Механизм работы OLAP-технологий
Многомерная база данных осуществляет возможность моментальной обработки информации в базе данных, это позволяет получить ответ быстро. Интерфейс многомерной базы данных может варьировать в зависимости от того, как расположены данные. С точки зрения концепции, многомерная база данных использует идею информационных кубов, чтобы представление измерений данных было доступно пользователю. Например… Читать ещё >
Механизм работы OLAP-технологий (реферат, курсовая, диплом, контрольная)
В ходе принятия управленческих решений менеджер генерирует некие гипотезы. Чтобы принять решение окончательно или понять, что оно будет неэффективным, необходимо понимать, как изменение одного фактора повлияет на остальные, как устанавливается зависимость между этими факторами. Например, какова зависимость объема продаж от места и времени сбыта и т. п.
Многомерная система управления базами данных — это такой тип управления базами данных, который основан на многомерном представлении баз данных. Многомерные базы данных часто создаются с использованием входных данных уже существующих реляционных баз данных. Многомерная база данных способна отвечать на вопросы вроде «сколько товаров было продано в определенном регионе в такой-то месяц» и аналогичные вопросы, связанные с обобщением и анализом бизнес-операций и тенденций, тогда как реляционная база данных обычно получает ответ с использованием языка структурированных запросов (SQL).
Многомерная база данных (или многомерная система управления базами данных) подразумевает способность быстро обрабатывать данные в базе данных так, чтобы ответ мог быть сгенерирован моментально.
OLAP (от англ. «online analytical processing" — онлайн аналитическая обработка) — это технология компьютерной обработки, которая позволяет пользователю легко и выборочно извлекать и просматривать данные по разным параметрам, с разных точек зрения. Набор технологий OLAPвключает в себя такие функции как построение динамических отчетов по различным аспектам, анализ имеющихся данных, наблюдение, оценивание и прогнозирование основных показателей бизнеса.
Для облегчения такого анализа данные OLAP хранятся в многомерной базе данных. Приложение OLAP, которое обращается к данным из многомерной базы данных, также называется MOLAP (multidimensional OLAP — многомерная OLAP-технология).
В то время как реляционная база данных может рассматриваться как двумерная, многомерная база данных рассматривает каждый атрибут данных (например, продукт, географический регион продаж и временной период) как отдельную величину, отдельное «измерение». Программное обеспечение OLAP может определять пересечение величин (все продукты, проданные в определенном регионе, выше определенной цены в течение определенного периода времени) и отображать их. Атрибуты, такие как временные периоды, могут быть разбиты на субатрибуты. Атрибут (в общем понимании) — это свойство или характеристика. В области компьютерного программирования атрибутэто переменное свойство или характеристика какого-либо компонента программы, который может принимать различные значения.
Многомерная база данных осуществляет возможность моментальной обработки информации в базе данных, это позволяет получить ответ быстро. Интерфейс многомерной базы данных может варьировать в зависимости от того, как расположены данные. С точки зрения концепции, многомерная база данных использует идею информационных кубов, чтобы представление измерений данных было доступно пользователю. Например, управленец (пользователь) может рассмотреть зависимость такого измерения как «объем продаж» от каких-либо факторов (географическое положение, время или какое-либо другое измерение). В таком случае «объем продаж» будет являться измерительным атрибутом куба данных, а другие величины будут рассматриваться как атрибут функции.
OLAP может использоваться для интеллектуального анализа данных или обнаружения ранее не выявленных связей между элементами данных. База данных OLAP не обязательно должна быть столь же большой, как хранилище данных, поскольку не все транзакционные данные необходимы для анализа тенденций. Также данные могут быть импортированы из существующих реляционных баз данных для создания многомерной базы данных для OLAP с помощью специального программного интерфейса ODBC (от англ. «OpenDatabaseConnectivity» — открытый интерфейс доступа к базам данных).
Реляционные базы данных и базы данных OLAP по способу организации данных. Если же в реляционных базах данных информация представлена в виде взаимосвязанных таблиц, то в базах данных OLAP информация представлена в виде так называемых OLAP-кубов. В OLAP-кубах хранятся сведения о взаимосвязях и об иерархии данных, что значительно упрощает процедуру извлечения необходимой информации и создания отчетов, так как местонахождение необходимых данных и их взаимосвязь с другими данными известно заранее. Кубы данных содержат информацию, отображенную в заранее разработанном виде. Это значит, что группировка, фильтрация, сортировка информации осуществляется до введения данных. Именно поэтому вывод и извлечение информации, запрашиваемой пользователем, становится простым и быстрым действием.
Существует набор свойств OLAP-данных:
- 1)Концепция данных многомерна, при этом количество измерений не ограничено.
- 2) OLAP-технологии наиболее доступны и понятны пользователю, так как представляют собой единую логическую систему иерархий и взаимосвязей данных.
- 3) Скорость обработки запросов постоянна и не падает при увеличении количества измерений.
- 4) Настройке конечных запросов свойственна гибкость. Пользователь видит только запрашиваемые им данные.
Основоположник термина OLAPЭдгар Кодд сформулировал «12 правил аналитической обработки в реальном времени», однако позднее они были переформулированы Найджелом Пендсом: FASMI (Fast Multidimensional Information — быстрая многомерная информация). Согласно этому утверждению OLAP-системы должны быть:
- 1. Fast — быстрой, практически мгновенно обеспечивать отклик на запрос пользователя.
- 2. Shared — многопользовательской, должно быть обеспечение контроля доступа к данным и возможность одновременного использования несколькими «юзерами».
- 3. Multidimensional — многомерной, данные должны быть представлены в виде OLAP-кубов.
- 4. Information — набор данных должен быть полным, в отчете должна содержаться вся необходимая информация.