Помощь в написании студенческих работ
Антистрессовый сервис

Решение производственной задачи

РефератПомощь в написанииУзнать стоимостьмоей работы

Ковалева К. А., Попова Е. В., Молошнев С. А. Анализ востребованности сервисов систем межведомственного электронного взаимодействия многофункционального центра // Анализ, моделирование и прогнозирование экономических процессов: материалы VI Международной научно-практической Интернет-конференции, 15 декабря 2014 г. — 15 февраля 2015 г. / под ред. Л. Ю. Богачковой, В. В. Давниса; Волгоград. гос… Читать ещё >

Решение производственной задачи (реферат, курсовая, диплом, контрольная)

Объектом исследования настоящей работы являютсясоциально экономические системы. Предметом исследования является методы решения задач линейного программирования, решение задачи оптимального распределения ресурсов графическим и аналитическим методами на основе графического, а также посредством вычисления на ЭВМ.

Целью исследования является сравнение методов решения ЗЛП, на основе полученных расчетов решения задачи оптимального распределения ресурсов при производстве продукции мебельного цеха, определение наиболее эффективного, применительно к конкретной задаче.

Линейным программированием называется область математики, которая разрабатывает теорию и численные методы решения экстремальных задач линейной функции многих переменных при наличии линейных ограничений. Первые исследования по линейному программированию были проведены Леонидом Витальевичем Канторовичем. Наибольшими темпами линейное программирование развивалось в СССР и США в 1955;1965 гг.

Оптимальное распределение ресурсов с давних времен волновало общество. В настоящее время, данная проблема является наиболее важной и изучаемой. Многие современные разработки направлены на поиск и использования возобновляемых и альтернативных источников ресурсов, энергии, так как природные ресурсы не безграничны.

Некоторые природные ресурсы воспроизводятся под действием природных процессов, а некоторые являются не возобновляемыми. Ответом на эту проблему является поиск и использование методов оптимального распределения ресурсов. линейный программирование задача Данная проблема касается не только крупных транснациональных корпораций, но и совсем небольших предприятий, цехов. Являясь участниками экономических отношений, ежедневно им приходится решать данные задачи. Самыми известными методами решения задач линейного программирования являются: графический метод, аналитический способ, и симплекс — метод.

Итак, рассмотрим решение задачи оптимального распределения имеющихся ресурсов на примере ситуации мебельного цеха.

Для производства полок и шкафов мастера небольшого мебельного цеха использует различные ресурсы.

Составим математическую модель задачи. Пусть цех производит полоки шкафов, по условию задачи эти коэффициенты не отрицательны,?0 и ?0.Тогда прибыль составит, F рублей, ее необходимо максимизировать. >max .Теперь составим ограничения задачи. Для изготовления стульев и столов потребуется древесины первого вида, запасы которой 27 единиц.

Тогда.Для изготовления полоки шкафов потребуется дерева второго вида, запасы которого 28 единиц.

Следовательно 28. Для изготовления полок и шкафов потребуется металлических заготовок, запасы которых 23 единицы.

Получим задачу линейного программирования, которую решим графическим методом:

>max,.

Решение производственной задачи.

При ,?0.

Имеем целевую функцию и ограничения. Запишем уравнения граничных прямых:

А: если =0,то =13,5.

если=0,то=9.

В: если=0,то =7.

если=0,то=14.

С: если=0,то =7 2/3.

если=0,то=11,5.

Найдем для каждого ограничения область допустимых значений, после чего определим совместную область допустимых решений Имеем Выпуклый многоугольник ABCDE. В нем содержатся точки, каждая из которых является допустимым решением задачи. Необходимо найти оптимальное.

Приравняем к произвольному числу:

Пусть = 28, тогда = 28.

если=0,то =4.

если=0,то=7.

Построим прямую для данного уравнения. Передвигая прямую параллельно самой себе определим точку максимума и определим ее значение.

Видно что оптимальному решению соответствует точка C (4;5).

Решим данную задачу аналитическим методом.

Аналитический метод во многом базируется на графическом методе: вершина многоугольника в которой целевая функция приобретает максимальное значение, является оптимальной, координаты этой вершины и являются искомыми оптимальными значениями переменных. Искомая точкаC. На графике она образуется прямыми С и В. Найдем значение точки C решив систему уравнений прямых С и В.

Упростим систему.

Решение производственной задачи.
Решение производственной задачи.

После упрощений, выразим одну переменную через другую и найдем их значения =4 и =5.

В точке C целевая функция равна 48. Что соответствует максимальной прибыли.

Данную задачу также можно решить с помощью MicrosoftExcel. Заполним ячейки исходными данными в виде таблицы и формулами математической модели. Вносим целевую функцию и ограничения.

Получили целочисленное решение — 4 полок и 5 шкафов. Максимальная прибыль составила 51 единицу.

Итак, рассмотренная задача решена тремя методами: графическим, аналитическим и с помощью компьютерной программы, результат полученного ответа одинаковый. Решить данную задачу оказалось возможным всеми тремя методами. Первый, графический метод дает очень наглядное решение, однако требует предварительного построения уравнений функции и ограничений, а также точного построения графика, а также дополнительных построений. Точность и достоверность результатов, при решении данным методом находится в зависимости от точности построения графика.

Аналитический метод во многом базируется на принципах графического метода. Однако определение точки в которой достигается оптимальное значение происходит посредством решения системы уравнений, пересекающихся в данной точке.

Метод решения посредством вычисления компьютерной программы требует точного построения таблицы и внесения параметров решения. Однако этот метод имеет ряд преимуществ. Наглядно выдаются не только оптимальный результат, но сразу же и количество использованного ресурса каждого вида, и при построении дополнительных ячеек и внесения в них соответствующих формул, можно также получить и остаток недоиспользованного ресурса. Во многом этот метод наиболее прост, нагляден и эффективен.

  • 1. Бурда А. Г. Бурда Г. П. Методы принятия управленческих решений в экономических системах АПК: учеб. пособие для вузов / А. Г. Бурда, Г. П. Бурда. — Краснодар: КубГАУ, 2013. — 532 с
  • 2. Информатизация деловой сферы и профессиональная деятельность Затонская И. В., Затонская С. С. Сборники конференций НИЦ Социосфера. 2014. № 1. С. 026−032.
  • 3. Информационные технологии в управлении имущественным состоянием аграрного предприятия Затонская И. В., Чуб Е. В. В сборнике: Cовременное состояние и приоритетные направления развития экономики Материалы Международной заочной научно-практической конференции. Новосибирский государственный аграрный университет. Россия, г. Новосибирск, 2014. С. 88−93.
  • 4. Ковалева К. А. Системы информационной безопасности и их построение/Ковалева К.А., Попова Е. В. В сборнике: Современные технологии управления — 2014 Сборник материалов международной научной конференции. Киров, 2014. С. 1853−1862.
  • 5. Ковалева К. А. Фазовый анализ как инструмент предпрогнрозного анализа деятельности многофункционального центра / Ковалева К. А., Попова Е. В., Молошнев С. А. // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. — Краснодар: КубГАУ, 2015. — № 03(107). — IDA [article ID]: 1 071 503 033. — Режим доступа: http://ej.kubagro.ru/2015/03/pdf/33.pdf, 0,688 у.п.л.
  • 6. Ковалева К. А., Попова Е. В., Молошнев С. А. Анализ востребованности сервисов систем межведомственного электронного взаимодействия многофункционального центра // Анализ, моделирование и прогнозирование экономических процессов: материалы VI Международной научно-практической Интернет-конференции, 15 декабря 2014 г. — 15 февраля 2015 г. / под ред. Л. Ю. Богачковой, В. В. Давниса; Волгоград. гос. ун-т, Воронеж. гос. ун-т. — Волгоград: ООО «Консалт», 2014.
  • 7. Комиссарова К. А. Основы алгоритмизации и программирования: методическое пособие Часть I Turbo Pascal Си++ (2-е издание, переработанное): метод. пособие/ Комиссарова К. А., Коркмазова С. С. -Краснодар, КубГАУ 2014.-54 с.
  • 8. Комиссарова К. А. Основы алгоритмизации и программирования: методическое пособие Часть II Turbo Pascal Си++ (2-е издание, переработанное): метод. пособие/ Комиссарова К. А., Коркмазова С. С. -Краснодар, КубГАУ 2014.-58 с.
  • 9. Моделирование деятельности страховых компаний методами нелинейной динамики: монография (Научное издание)./В. А. Перепелица, Е. В. Попова, К. А. Комиссарова. -Краснодар: КубГАУ, 2007. -201 с.
  • 10. Моделирование организационно-экономического процесса управления инновационным развитием аграрного предприятия. Чуб Е. В., Затонская И. В. В сборнике: Междисциплинарные исследования в области математического моделирования и информатики Материалы 5-й научно-практической internet-конференции. Ответственный редактор Ю. С. Нагорнов. Ульяновск, 2015. С. 230−233.
  • 11. Основы математического моделирования социально-экономических процессов: учеб. пособие / С. Н. Косников; под ред. д-ра экон. наук, проф. А. Г. Бурда. — Краснодар: КубГАУ, 2013. — 93 с.
  • 12. Перепелица В. А., Тамбиева Д. А., Комиссарова К. А. Визуализация R/S-и Я-траекторий эталонных временных рядов//Современные наукоемкие технологии. Приложение. № 3, 2005, с. 64−68.
  • 13. Попова Е. В. Информационные системы в экономике: методическое пособие для экономических специальностей. Часть 1 Word Excel (2-е издание, переработанное): метод. пособие/Попова Е.В., Комиссарова К. А. -Краснодар, КубГАУ 2014.-51 с.
  • 14. Попова Е. В. Информационные системы в экономике: методическое пособие для экономических специальностей. Часть II Access PowerPoint (2-е издание, переработанное): метод. пособие/Попова Е.В., Комиссарова К. А. -Краснодар, КубГАУ 2014.-46 с.
  • 15. Сегментация туризма как отражение современного состояния туристического рынка Попова Е. В., Шевченко А. А., Курносова Н. С. Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета. 2013. № 89. С. 1063−1075.
  • 16. Сидорко Н. К. Оптимизация рациона питания человека для поддержания массы тела с учетом разных типов ме-таболизма / Сидорко Н. К., Ковалева К. А., Косников С. Н. // Политематиче-ский сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный жур-нал КубГАУ) [Электронный ресурс]. — Краснодар: КубГАУ, 2015. — № 01(105). — IDA [article ID]: 1 051 501 029. — Режим досту-па:http://ej.kubagro.ru/2015/01/pdf/29.pdf, 0,750 у.п.л.
  • 17. Теория принятия решений: учебное пособие, задачник / С. Н. Косников; под ред. д-ра экон. наук, проф. А. Г. Бурда. — Краснодар: КубГАУ, 2013. — 54 с.
  • 18. Финансовый потенциал аграрного предприятия как фактор конкурентоспособности. Затонская И. В. В сборнике: Современные тенденции в науке и образовании Сборник научных трудов по материалам Международной научно-практической конференции: в 5 частях. ООО «АР-Консалт». Москва, 2015. С. 154−155.
  • 19. Франциско О. Ю., Бурда А. Г. Выбор режима налогообложения при развитии подсобных перерабатывающих производств аграрных предприятий//Труды Кубанского государственного аграрного университета. 2009. Т. 1. № 16. С. 72−77.
Показать весь текст
Заполнить форму текущей работой