CG-узнающие C5-цитозин-ДНК-метилтрансферазы SssI (Spiroplasma) и Dumt3a (мыши): ингибирование и исследование особенностей каталитического механизма
Диссертация
Изучение связывания Dnmt3a-CD с ДНК проводили методом поляризации флуоресценции путем прямого титрования FAM-меченных олигодезоксирибонуклеотидных дуплексов С5-МТазой Dnmt3a-CD, как описано ранее. Значение поляризации флуоресценции (Р) определяли согласно уравнению Р = (/vG/h)/(/v + 1ь), где Iv и 1ь — вертикальная и горизонтальная составляющие испускаемого света соответственно, С — поправочный… Читать ещё >
Список литературы
- Bird, А. (2002). DNA methylation patterns and epigenetic memory. Genes Dev 16, 6−21.
- Hermann, A., Gowher, H., and Jeltsch, A. (2004). Biochemistry and biology of mammalian DNA methyltransferases. Cell Mol Life Sci 61, 2571−2587.
- Eden, A., Gaudet, F., Waghmare, A., and Jaenisch, R. (2003). Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300, 455.
- Jones, P.A., and Baylin, S.B. (2002). The fundamental role of epigenetic events in cancer. Nat Rev Genet 3, 415−428.
- Baylin, S.B., Esteller, M., Rountree, M.R., Bachman, K.E., Schuebel, K., and Herman, J.G. (2001). Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet 10, 687−692.
- Baylin, S.B., and Herman, J.G. (2000). DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet 16, 168−174.
- Jones, P.A., and Laird, P.W. (1999). Cancer epigenetics comes of age. Nat Genet 21, 163−167.
- Jones, P.A., and Baylin, S.B. (2007). The epigenomics of cancer. Cell 128, 683−692.
- Deng, Т., Kuang, Y., Wang, L., Li, J., Wang, Z., and Fei, J. (2009). An essential role for DNA methyltransferase 3a in melanoma tumorigenesis. Biochem Biophys Res Commun 557, 611−616.
- Ng, E.K., Tsang, W.P., Ng, S.S., Jin, H.C., Yu, J., Li, J.J., Rocken, C., Ebert, M.P., К wok, T.T., and Sung, J.J. (2009). MicroRNA-143 targets DNA methyltransferases ЗА in colorectal cancer. Br J Cancer 101, 699−706.
- Jeltsch, A. (2002). Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases. Chembiochem 3, 274−293.
- Kumar, R., Srivastava, R., Singh, R.K., Surolia, A., and Rao, D.N. (2008). Activation and inhibition of DNA methyltransferases by S-adenosyl-L-homocysteine analogues. Bioorg Med Chem 16, 2276−2285.
- Zingg, J.M., Shen, J.C., Yang, A.S., Rapoport, H., and Jones, P.A. (1996). Methylation inhibitors can increase the rate of cytosine deamination by (cytosine-5)-DNA methyltransferase. Nucleic Acids Res 24,3267−3275.
- Gowher, H., and Jeltsch, A. (2004). Mechanism of inhibition of DNA methyltransferases by cytidine analogs in cancer therapy. Cancer Biol Ther 3, 1062−1068.
- Christman, J.K. (2002). 5-Azacytidine and 5-aza-2'-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 21, 5483−5495.
- Gabbara, S., and Bhagwat, A.S. (1995). The mechanism of inhibition of DNA (cytosine-5-)-methyltransferases by 5-azacytosine is likely to involve methyl transfer to the inhibitor. Biochem J 307 (Ptl), 87−92.
- Osterman, D.G., DePillis, G.D., Wu, J.C., Matsuda, A., and Santi, D.V. (1988). 5-Fluorocytosine in DNA is a mechanism-based inhibitor of Hhal methylase. Biochemistry 27, 5204−5210.
- Taylor, C., Ford, K., Connolly, B.A., and Hornby, D.P. (1993). Determination of the order of substrate addition to Mspl DNA methyltransferase using a novel mechanism-based inhibitor. Biochem J 291 (Ft 2), 493−504.
- Hurd, P.J., Whitmarsh, A.J., Baldwin, G.S., Kelly, S.M., Waltho, J.P., Price, N.C., Connolly, B.A., and Hornby, D.P. (1999). Mechanism-based inhibition of C5-cytosine DNA methyltransferases by 2-H pyrimidinone. J Mol Biol 286, 389−401.
- Zhou, L., Cheng, X., Connolly, B.A., Dickman, M.J., Hurd, P.J., and Hornby, D.P. (2002). Zebularine: a novel DNA methylation inhibitor that forms a covalent complex with DNA methyltransferases. J Mol Biol 321, 591−599.
- Kumar, S., Horton, J.R., Jones, G.D., Walker, R.T., Roberts, R.J., and Cheng. X. (1997). DNA containing 4'-thio-2'-deoxycytidine inhibits methylation by Hhal methyltransferase. Nucleic Acids Res 25, 2773−2783.
- Flynn, J., Fang, J.Y., Mikovits, J.A., and Reich, N.O. (2003). A potent cell-active allosteric inhibitor of murine DNA cytosine C5 methyltransferase. J Biol Chem 278, 8238−8243.
- Knox, J.D., Araujo, F.D., Bigey, P., Slack, A.D., Price, G.B., Zannis-Hadjopoulos, M., and Szyf, M. (2000). Inhibition of DNA methyltransferase inhibits DNA replication. J Biol Chem 275, 17 986−17 990.
- Milutinovic, S., Knox, J.D., and Szyf, M. (2000). DNA methyltransferase inhibition induces the transcription of the tumor suppressor p21(WAFl/CIPl/sdil). J Biol Chem 275, 6353−6359.
- Evdokimov, A.A., Zinov’ev, V.V., Kuznetsov, V.V., Netesova, N.A., and Malygin, E.G. (2009). Design of oligonucleotide inhibitors of the human DNA-methy ?transferase 1. Mol Biol (Mosk) 43, 418−425.
- Fang, M.Z., Chen, D., Sun, Y., Jin, Z., Christman, J.K., and Yang, C.S. (2005). Reversal of hypermethylation and reactivation of pl6INK4a, RARbeta, and MGMT genes by genistein and other isoflavones from soy. Clin Cancer Res 11, 7033−7041.
- Siedlecki, P., Garcia Boy, R., Musch, T., Brueckner, B., Suhai, S., Lyko, F., and Zielenkiewicz, P. (2006). Discovery of two novel, small-molecule inhibitors of DNA methylation. J Med Chem 49, 678−683.
- Suzuki, Т., Tanaka, R., Hamada, S., Nakagawa, H., and Miyata, N. (2010). Design, synthesis, inhibitory activity, and binding mode study of novel DNA methyltransferase 1 inhibitors. Bioorg Med Chem Lett 20, 1124−1127.
- Villar-Garea, A., Fraga, M.F., Espada, J., and Esteller, M. (2003). Procaine is a DNA-demethylating agent with growth-inhibitory effects in human cancer cells. Cancer Res 63, 4984−4989.
- Lee, B.H., Yegnasubramanian, S., Lin, X., and Nelson, W.G. (2005). Procainamide is a specific inhibitor of DNA methyltransferase 1. J Biol Chem 280, 40 749−40 756.
- Castellano, S., Kuck, D., Sala, M" Novellino, E., Lyko, F., and Sbardella, G. (2008). Constrained analogues of procaine as novel small molecule inhibitors of DNA methyltransferase-1. J Med Chem 51, 2321−2325.
- Lin, R.K., Hsu, C.H., and Wang, Y.C. (2007). Mithramycin A inhibits DNA methyltransferase and metastasis potential of lung cancer cells. Anticancer Drugs 18, 1157−1164.
- Yokochi, Т., and Robertson, K.D. (2004). Doxorubicin inhibits DNMT1, resulting in conditional apoptosis. Mol Pharmacol 66, 1415−1420.
- Adams, R.L., and Rinaldi, A. (1987). Effect of echinomycin on DNA methylation. FEBS Lett 215, 266−268.
- Shvachko, L.P. (2008). Alterations of constitutive pericentromeric heterochromatin in lymphocytes of cancer patients and lymphocytes exposed to 5-azacytidine is associated with DNA-hypomethylation. Exp Oncol 30, 230−234.
- Киселева, Н.П., Киселев, Ф.Л. (2005). Деметилирование ДНК и канцерогенез. Биохимия 70, 900−911.
- Vilkaitis, G., Merkiene, Е., Serva, S., Weinhold, E., and Klimasauskas, S. (2001). The mechanism of DNA cytosine-5 methylation. Kinetic and mutational dissection of Hhai methyltransferase. J Biol Chem 276, 20 924−20 934.
- Cheng, X., and Roberts, R.J. (2001). AdoMet-dependent methylation, DNA methyltransferases and base flipping. Nucleic Acids Res 29, 3784−3795.
- Bender, C.M., Zingg, J.M., and Jones, P.A. (1998). DNA methylation as a target for drug design. Pharm Res 15, 175−187.
- Wu, J.C., and Santi, D.V. (1987). Kinetic and catalytic mechanism of Hhai methyltransferase. J Biol Chem 262,4778−4786.
- Chen, L., MacMillan, A.M., and Verdine, G.L. (1993). Mutational Separation of DNA Binding from Catalysis in a DNA Cytosine Methytransferase. J. Am. Chem. Soc. 115, 5318−5319.
- Subach, O.M., Khoroshaev, A.V., Gerasimov, D.N., Baskunov, V.B., Shchyolkina, A.K., and Gromova, E.S. (2004). 2-Pyrimidinone as a probe for studying the EcoRII DNA methyltransferase-substrate interaction. Eur J Biochem 271, 2391−2399.
- Jones, P.A., and Taylor, S.M. (1980). Cellular differentiation, cytidine analogs and DNA methylation. Cell 20, 85−93.
- Constantinides, P.G., Jones, P.A., and Gevers, W. (1977). Functional striated muscle cells from non-myoblast precursors following 5-azacytidine treatment. Nature 267, 364 366.
- Cheng, J.C., Matsen, C.B., Gonzales, F.A., Ye, W., Greer, S., Marquez, V.E., Jones, P.A., and Selker, E.U. (2003). Inhibition of DNA methylation and reactivation of silenced genes by zebularine. J Natl Cancer Inst 95, 399−409.
- Lee, W.J., and Kim, H.J. (2007). Inhibition of DNA methylation is involved in transdifferentiation of myoblasts into smooth muscle cells. Mol Cells 24, 441−444.
- Santi, D.V., Norment, A., and Garrett, C.E. (1984). Covalent bond formation between a DNA-cytosine methy transferase and DNA containing 5-azacytosine. Proc Natl Acad Sci U S A 81, 6993−6997.
- Abeles, R.H., and Alston, T.A. (1990). Enzyme inhibition by fluoro compounds, J Biol Chem. 265, 16 705−16 708.
- Chen, L., MacMillan, A.M., Chang, W., Ezaz-Nikpay, K., Lane, W.S., and Verdine, G.L. (1991). Direct identification of the active-site nucleophile in a DNA (cytosine-5)-methytransferase. Biochemistry 30, 11 018−11 025.
- Friedman, S., and Ansari, N. (1992). Binding of the EcoRII methyltransferase to 5-fluorocytosine-containing DNA. Isolation of a bound peptide. Nucleic Acids Res 20, 3241−3248.
- Smith, S.S., Kaplan, B.E., Sowers, L.C., and Newman, E.M. (1992). Mechanism of human methyl-directed DNA methyltransferase and the fidelity of cytosine methylation. Proc Natl Acad Sci U S A 89, 4744−4748.
- Klimasauskas, S., Kumar, S., Roberts, R.J., and Cheng, X. (1994). Hhal methyltransferase flips its target base out of the DNA helix. Cell 76, 357−369.
- Gabbara, S., Sheluho, D., and Bhagwat, A.S. (1995). Cytosine methyltransferase from Escherichia coli in which active site cysteine is replaced with serine is partially active. Biochemistry 34, 8914−8923.
- Champion, C., Guianvarc’h, D., Senamaud-Beaufort, C., Jurkowska, R.Z., Jeltsch, A., Ponger, L., Arimondo, P.B., and Guieysse-Peugeot, A.L. (2010). Mechanistic insights on the inhibition of c5 DNA methyltransferases by zebularine. PLoS One 5. el2388.
- Dong, A., Yoder, J.A., Zhang, X., Zhou, L., Bestor, T.H., and Cheng, X. (2001). Structure of human DNMT2, an enigmatic DNA methy? transferase homolog that displays denaturant-resistant binding to DNA. Nucleic Acids Res 29, 439−448.
- Sorm, F., Piskala, A., Cihak, A., and Vesely, J. (1964). 5-Azacytidine, a new, highly effective cancerostatic. Experientia 20, 202−203.
- Issa, J.P. (2005). Optimizing therapy with methylation inhibitors in myelodysplastic syndromes: dose, duration, and patient selection. Nat Clin Pract Oncol 2 Suppl I, S24−29.
- Herman, J.G., and Baylin, S.B. (2003). Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349, 2042−2054.
- Juttermann, R., Li, E., and Jaenisch, R. (1994). Toxicity of 5-aza-2'-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methy transferase rather than DNA demcthylation, Proc Natl Acad Sci U S A 91,11 797−11 801.
- Li, L.H., Olin, E.J., Buskirk, H.H., and Reineke, L.M. (1970). Cytotoxicity and mode of action of 5-azacytidine on L1210 leukemia. Cancer Res 30, 2760−2769.
- Yoo, C.B., Jeong, S., Egger, G., Liang, G., Phiasivongsa, P., Tang, C., Redkar, S., and Jones, P.A. (2007). Delivery of 5-aza-2'-deoxycytidine to cells using oligodeoxynucleotides. Cancer Res 67, 6400−6408.
- Beisler, J.A. (1978). Isolation, characterization, and properties of a labile hydrolysis product of the antitumor nucleoside, 5-azacytidine. J Med Chem 21, 204−208.
- McGregor, D.B., Brown, A.G., Cattanach, P., Shepherd, W., Riach, C., Daston, D.S., and Caspary, W.J. (1989). TFT and 6TG resistance of mouse lymphoma cells to analogs of azacytidine. Carcinogenesis 10, 2003−2008.
- Cheng, J.C., Weisenberger, D.J., Gonzales, F.A., Liang, G" Xu, G.L., Hu, Y.G., Marquez, V.E., and Jones, P.A. (2004). Continuous zebularine treatment effectively sustains demethylation in human bladder cancer cells. Mol Cell Biol 24, 1270−1278.
- Cheng, J.C., Yoo, C.B., Weisenberger, D.J., Chuang, J., Wozniak, C., Liang, G., Marquez, V.E., Greer, S., Orntoft, T.F., Thykjaer, Т., and Jones, P.A. (2004). Preferential response of cancer cells to zebularine. Cancer Cell 6, 151−158.
- Newman, E.M., and Santi, D.V. (1982). Metabolism and mechanism of action of 5-fluorodeoxycytidine. Proc Natl Acad Sci U S A 79, 6419−6423.
- O’Gara, M., Roberts, R.J., and Cheng, X. (1996). A structural basis for the preferential binding of hemimethylated DNA by Hhal DNA methyltransferase. J Mol Biol 263, 597 606.
- O’Gara, M., Klimasauskas, S., Roberts, R.J., and Cheng, X. (1996). Enzymatic C5-cytosine methylation of DNA: mechanistic implications of new crystal structures for Hhal methyltransferase-DNA-AdoHcy complexes. J Mol Biol 261, 634−645.
- Громова, E.C., Хорошаев. A.E. (2003). Прокариотические ДНК-метилтрансферазы: структура и механизм взаимодействия с ДНК. Молекуляр. биология 37, 300−314.
- Wyszynski, M.W., Gabbara, S., and Bhagwat, A.S. (1992). Substitutions of a cysteine conserved among DNA cytosine methylases result in a variety of phenotypes. Nucleic Acids Res 20, 319−326.
- Robert, M.F., Morin, S., Beaulieu, N., Gauthier, F., Chute, I.C., Barsalou, A., and MacLeod, A.R. (2003). DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells. Nat Genet 33, 61−65.
- Brueckner, В., and Lyko, F. (2004). DNA methyltransferase inhibitors: old and new drugs for an epigenetic cancer therapy. Trends Pharmacol Sci 25, 551−554.
- Lyko, F., and Brown, R. (2005). DNA methyltransferase inhibitors and the development of epigenetic cancer therapies, J Natl Cancer Inst 97, 1498−1506.
- Stresemann, C., Brueckner, B., Musch, T., Stopper, H., and Lyko, F. (2006). Functional diversity of DNA methyltransferase inhibitors in human cancer cell lines. Cancer Res 66, 2794−2800.
- Kim, D., Lee, I.S., Jung, J.H., Lee, C.O., and Choi, S.U. (1999). Psammaplin A, a natural phenolic compound, has inhibitory effect on human topoisomerase II and is cytotoxic to cancer cells. Anticancer Res 19,4085−4090.
- Goll, M.G., and Bestor, T.H. (2005). Eukaryotic cytosine methyltransferases. Annu Rev Biochem 74, 481−514.
- Chen, S.M., Leupin, W., Ranee, M., and Chazin, W.J. (1992). Two-dimensional NMR studies of d (GGTTAATGCGGT).d (ACCGCATTAACC) complexed with the minor groove binding drug SN-6999. Biochemistry 31,4406−4413.
- Adams, A., Leong, C., Denny, W.A., and Guss, J.M. (2005). Structures of two minor-groove-binding quinolinium quaternary salts complexed with d (CGCGAATTCGCG)(2) at 1.6 and 1.8 Angstrom resolution. Acta Crystallogr D Biol Crystallogr 61, 1348−1353.
- Patel, K., Dickson, J., Din, S., Macleod, K., Jodrell, D., and Ramsahoye, B. Targeting of 5-aza-2'-deoxycytidine residues by chromatin-associated DNMT1 induces proteasomal degradation of the free enzyme. Nucleic Acids Res 38, 4313−4324.
- Brana, M.F., Cacho, M., Gradillas, A., de Pascual-Teresa, B., and Ramos, A. (2001). Intercalators as anticancer drugs. Curr Pharm Des 7, 1745−1780.
- Carter, S.K. (1975). Adriamycin-a review. J Natl Cancer Inst 55, 1265−1274.
- Hickman, J.A. (1992). Apoptosis induced by anticancer drugs. Cancer Metastasis Rev 11, 121−139.
- Kiechle, F.L., and Zhang, X. (2002). Apoptosis: biochemical aspects and clinical implications. Clin Chim Acta 326, 27−45.
- Hsieh, C.L. (2005). The de novo methylation activity of Dnmt3a is distinctly different than that of Dnmtl. BMC Biochem 6, 6.
- Gowher, H., and Jeltsch, A. (2001). Enzymatic properties of recombinant Dnmt3a DNA methyltransferase from mouse: the enzyme modifies DNA in a non-processive manner and also methylates non-CpG sites. J Mol Biol 309, 1201−1208.
- Kumar, S., Cheng, X., Klimasauskas, S., Mi, S., Posfai, J., Roberts, R.J., and Wilson, G.G. (1994). The DNA (cytosine-5) methyltransferases. Nucleic Acids Res 22, 1−10.
- Posfai, J., Bhagwat, A.S., Posfai, G., and Roberts, R.J. (1989). Predictive motifs derived from cytosine methyltransferases. Nucleic Acids Res 17, 2421−2435.
- Xie, S., Wang, Z" Okano, M., Nogami, M" Li, Y" He, W.W., Okumura, K" and Li, E. (1999). Cloning, expression and chromosome locations of the human DNMT3 gene family. Gene 236, 87−95.
- Gowher, H., and Jeltsch, A. (2002). Molecular enzymology of the catalytic domains of the Dnmt3a and Dnmt3b DNA methyltransferases. J Biol Chem 277, 20 409−20 414.
- Bourc’his, D., Xu, G.L., Lin, C.S., Bollman, B., and Bestor, T.H. (2001). Dnmt3L and the establishment of maternal genomic imprints. Science 294, 2536−2539.
- Hata, K., Okano, M., Lei, H., and Li, E. (2002). Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development 129, 1983−1993.
- Chedin, F., Lieber, M.R., and Hsieh, C.L. (2002). The DNA methyltransferase-like protein DNMT3L stimulates de novo methylation by Dnmt3a. Proc Natl Acad Sci U S A 99,16 916−16 921.
- Suetake, I., Shinozaki, F., Miyagawa, J., Takeshima, H., and Tajima, S. (2004). DNMT3L stimulates the DNA methylation activity of Dnmt3a and Dnmt3b through a direct interaction. J Biol Chem 279, 27 816−27 823.
- Gowher, H., Liebert, K., Hermann, A., Xu, G., and Jeltsch, A. (2005). Mechanism of stimulation of catalytic activity of Dnmt3A and Dnmt3B DNA-(cytosine-C5)-methyltransferases by Dnmt3L. J Biol Chem 280. 13 341−13 348.
- Kareta, M.S., Botello, Z.M., Ennis, J.J., Chou, C., and Chedin, F. (2006). Reconstitution and mechanism of the stimulation of de novo methylation by human DNMT3L. J Biol Chem 281, 25 893−25 902.
- Jia, D., Jurkovvska, R.Z., Zhang, X., Jeltsch, A., and Cheng, X. (2007). Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature 449, 248−251.
- Lin, I.G., Han, L., Taghva, A., O’Brien, L.E., and Hsieh, C.L. (2002). Murine de novo methyltransferase Dnmt3a demonstrates strand asymmetry and site preference in the methylation of DNA in vitro. Mol Cell Biol 22, 704−723.
- Cheng, X., and Blumenthal, R.M. (2008). Mammalian DNA methyltransferases: a structural perspective. Structure 16, 341−350.
- Nur, 1., Szyf, M., Razin, A., Glaser, G., Rottem, S., and Razin, S. (1985). Procaryotic and eucaryotic traits of DNA methylation in spiroplasmas (mycoplasmas). J Bacteriol 164, 19−24.
- Pradhan, S., and Roberts, R.J. (2000). Hybrid mouse-prokaryotic DNA (cytosine-5) methyltransferases retain the specificity of the parental C-terminal domain. Embo J 19, 2103−2114.
- Дарий, М.В., Кирсанова, О.В., Друца, В.Л., Кочетков, С.Н., Громова, Е.С. (2007). Выделение и сайт-направленный мутагенез ДНК-метилтрансферазы Sssl. Молекулярная биология 41, 121−129.
- Teng, M.K., Usman, N., Frederick, C.A., and Wang, A.H. (1988). The molecular structure of the complex of Hoechst 33 258 and the DNA dodecamer d (CGCGAATTCGCG). Nucleic Acids Res 16, 2671−2690.
- Streltsov, S.A., Gromyko, A.V., Oleinikov, V.A., and Zhuze, A.L. (2006). The Hoechst 33 258 covalent dimer covers a total turn of the double-stranded DNA. J Biomol Struct Dyn 24, 285−302.
- Громыко, A.B. (2009). ДНК-специфичные лиганды на основе димеров Хёхста 33 258. Диссертация на соискание ученой степени кандидата химических наук.
- Pjura, P.E., Grzeskowiak, К., and Dickerson, R.E. (1987). Binding of Hoechst 33 258 to the minor groove of B-DNA. J Mol Biol 197, 257−271.
- Streltsov, S.A., and Zhuze, A.L. (2008). Hoechst 33 258-poly (dG-dC).poly (dG-dC) complexes of three types. J Biomol Struct Dyn 26, 99−114.
- Chen, A.Y., Yu, C., Gatto, В., and Liu, L.F. (1993). DNA minor groove-binding ligands: a different class of mammalian DNA topoisomerase I inhibitors. Proc Natl Acad Sei U S A 90, 8131−8135.
- Link, A., and Tempel, К. (1991). Inhibition of 06-alkylguanine-DNA alkyltransferase and DNase I activities in vitro by some alkylating substances and antineoplastic agents. J Cancer Res Clin Oncol 117, 549−555.
- Selby, C.P., and Sancar, A. (1991). Noncovalent drug-DNA binding interactions that inhibit and stimulate (A)BC excinuclease. Biochemistry 30, 3841−3849.
- Ivanov, A.A., Strel’tsov, S.A., Prikazchikova, T.A., Gottikh, M.B., and Zhuze, A.L. (2008). Synthesis and properties of a symmetric dimeric bisbenzimidazole, a DNA-specific ligand. Bioorg Khim 34, 285−288.
- Королев, С.П., Ташлицкий, B.H., Смолов, M.A., Громыко, A.B., Жузе, A.JI., Агапкина, and Готтих, М.Б. (2010). Ингибирование интегразы ВИЧ-1 димерными бисбензимидазолами с различной структурой линкера. Молекуляр. биология 44, 718−727.
- Turner, P.R., and Denny, W.A. (1996). The mutagenic properties of DNA minor-groove binding ligands. Mutat Res 355, 141−169.
- Кирсанова, O.B., Черепанова, H.A., Громова, E.C. (2009). Ингибирование C5-цитозин-ДНК-метилтрансфераз. Биохимия 74, 1445−1458.
- Billam, М., Sobolewski, M.D., and Davidson, N.E. (2009). Effects of a novel DNA methyltransferase inhibitor zebularine on human breast cancer cells. Breast Cancer Res Treat.
- Baubec, Т., Pecinka, A., Rozhon, W., and Mittelsten Scheid, O. (2009). Effective, homogeneous and transient interference with cytosine methylation in plant genomic DNA by zebularine. Plant J 57, 542−554.
- Gildea, В., and McLaughlin, L.W. (1989). The synthesis of 2-pyrimidinone nucleosides and their incorporation into oligodeoxynucleotides. Nucleic Acids Res 17, 2261−2281.
- Zhou, Y., and Ts’o, P.O. (1996). Solid-phase synthesis of oligo-2-pyrimidinone-2'-deoxyribonucleotides and oligo-2-pyrimidinone-2'-deoxyriboside methylphosphonates. Nucleic Acids Res 24, 2652−2659.
- Kaluzhny, D.N., Mikhailov, S.N., Efimtseva, E.V., Borisova, O.F., Florentiev, V.L., Shchyolkina, A.K., and Jovin, T.M. (2003). Fluorescent 2-pyrimidinone nucleoside in parallel-stranded DNA. Nucleosides Nucleotides Nucleic Acids 22, 1499−1503.
- Rathert, P., Rasko, Т., Roth, M., Slaska-Kiss, K., Pingoud, A., Kiss, A., and Jeltsch, A. (2007). Reversible inactivation of the CG specific SssI DNA (cytosine-C5)-methyltransferase with a photocleavable protecting group. Chembiochem 8, 202−207.
- Maltseva, D.V., Baykov, A.A., Jeltsch, A., and Gromova, E.S. (2009). Impact of 7,8-dihydro-8-oxoguanine on methylation of the CpG site by Dnmt3a. Biochemistry 48, 1361−1368.
- Мальцева, Д.В., Громова, E.C. (2010). Взаимодействие Dnmt3a мыши с ДНК, содержащей Об-метилгуанин. Биохимия 75, 214−223.
- Ford, K., Taylor, C., Connolly, В., and Hornby, D.P. (1993). Effects of co-factor and deoxycytidine substituted oligonucleotides upon sequence-specific interactions between Mspl DNA methyltransferase and DNA. J Mol Biol 230, 779−786.
- Евдокимов, A.A., Зиновьев, B.B., Кузнецов, B.B., Нетесова, H.A., Малыгин, Э.Г. (2009). Конструирование олигонуклеотидных ингибиторов ДНК-метилтрансферазы 1 человека. Молекуляр. биология 43, 455−463.
- Roberts, R.J., and Cheng, X. (1998). Base flipping. Annu Rev Biochem 67, 181−198.
- Holz, В., Klimasauskas, S., Serva, S., and Weinhold, E. (1998). 2-Aminopurine as a fluorescent probe for DNA base flipping by methyltransferases. Nucleic Acids Res 26, 1076−1083.
- Allan, B.W., and Reich, N.O. (1996). Targeted base stacking disruption by the EcoRI DNA methyltransferase. Biochemistry 35, 14 757−14 762.
- Martin, C.T., Ujvari, A., and Liu, C. (2003). Evaluation of fluorescence spectroscopy methods for mapping melted regions of DNA along the transcription pathway. Methods Enzymol 371, 13−33.
- Daujotyte, D., Liutkeviciute, Z., Tamulaitis, G., and Klimasauskas, S. (2008). Chemical mapping of cytosines enzymatically flipped out of the DNA helix. Nucleic Acids Res 36, e57.
- Reinisch, K.M., Chen, L., Verdine, G.L., and Lipscomb, W.N. (1995). The crystal structure of Haelll methytransferase convalently complexed to DNA: an extrahelical cytosine and rearranged base pairing. Cell 82, 143−153.
- Sharma, V., Youngblood, B., and Reich, N. (2005). Residues distal from the active site that alter enzyme function in M. Hhal DNA cytosine methyltransferase. J Biomol Struct Dyn 22, 533−543.
- Koudan, E.V., Bujnicki, J.M., and Gromova, E.S. (2004). Homology modeling of the CG-specific DNA methyltransferase SssI and its complexes with DNA and AdoHcy. J Biomol Struct Dyn 22, 339−345.
- Vilkaitis, G., Dong, A., Weinhold, E., Cheng, X., and Klimasauskas, S. (2000). Functional roles of the conserved threonine 250 in the target recognition domain of Hhal DNA methyltransferase. J Biol Chem 275, 38 722−38 730.
- Estabrook, R.A., Lipson, R., Hopkins, B., and Reich, N. (2004). The coupling of tight DNA binding and base flipping: identification of a conserved structural motif in base flipping enzymes. J Biol Chem 279, 31 419−31 428.
- Daujotyte, D., Serva, S., Vilkaitis, G., Merkiene, E., Venclovas, C., and Klimasauskas, S. (2004). Hhal DNA methyltransferase uses the protruding Gln237 for active flipping of its target cytosine. Structure 12, 1047−1055.
- Shieh, F.K., Youngblood, B., and Reich, N.O. (2006). The role of Argl65 towards base flipping, base stabilization and catalysis in M.Hhal. J Mol Biol 362, 516−527.
- Lau, E.Y., and Bruice, T.C. (1999). Active site dynamics of the Hhal methyltransferase: insights from computer simulation. J Mol Biol 293, 9−18.
- Cantor, C.R., Warshaw, M.M., and Shapiro, H. (1970). Oligodeoxynucleotide interactions: III. Circular dichroism studies of the conformation of deoxyoligodeoxynucleotides. Biopolymers 9, 1059−1077.
- Inoue, H., Nojima, H., and Okayama, H. (1990). High efficiency transformation of Escherichia coli with plasmids. Gene 96, 23−28.