Изучение физиологии возбудимых тканей
По степени приспособленности биологических структур к их восприятию раздражители можно разделить на адекватные и неадекватные. Адекватными называются раздражители, к восприятию которых биологическая структура специально приспособлена в процессе эволюции. Например, адекватным раздражителем для фоторецепторов является свет, для барорецепторов — изменение давления, для мышц — нервный импульс… Читать ещё >
Изучение физиологии возбудимых тканей (реферат, курсовая, диплом, контрольная)
Содержание
- Введение
- 1. Биоэлектрические явления в возбудимых тканях. Природа возбуждений
- 2. Мембранный потенциал
- 3. Изменения мембранного потенциала. Пороговые и подпороговые раздражители
- 4. Потенциал действия
- 5. Изменения возбудимости при возбуждении
- 6. Законы раздражения возбудимых тканей
- Выводы
- Список литературы
Общие сведения. Способность адаптироваться к постоянно изменяющимся условиям внешней среды является одним из основных признаков живых систем. В основе приспособительных реакций организма лежит раздражимость способность реагировать на действие различных факторов изменением структуры и функций. Раздражимостью обладают все ткани животных и растительных организмов. В процессе эволюции происходила постепенная дифференциация тканей, участвующих в приспособительной деятельности организма. Раздражимость этих тканей достигла наивысшего развития и трансформировалась в новое свойство — возбудимость. Под этим термином понимают способность ряда тканей (нервной, мышечной, железистой) отвечать на раздражение генерацией процесса возбуждения. Возбуждение это сложный физиологический процесс временной деполяризации мембраны клеток, который проявляется специализированной реакцией ткани (проведение нервного импульса, сокращение мышцы, отделение секрета железой и т. д.). Возбудимостью обладают нервная, мышечная и секреторная ткани, которые называют возбудимыми тканями. Возбудимость различных тканей неодинакова. Ее величину оценивают по порогу раздражения — минимальной силе раздражителя, которая способна вызвать озбуждение. Менее сильные раздражители называются подпороговыми, а более сильные — сверхпороговыми.
Раздражителями, вызывающими возбуждение, могут быть любые внешние (действующие из окружающей среды) или внутренние (возникающие в самом организме) воздействия. Все раздражители по их природе можно разделить на три группы: физические (механические, электрические, температурные, звуковые, световые), химические (щелочи, кислоты и другие химические вещества, в том числе и лекарственные) и биологические (вирусы, бактерии, насекомые и другие живые существа).
По степени приспособленности биологических структур к их восприятию раздражители можно разделить на адекватные и неадекватные. Адекватными называются раздражители, к восприятию которых биологическая структура специально приспособлена в процессе эволюции. Например, адекватным раздражителем для фоторецепторов является свет, для барорецепторов — изменение давления, для мышц — нервный импульс. неадекватными называются такие раздражители, которые действуют на структуру, специально не приспособленную для их восприятия. Например, мышца может сокращаться под влиянием химического, теплового, электрического раздражений, хотя адекватным раздражителем для нее является нервный импульс. Пороговая сила неадекватных раздражителей во много раз превышает пороговую силу адекватных.
Целью работы является изучение физиологии возбудимых тканей.
Основные задачи работы. На основе изучения литературы рассмотрим следующие вопросы:
1. Биоэлектрические явления в возбудимых тканях. Природа возбуждений.
2. Мембранный потенциал.
3. Изменения мембранного потенциала. Пороговые и подпороговые раздражители.
4. Потенциал действия.
5. Изменения возбудимости при возбуждении.
6. Законы раздражения возбудимых тканей
1. Биоэлектрические явления в возбудимых тканях. Природа возбуждения
Возбуждение представляет собой сложную совокупность физических, химических и физико-химических процессов, в результате которых происходит быстрое и кратковременное изменение электрического потенциала мембраны.
Первые исследования электрической активности живых тканей были проведены Л. Гальвани. Он обратил внимание на сокращение мышц препарата задних лапок лягушки, подвешенной на медном крючке, при соприкосновении с железными перилами балкона (первый опыт Гальвани). На основании этих наблюдений им был сделан вывод, что сокращение лапок вызвано «животным электричеством» которое возникает в спинном мозге и передается по металлическим проводникам (крючку и перилам) к мышцам.
Физик А. Вольта, повторив этот опыт, пришел к другому заключению. Источником тока, по его мнению, является не спинной мозг и «животное электричество», а разность потенциалов, образующаяся в месте контакта разнородных металлов меди и железа, а нервно-мышечный препарат лягушки является лишь проводником электричества. В ответ на эти возражения Л. Гальвани усовершенствовал опыт, исключив из него металлы. Он препарировал седалищный нерв вдоль бедра лапки лягушки, затем набрасывал нерв на мышцы голени, что вызывало сокращение мышцы (второй опыт Гальвани), тем самым доказав существование «животного электричества».
Позднее Дюбуа-Реймоном было установлено, что поврежденный участок мышцы имеет отрицательный заряд, а неповрежденный участок — положительный. При набрасывании нерва между поврежденным и неповрежденным участками мышцы возникает ток, который раздражает нерв и вызывает сокращение мышцы. Этот ток был назван током покоя, или током повреждения. Так было показано, что наружная поверхность мышечных клеток заряжена положительно по отношению к внутреннему содержимому.
2. Мембранный потенциал
В состоянии покоя между наружной и внутренней поверхностями мембраны клетки существует разность потенциалов, которая называется мембранным потенциалом (МП), или, если это клетка возбудимой ткани, — потенциалом покоя. Так как внутренняя сторона мембраны заряжена отрицательно по отношению к наружной, то, принимая потенциал наружного раствора за нуль, МП записывают со знаком «минус». Его величина у разных клеток колеблется от минус 30 до минус 100 мВ .
Первая теория возникновения и поддержания мембранного потенциала была разработана Ю. Бернштейном (1902). Исходя из этого, что мембрана клеток обладает высокой проницаемостью для ионов калия и малой проницаемостью для других ионов, он показал, что величину мембранного потециала можно определить, используя формулу Нернста: .
где Ем — разность потенциалов между внутренней и наружной сторонами мембраны;
Ек — равновесный потенциал для ионов калия;
R — газовая постоянная;
Т — абсолютная температура;
n — валентность иона;
F — число Фарадея;
[К+]вн — внутренняя и [К+]н — наружная концентрация ионов калия.
В 1949 — 1952 гг. А. Ходжкин, Э. Хаксли, Б. Катц создали современную мембранно-ионную теорию, согласно которой мембранный потенциал обусловлен не только концентрацией ионов калия, но и натрия и хлора, а также неодинаковой проницаемостью для этих ионов мембраны клетки. Цитоплазма нервных и мышечных клеток содержит в 30 — 50 раз больше ионов калия, в 8 — 10 раз меньше ионов натрия и в 50 раз меньше ионов хлора, чем внеклеточная жидкость. Проницаемость мембраны для ионов обусловлена ионными каналами, макромолекулами белка, пронизывающими липидный слой. Одни каналы открыты постоянно, другие (потенциалозависимые) открываются и закрываются в ответ на изменения МП. Потенциалозависимые каналы подразделяются на натриевые, калиевые, кальциевые и хлорные. В состоянии физиологического покоя мембрана нервных клеток в 25 раз более проницаема для ионов калия, чем для ионов натрия .
Таким образом, согласно обновленной мембранной теории асимметричное распределение ионов по обе стороны мембраны и связанное с этим создание и поддержание мембранного потенциала обусловлено как избирательной проницаемостью мембраны для различных ионов, так и их концентрацией по обе стороны от мембраны, а более точно величину мембранного потенциала можно рассчитать по формуле :
где Рк′, PNa′, PCI — проницаемость для ионов калия, натрия и хлора.