов в процессе передачи информации от одного абонента другому. Подобных классов функций было выделено 7 — они получили название уровней. Каждый уровень выполняет свои определенные задачи в процессе передачи блока информации, причем соответствующий уровень на приемной стороне производит преобразования, точно обратные тем, которые производил тот же уровень на передающей стороне. В целом прохождение блока данных от отправителя к получателю показано на рис. 1.1 Каждый уровень добавляет к пакету небольшой объем своей служебной информации — префикс (на рисунке они изображены как P1… P7). Некоторые уровни в конкретной реализации вполне могут отсутствовать.
Рисунок 1.1 — Прохождение блока данных от отправителя к получателю
Данная модель позволяет провести классификацию сетевых атак согласно уровню их воздействия.
Физический уровень отвечает за преобразование электронных сигналов в сигналы среды передачи информации (импульсы напряжения, радиоволны, инфракрасные сигналы). На этом уровне основным классом атак является «отказ в сервисе». Постановка шумов по всей полосе пропускания канала может привести к «надежному» разрыву связи.
Канальный уровень управляет синхронизацией двух и большего количества сетевых адаптеров, подключенных к единой среде передачи данных. Примером его является протокол EtherNet. Воздействия на этом уровне также заключаются в основном в атаке «отказ в сервисе». Однако, в отличие от предыдущего уровня, здесь производится сбой синхропосылок или самой передачи данных периодической передачей «без разрешения и не в свое время» .
Сетевой уровень отвечает за систему уникальных имен и доставку пакетов по этому имени, то есть за маршрутизацию пакетов. Примером такого протокола является протокол Интернета IP. Все атаки, основанные на заведомо неправильной маршрутизации пакетов, мы уже рассмотрели.
Транспортный уровень отвечает за доставку больших сообщений по линиям с коммутацией пакетов. Так как в подобных линиях размер пакета представляет собой обычно небольшое число (от 500 байт до 5 килобайт), то для передачи больших объемов информации их необходимо разбивать на передающей стороне и собирать на приемной. Транспортными протоколами в сети Интернет являются протоколы UDP и TCP. Реализация транспортного протокола — довольно сложная задача, а если еще учесть, что злоумышленник придумывает самые разные схемы составления неправильных пакетов, то проблема атак транспортного уровня вполне объяснима.
Все дело в том, что пакеты на приемную сторону могут приходить и иногда приходят не в том порядке, в каком они были отправлены. Причина обычно состоит в потере некоторых пакетов из-за ошибок или переполненности каналов, реже — в использовании для передачи потока двух альтернативных путей в сети. А, следовательно, операционная система должна хранить некоторый буфер пакетов, дожидаясь прихода задержавшихся в пути. А если злоумышленник с умыслом формирует пакеты таким образом, чтобы последовательность была большой и заведомо неполной, то тут можно ожидать как постоянной занятости буфера, так и более опасных ошибок из-за его переполнения.
Сеансовый уровень отвечает за процедуру установления начала сеанса и подтверждение (квитирование) прихода каждого пакета от отправителя получателю. В сети Интернет протоколом сеансного уровня является протокол TCP (он занимает и 4, и 5 уровни модели OSI). В отношении сеансового уровня очень широко распространена специфичная атака класса «отказ в сервисе», основанная на свойствах процедуры установления соединения в протоколе TCP. Она получила название SYN-Flood (зд. flood — англ. «большой поток»).
При попытке клиента подключиться к серверу, работающему по протоколу TCP (а его используют более 80% информационных служб, в том числе HTTP, FTP, SMTP, POP3), он посылает серверу пакет без информации, но с битом SYN, установленным в 1 в служебной области пакета — запросом на соединение. По получении такого пакета сервер обязан выслать клиенту подтверждение приема запроса, после чего с третьего пакета начинается собственно диалог между клиентом и сервером. Одновременно сервер может поддерживать в зависимости от типа сервиса от 20 до нескольких тысяч клиентов.
При атаке типа SYN-Flood злоумышленник начинает на своей ЭВМ создавать пакеты, представляющие собой запросы на соединение (то есть SYN-пакеты) от имени произвольных IP-адресов (возможно даже несуществующих) на имя атакуемого сервера по порту сервиса, который он хочет приостановить. Все пакеты будут доставляться получателю, поскольку при доставке анализируется только адрес назначения. Сервер, начиная соединение по каждому из этих запросов, резервирует под него место в своем буфере, отправляет пакет-подтверждение и начинает ожидать третьего пакета клиента в течение некоторого промежутка времени (1−5 секунд). Пакет-подтверждение уйдет по адресу, указанному в качестве ложного отправителя в произвольную точку Интернета и либо не найдет адресата вообще, либо чрезмерно «удивит» операционную систему на этом IP-адресе (поскольку она никаких запросов на данный сервер не посылала) и будет просто проигнорирован. А вот сервер при достаточно небольшом потоке таких запросов будет постоянно держать свой буфер заполненным ненужными ожиданием соединений и даже SYN-запросы от настоящих легальных пользователей не будут помещаться в буфер: сеансовый уровень просто не знает и не может узнать, какие из запросов фальшивые, а какие настоящие и могли бы иметь больший приоритет.
Атака SYN-Flood получила довольно широкое распространение, поскольку для нее не требуется никаких дополнительных подготовительных действий. Ее можно проводить из любой точки Интернета в адрес любого сервера, а для отслеживания злоумышленника потребуются совместные действия всех провайдеров, составляющих цепочку от злоумышленника до атакуемого сервера (к чести сказать, практически все фирмы-провайдеры, если они обладают соответствующим программным обеспечением и квалифицированным персоналом, активно участвуют в отслеживании атакующей ЭВМ по первой же просьбе, в том числе и от зарубежных коллег).
1.9 Предварительные выводы
В данном разделе дипломной работы произведен обзор существующих основных видов и источников атак на информацию. Выполнена постановка задачи работы.
Таким образом разрабатываемая система должна обеспечивать:
ограничение доступа пользователей в сеть Internet;
ведение журнал доступа пользователей в сеть Internet;
одновременная работа многих пользователей по одному коммутируемому соединению;
защита от прямой видимости машин локальной сети в Internet;
удаленное администрирование.
2. Разработка технологии защиты банковской компьютерной сети
2.1 Архитектуры брандмауэра
Можно найти решение ряда проблем с безопасностью в Интернете, описанных в разделе 1, или сделать их менее опасными, если использовать существующие и хорошо известные технологии и меры защиты на уровне хостов. Брандмауэр может значительно повысить уровень безопасности сети организации и сохранить в то же время доступ ко всем ресурсам Интернете.
Одна из самых надежных моделей защиты используемая во многих продуктах такова:
1. Разрешать любому пользователю локальной сети доступ к любому ресурсу в Internet;
2. Разрешать каждому компьютеру в сети иметь доступ к административным утилитам системы защиты, при условии, что он предоставляет верный пароль доступа;
3. Никому из Internet не разрешать доступ в локальную сеть и к системе защиты банковской сети.
Несмотря на кажущуюся тривиальность, такая схема является наиболее надежной. Система защиты и компьютеры локальной сети защищены от неавторизованного доступа в основном третьим правилом. Это правило говорит, что любой пакет из Internet отвергается, если не выполняется следующее:
1. Пакет не должен являться попыткой инициировать соединение с системой защиты или с компьютером в локальной сети.
2. Пакет не должен иметь активизированный блок маршрутизации от источника.
3. Пакет не может быть направлен к какому-либо TCP/IP порту приложения любого компьютера в сети.
4. Пакет не может быть перенаправлен к любому компьютеру в сети до тех пор, пока не приняты все его фрагменты и все они проверены по правилам защиты.
5. Пакет всегда должен быть ответом на запрос любого текущего соединения инициированного системой защиты или компьютеров из вашей локальной сети.
Брандмауэр — это система или комбинация систем, позволяющие разделить сеть на две или более частей и реализовать набор правил, определяющих условия прохождения пакетов из одной части в другую (см рис. 2.1). Как правило, эта граница проводится между банковской сетью и INTERNET, хотя ее можно провести и внутри локальной сети банка. Брандмауэр, таким образом пропускает через себя весь трафик. Для каждого проходящего пакета брандмауэр принимает решение пропускать его или отбросить. Для того чтобы брандмауэр мог принимать эти решения, ему необходимо определить набор правил.