Помощь в написании студенческих работ
Антистрессовый сервис

Фосфиды в высокометалльных метеоритах

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Хотя представляемая работа не имеет технологической направленности, хотелось бы отметить ряд областей техники, в которых соединения системы Fe-Ni-Р находят промышленное применение. Наиболее известным материалом в данной системе является серый фосфорсодержащий чугун. В силу его высокой твёрдости и износостойкости он является основным материалом в производстве цилиндров двигателей внутреннего… Читать ещё >

Фосфиды в высокометалльных метеоритах (реферат, курсовая, диплом, контрольная)

Содержание

  • 1. Общие сведения
    • 1. 1. Классификация метеоритов
    • 1. 2. Высокометалльные метеориты
    • 1. 3. Структурная классификация высокометалльных метеоритов
    • 1. 4. Химическая классификация железных метеоритов
    • 1. 5. Классификация палласитов и мезосидеритов
    • 1. 6. Фосфор в веществе Солнечной системы
    • 1. 7. Минералы фосфора в метеоритах
  • 2. Фазовые взаимоотношения в системе Ре-Ш-Р
    • 2. 1. Общие сведения
    • 2. 2. Кристаллизация расплавов Бе-Р, №-Р и Ре-№-Р
    • 2. 3. Твердофазные синтезы
    • 2. 4. Природные фосфиды Ре и №
  • 3. Методы исследования, использованные в работе
  • 4. Фосфиды в высокометалльных метеоритах
    • 4. 1. Общие сведения
    • 4. 2. Шрейберзит — никельфосфид Ре3Р — №зР
      • 4. 2. 1. История изучения
      • 4. 2. 2. Распространение в природе
      • 4. 2. 3. Парагенезисы в высокометалльных метеоритах
        • 4. 2. 3. 1. Гексаэдриты
        • 4. 2. 3. 2. Октаэдриты
        • 4. 2. 3. 3. Высоконикелистые атакситы
        • 4. 2. 3. 4. Палласиты
        • 4. 2. 3. 5. Мезосидериты
      • 4. 2. 4. Оптические и магнитные свойства
      • 4. 2. 5. Рентгенография и кристаллическая структура
    • 4. 3. Баррингерит а-(Ре,№)2Р
      • 4. 3. 1. История изучения и распространение в природе
      • 4. 3. 2. Химический состав
      • 4. 3. 3. Оптические и магнитные свойства
      • 4. 3. 4. Рентгенография и кристаллическая структура
    • 4. 4. Аллабогданит /2-(Fe, Ni)2P
      • 4. 4. 1. История открытия
      • 4. 4. 2. Ассоциация, морфология и физические свойства
      • 4. 4. 3. Химический состав
      • 4. 4. 4. Рентгенография и кристаллическая структура
      • 4. 4. 5. Топология структуры аллабогданита
      • 4. 4. 6. Структуры аллабогданита и баррингерита
      • 4. 4. 7. Взаимосвязь с другими минералами
      • 4. 4. 8. Аллабогданит в других метеоритах
  • 5. Вопросы генезиса высокометалльных метеоритов

Актуальность представляемой работы.

Настоящая работа посвящена одному из аспектов минералогии небольшого, однако весьма интересного с научной точки зрения семейства метеоритов. Этожелезные и железо-каменные метеориты. Для данных метеоритов был предложен (Wasson 1974) и используется в литературе обобщающий термин «metal-rich meteorites», в адаптации к русскому языку переводимый как «высокометалльные метеориты». Отличительной особенностью этих метеоритов является присутствие в их составе, помимо прочих минералов, значительного количества самородного никелистого железа. Благодаря данному обстоятельству рассматриваемые метеориты резко выделяются па общем фоне как большинства земных пород, так и других классов метеоритов. В настоящее время общепринятой является точка зрения, что железные и железо-каменные метеориты представляют собой образцы вещества из внутренних оболочек космических тел пояса астероидов (Buchwald 1975; Mittlefehldt et al. 1998). Фактически, это единственный источник информации о вероятном составе ядер малых планет. В связи с этим изучение их минералогии представляет фундаментальный интерес. И хотя за последние 50 лет высокометалльным метеоритам посвящено множество работ, количество нерешённых вопросов остаётся значительным.

Один из таких малоизученных аспектов — минералогия специфического для метеоритов класса минералов, фосфидов. Это — соединения, содержащие фосфор в отрицательной степени окисления. Как известно, в породах земной коры и верхней маитии Земли, доступных нашему изучению, минералы фосфора представлены фосфатами, а фосфиды являются экзотическими фазами. Известны лишь единичные земные находки шрейберзита Fe3P (Lofquist and Benediks 1941; Бородаев и др. 1982) и баррипгерита a-Fe2P (Ерёменко и др. 1974; Chen et al. 1983; Yang et al. 2005). В отличие от земных пород, в метеоритах фосфиды представлены весьма широко. Они присутствуют во многих группах каменных метеоритов, а в железных и железо-каменных являются основными соединениями фосфора (Buchwald 1975). Широкое распространение фосфидов в метеоритном веществе связано, очевидно, с восстановительными условиями его образования. Весьма вероятно, что аналогичные условия имеют место во внутренних геосферах Земли.

В таком случае изучение минералогии высокометалльных метеоритов дает возможность моделировать вероятный фазовый состав внутренних оболочек нашей планеты.

Следует отметить, что минералогии класса фосфатов в железных и железо-каменных метеоритах посвящено достаточное количество работ, в том числе ряд обзоров по палласитам (Buseck 1977; Buseck and Holdsworth 1977) и собственно железным метеоритам (Olsen and Fredriksson 1966; Buchwald 1984; Olsen et al. 1999). В то же время, работы по минералогии фосфидов посвящены почти исключительно метеоритам двух структурных групп — грубоструктурным октаэдритам и гексаэдритам (Vogel 1952; Goldstein and Ogilvie 1963; Reed 1965; Doan and Goldstein 1969; Clarke and Goldstein 1978). Систематических работ по фосфидам в других структурных группах железных метеоритов, а также в палласитах и мезосидеритах, автору найти не удалось.

Железные и железо-каменные метеориты, в силу ряда естественных причин, предоставляют прекрасную возможность для выявления фазовых взаимоотношений фосфидов и металла. Весьма низкие скорости кристаллизации вещества, имевшие место в метеоритах (Wasson 1974), дают возможность изучать равновесные фазовые отношения этих минералов, что в большинстве случаев (особенно при низких температурах) недостижимо в экспериментальных условиях. Хотя аппроксимация условий кристаллизации метеоритного металла на искусственные системы имеет ряд ограничений, это единственный доступный способ наблюдать, например, результаты процессов диффузии элементов на границах раздела фаз, а также изучать соединения с упорядоченным распределением весьма близких по свойствам элементов — Fe и Ni (Goldstein and Ogilvie 1963; Reed 1965; Clarke and Goldstein 1978; Reuter et al. 1988; Skala and Cisarova 2005; Geist et al. 2005).

Хотя представляемая работа не имеет технологической направленности, хотелось бы отметить ряд областей техники, в которых соединения системы Fe-Ni-Р находят промышленное применение. Наиболее известным материалом в данной системе является серый фосфорсодержащий чугун. В силу его высокой твёрдости и износостойкости он является основным материалом в производстве цилиндров двигателей внутреннего сгорания автомобилей (Andersson et al. 2002). По этой же причине высокофосфористый чугун используется для изготовления тормозных колодок для железнодорожного транспорта (Машраеу 2003). В последнее время фосфиды Fe и Ni интенсивно изучаются и уже применяются в качестве эффективных катализаторов, используемых в органическом синтезе при каталитическом гидрировании (Wang 2002; Oyama 2003). Синтетические фосфаты группы трифилина LIMPO4 (М = Fe, Ni, Со), частично восстановленные до фосфидов М2Р и М3Р, являются вероятными материалами для изготовления анодов в новом поколении литий-ионных батарей (Tarascon and Armand 2001). Аморфные сплавы Fe-Ni-P («фосфидные стёкла») используются при изготовлении так называемых «мягких магнитов», применяемых в целом спектре электромагнитных устройств (Smith 1993).

Цель исследования.

Целью исследования явилась по возможности полная минералогическая и кристаллохимическая характеристика ассоциаций фосфидов в железных и железо-каменных метеоритах. В особенности это касается тех структурных групп метеоритов, в которых минералогия фосфидов практически не изучена или представлена эпизодическими работами. Это средне-, тонкоструктурные и плесситовые октаэдриты, высоконикелистые атакситы, палласиты и мезосидериты.

Основные задачи.

В соответствии с целыо исследования основными задачами явились:

1. Выделение морфологических типов фосфидов в высокометалльных метеоритах и изучение их химического состава;

2. Исследование кристаллической структуры и кристаллохимии природных фосфидов, в особенности минералов, ранее неизученных в данном аспектепикельфосфида и баррингерита;

3. Получение отсутствующих в литературе данных о физических свойствах минералов класса фосфидов.

Объекты исследования.

Большая часть метеоритов, представленных в настоящей диссертации, была предоставлена для исследования Горным музеем Санкт-Петербургского горного.

Таблица 1.

Распределение представленных в работе метеоритов по химическим группам.

Grady (2000) Работа Отн. %.

Железо-каменные.

Мезосидериты 66 4 6.

Палласиты 52 10 19.

Всего 118 14 12.

Железные.

IAB 131 11 8.

1С 11 1 9.

IIAB 103 11 11.

ИС 8 0 0.

IID 16 1 6.

НЕ 18 4 22.

IIF 5 1 20.

IIIAB 230 20 9.

IIICD 41 8 20.

IIIE 13 2 15.

IIIF 6 0 0.

IVA 64 0 0.

IVB 13 0 0.

Неклассифицированные 254 8 3.

Всего 913 67 7.

Общее количество 1031 81 8 института (Технического университета). Совместная работа по изучению коллекции проводилась в рамках договора о сотрудничестве с геологическим факультетом Санкт-Петербургского государственного университета. Около 15 метеоритов, отсутствующих в коллекции Горного музея, но весьма интересных с научной точки зрения, были переданы для изучения коллекционерами из Европы и США. Всего в работе с различной степенью детальности изучен 81 метеорит, что составляет около 8% от общего числа известных в настоящее время железных и железо-каменных метеоритов (Grady 2000). Распределение изучавшихся образцов по химическим группам приведено в таблице 1. Как видим, в работе представлено большинство химических групп. Представителей редких групп НС и IIIF получить для исследования не удалось. Изучались, по не включены в работу 6 метеоритов группы IVAB, с низким содержанием фосфора — Бодайбо, Obernkirchen, Bishop Canyon, Putnam County, Gibeon, Чинга, поскольку ни в одном из указанных метеоритов фосфиды не были обнаружены. Размер образцов, имевшихся в нашем с коллегами распоряжении, составил в большинстве случаев от 0.5 до 2 см. Этого вполне достаточно для представительной характеристики фосфидов в среднеструктурных-плесситовых октаэдритах, а также атакситах, гексаэдритах и мезосидеритах. Как показал опыт работы, распределение фосфидных фаз в этих метеоритах достаточно равномерно. Для грубоструктурпых октаэдритов и тем более палласитов представительными могут быть признаны образцы размером 4−5 см и более. В данном случае, однако, как и большинство других исследователей, автор с коллегами были лимитированы редкостью и трудподоступностыо материала. Эта проблема вообще весьма характерна для исследований по метеоритам, многие из которых представлены единичными находками малой массы и поэтому практически недоступны для изучения, особенно с использованием деструктивных методов анализа. Следует отметить, что даже такие классические работы, как обзор Бьюсека по палласитам (Buseck 1977), проводились на аншлифах площадью ~1 см .

Помимо высокометалльных метеоритов, в целях сравнения был исследован никельфосфид из каменного метеорита — акапулькоита NWA 1054, а также земные фосфиды из метаморфической толщи Хатрурим, Израиль.

Научная новизна.

1. В высокометалльных метеоритах открыты и исследованы два новых минерала класса фосфидов — никельфосфид (Ni, Fe)3P (IMA 98−023) и аллабогданит /?-(Fe, Ni)2P (IMA 2000;038).

2. Расшифрована кристаллическая структура аллабогданитауточнены структуры никельфосфида и баррингерита.

3. Аллабогданит /ЦРе,№)2Р представляет собой новый фосфид в системе Fe-Ni-P, не поддающийся синтезу в искусственных условиях (Drabek 2006).

4. Никельфосфид (Ni, Fe)3P является типичным акцессорным минералом в метеоритах, а не экзотической фазой, как это считалось ранее (Pratesi et al. 2006).

5. На основании структурных данных выявлено, что замещение Fe на Ni в никельфосфиде разного генезиса происходит по разным изоморфным схемам, отличающимся различным упорядочением Fe и Ni по структурным позициям Ml, М2 и МЗ.

6. С изменением состава минералов ряда шрейберзит-никельфосфид изменяются их магнитные свойства. Точка Кюри (потеря ферромагнитности) соответствует 15−20 °С при 50(3) мол. % Ni3P.

7. На основании минералогических данных сделано предположение о первичной (немагматической) природе метеоритов — высоконикелистых атакситов.

Практическое значение.

В результате исследований открыта и изучена новая, ранее неизвестная фаза в практически важной системе Fe-Ni-P — аллабогданит /?-(Fe, Ni)2P. Данные об изученных минералах включены в банки данных ICSD (Inorganic Crystal Structure Database) и ICDD (International Commission on Diffraction Data). Полученные результаты могут быть использованы в дальнейшем при изучении минералогии тел пояса астероидов.

Защищаемые положения.

1. В высокометалльных метеоритах открыты и исследованы два новых минерала класса фосфидов — никельфосфид (Ni, Fe)3P (IMA 98−023) и аллабогданит ^(Fe, Ni)2P (IMA 2000;038).

2. Никельфосфид (Ni, Fe)3P является типичным акцессорным минералом в железных и железо-каменных метеоритах.

3. Расшифрована кристаллическая структура аллабогданита — новой полиморфной модификации (Fe, Ni)2Pуточнены структуры пикельфосфида и баррингерита.

4. Показано, что замещение Fe на Ni в никельфосфиде разного генезиса происходит по разным изоморфным схемам, отличающимся различным упорядочением Fe и Ni по структурным позициям Ml, М2 и МЗ.

Апробация работы и публикации.

Результаты исследований частично представлены на научной конференции «Минералогические музеи» (СПб, 2005). По теме диссертации опубликовано 4 работы, в том числе 3 статьи в журналах «Записки Всероссийского Минералогического общества» и «American Mineralogist» .

Объём и структура работы.

Работа состоит из введения, пяти глав, заключения и списка цитируемой литературы (257 наименований). Общий объём работы составляет 203 страницы, в том числе 53 рисунка и 47 таблиц.

Благодарности.

Представляемая работа оказалась бы невозможна без поддержки и дружеского участия многих коллег, которым автор выражает искреннюю благодарность. Коллектив Горного Музея Санкт-Петербургского Горного института (директор — покойный В.Д. Коломенский) участвовал в совместном изучении большинства метеоритов, представленных в диссертации. Благодарю также коллекционеров метеоритов (Erich Haiderer, Alain Carion), бескорыстно или за символическую плату предоставивших материал для работы. Коллеги из Геологического института КНЦ РАН — В. Н. Яковепчук, Г. Ю. Иванюк и П. М. Горяйнов — участвовали в обсуждении диссертации, а А. Н. Богданова и Е. Селиванова — в проведении рентгеновских исследований, также как и сотрудник Физико-Технического института РАН М. А. Яговкина. Ю. С. Полеховский, М. М. Болдырева и Ю. С. Шелухина (кафедра полезных ископаемых СПбГУ) оказали неоценимую помощь в изучении оптических свойств минералов. М. Н. Мурашко.

Систематическая минералогия) предоставил для исследования уникальные образцы земных фосфидов. Блестящие специалисты по микрозондовому анализуН.С. Рудашевский, Ю. Л. Крецер и Я. А. Пахомовский — познакомили автора с особенностями работы этим методом, а A.B. Антонов (Центр изотопных исследований ВСЕГЕИ) сделал большое количество анализов. Исследования оказались бы невозможны без помощи сотрудников рентгеновской лаборатории кафедры кристаллографии СПбГУ — Н. В. Платоновой, В. Б. Трофимова и О. С. Грунского. В особенности автор признателен своему научному консультанту C.B. Кривовичеву, без энергичной и неустанной поддержки которого данная работа никогда не увидела бы свет. Он же посвятил автора в мир монокристальных рентгеновских исследований, бескорыстную помощь в которых оказали также профессор Т. Армбрустер (Университет г. Берна, Швейцария), аспиранты А. Золотарёв и О. Сийдра. В заключение хотел бы поблагодарить свою жену, Е. В. Пономарёву, за участие и поддержку при подготовке диссертации.

Заключение

.

На основании изучения химических, физических свойств и кристаллической структуры фосфидов в выеокометалльных метеоритах автором сделан ряд наблюдений и получены новые результаты, связанные с некоторыми аспектами минералогии этих метеоритов.

1. В выеокометалльных метеоритах открыты и исследованы два новых минерала класса фосфидов — никельфосфид (Ni, Fe)3P (IMA 98−023) и аллабогданит y?(Fe, Ni)2P (IMA 2000;038).

2. Расшифрована кристаллическая структура аллабогданитауточнены структуры никельфосфида и баррингернта.

3. Аллабогданит /?-(Fe, Ni)2P представляет собой новый фосфид в системе Fe-Ni-P, не поддающимися синтезу в искусственных условиях (Drabek 2006). Его существование говорит о неполной изученности фазовых взаимоотношений в данной системе.

4. Никельфосфид (Ni, Fe)3P является типичным акцессорным минералом в метеоритах, а не экзотической фазой, как это считалось ранее (Pratesi et al. 2006). Минерал встречен в 42 метеоритах из 81 изученных, а в некоторых метеоритах (плссситовых октаэдритах и мезосидсритах) является единственным фосфидом.

5. На основании структурных данных выявлено, что замещение Fe на Ni в никельфосфиде разного генезиса происходит по разным изоморфным схемам, отличающимся различным упорядочением Fe и Ni по структурным позициям Ml, М2 и МЗ.

6. С изменением состава минералов ряда шрсйберзит-никельфосфид изменяются их магнитные свойства. Точка Кюри (потеря ферромагнитных свойств) соответствует 15−20 °С при 50(3) мол. % Ni3P.

7. На основании минералогических данных сделано предположение о первичной (немагматнчсской) природе метеоритов — высоконикелистых атакситов.

Показать весь текст

Список литературы

  1. Ю.С., Богданов Ю. А., Вяльсов JI.H. (1982) Новыя безникелевая разновидность шрейберзита Fe3P. Записки ВМО 111, вып. 6, 682−687.
  2. С.Н., Коломенский В. Д., Болдырева М. М., Богданова А. Н., Крецер Ю. Л., Болдырева О. Н., Рудашевский Н. С. (1999) Никельфосфид (Ni, Fe)3P никелевый аналог шрейберзита. Записки ВМО 128, вып. 3,64−72.
  3. С.Н., Рудашевский Н. С., Богданова А. Н., Щербачёв, Д.К. (1999) Палладодимит (Pd, Rh)2As новый минерал из россыпей реки Миасс, Урал. Записки ВМО 128, вып. 2, 39−42.
  4. П.А., Есин O.A. (1957) Процессы высокотемпературного восстановления. Металлургиздат, Свердловск.
  5. Л.И., Кашкаров Л. Л., Каврухина А. К., Юкина Л. В. (1972) Распределение урана в различных минералах метеоритов Сихотэ-Алинь, Гресск и Арус. Метеоритика 31, 137−140.
  6. Д.П., Крецер Ю. Л. (1983) Развитие шрейберзита и рабдита в метеорите Сихотэ-Алинь. Доклады АН СССР 270, 1192−1195.
  7. Г. К., Полканов Ю. А., Геворкян В. Х. (1974) Космогенные минералы в Полтавских месторождениях Конка-Ялынской депрессии в Северо-Азовском районе. Минералогия осадочных образований, вып. 1,66−76.
  8. С.Г., Пляшкевич A.A., Пляшкевич Л. Н., Сандомирская С. М. (1980) Железный метеорит Алискерово. Космическая минералогия. Материалы 11 съезда ММА, 73−85.
  9. Н.И., Дьяконова М. И., Харитонова В. Я., Хотинок Р. Л. (1977) Изучение железного метеорита Эгвекинот. Метеоритика 36, 53−58.
  10. Н.И., Колесов Г. М. (1980) Метеорит Лазарев. Метеоритика 39,64−69.
  11. Н.И., Колесов Г. М., Барсукова Л. Д., Мигдисова Л. Ф. (1984) Химико-минералогический состав и структура железных метеоритов Жиганск, Билибино и Анюйск. Метеоритика 43,30−35.
  12. Г. М., Кузнецова И. К. (1976) Железный метеорит Тобычан. Метеоритика 35,47−52.
  13. О.Н., Аксельруд Л. Г., Михаленко С. И., Кузьма Ю. В. (1987) Кристаллическая структура альфа-Г*П8Р3. Кристаллография 32, 50−55.
  14. М.А., Алиев В. И. (1961) Структура и состав железного метеоритного дождя Ярдымлы. Метеоритика 20,137−162.
  15. JI.Г. (1958) Минералогический состав и структура метеорного железа Сихотэ-Алинь. Метеоритика 16,49−58.
  16. Л.Г., Лаврентьев Ю. Г., Соболев Н. В. (1974) Силикатные включения и эффекты ударного метаморфизма в метеорите Элга. Метеоритика 33, 143−147.
  17. O.A. (1962) Минеральный состав и структура железного метеорита Сусуман. Метеоритика, 61−70.
  18. А.Г., Олейников Б. В. (2000) Фосфиды и фосфористые сульфиды из метеорита Онелло. Записки ВМО 129,37−43.
  19. А.Г., Олейников Б. В., Соболев Н. В., Сушко O.A. (1999) Новый железный метеорит Онелло уникальный высоконикелистый атаксит. Доклады РАН 368, 236−238.
  20. Г. П., Сошкина Л. Т., Заславская Н. И. (1982) Добреелит и его ассоциации в железных метеоритах Сихотэ-Алинь и Богуславка. Метеоритика 40, 131−133.
  21. Ю.Б., Милян В. В., Бондарчук О. П., Писарев А. Н. (1983) Новый фосфид (Fe, Ni, Cu)2P со структурой типа анти-РЬС12. Изв. АН СССР, серия Металлы 17, 195−196.
  22. , М.А., Брандштаттер, Ф., Курат, Г. (1998) Фосфидо-сульфиды и фосфиды в СМ хондритах. Геохимия, вып. 5,475−484.
  23. В.В., Томашевский H.A., Черногоренко В. Б., Соломатина Л. Я. (1982) Мёссбауэровская спектроскопия порошков фосфида железа. Порошковая металлургия 1, 57−61.
  24. Г. Ф., Савва Н. Е., Важенин Б. П. (1983) Новый метеорит Билибино. Метеоритика 42,49−54.
  25. Л.Н., Сандомирская С. М., Заславская Н. И. (1980) Минералогия и структура метеорита Эгвекинот. Метеоритика 39,70−78.
  26. A.A., Савва Н. Е., Павлов Г. Ф. (1991) Омолон, первый палласит с Северо-Востока СССР. Доклады АН СССР, сер. геолог., 318, 197−202.
  27. Г. В., Верейкина Л. Л. (1961) Фосфиды. Изд. АН СССР, Киев.
  28. A.B., Игнатенко К. И., Люль А. Ю., Лаврихина А. К. (1988) Ассоциация металлических частиц с CAI (кальций-алюминиевыми включениями) в CV хондрите Ефремовка. Метеоритика 47,95−105.
  29. И.А., Смышляев С. (1963) Минералогическое и химическое изучениежелезного метеорита Каалиярв. Eesti NSV Teaduste Akad. Geolog. Inst. Uurimused 11,53−59.
  30. A.A., Мигдиеова Л. Ф., Кононкова H.H. (1989) Минеральная ассоциация сульфидных нодулей железного метеорита Бурхала и условия её образования. Геохимия, вып. 6, 825−837.
  31. Agosto W.N., Hewins R.H., Clarke R.S., Jr. (1980) Allan Hills A77219, the first Antarctic mesosiderite. Proc. Lunar Planet. Conf. 11th, 1027−1045.
  32. S.O., Charnley N.R., Chinner G.A. (1998) Phosphoran olivine from Pine Canyon, Piute Co., Utah. Mineral. Mag. 62,265−269.
  33. Anderson P., Tamminen J., Sandstrom C.-E. (2002) Piston ring tribology. A literature survey. VTT Industrial Systems, Research notes 2178, Espoo, Finland, 105 pp.
  34. HJ., Goldstein J.I. (1972) Temperature-time relationships from lunar two phase mettallic particles (14 310, 14 163, 14 003). Earth Planet. Sei. Lett. 16,439−447.
  35. HJ., Waine C.V. (1971) A metallographic study of the Angra dos Reis (iron) meteorite. Mineral. Mag. 38,94−101.
  36. HJ., Smith P.L. (1972) Metallographic study of some iron meteorites of high nickel content. Mineral. Mag. 38, 736−755.
  37. Benedix G.K., McKoy T.J., Keil К., Love S.G. (2000) A petrologic study of the IAB iron meteorites: constraints on the formation of the IAB-winonaite parent body. Meteor. Planet. Sei. 35, 1127−1141.
  38. J.J. (1832) Undersokning af en vid Bohumiliz I Bohmen funnen jernmassa. Kongelige Svenska Vetenskaps-Academiens Handlingar, 106−119.
  39. J.J. (1832) Untersuchung der Bohumilitzer Eisenmasse. Zeitschrift fur Physik und Mathematik, Wein, 1,289−297.
  40. J.J. (1833) Untersuchung einer bie Bohumiliz in Bohmen gefundenen Masse. Annalen der Physik und Chemie 27, 118−132.
  41. JJ. (1834) Om Meteorstenar. Kongelige Svenska Vetenskaps-Academiens Handlingar, 115−183.
  42. J.J. (1834) Ueber Meteorsteinen, V: Pallas-Eisen und Pallas-Olivin, VI: Meteoreisen von Elbogen. Annalen der Physik und Chemie 33, 123−137.
  43. J.S., Davis A.M., Prinz M., Weisberg M.K., Clayton R.N., Mayeda Т.К. (2000) The pyroxene pallasites, Vermillion and Yamato 8451: Not quite a couple. Meteorit. Planet. Sei. 35, 757−769.
  44. J.S., Prinz M., Weisberg M.K., Davis A.M., Clayton R.N., Mayeda T.K., Wasson J.T. (1995) Pyroxene pallasites: A new pallasite grouplet. Meteoritics 30, 488— 489.
  45. Bogard D.D., Garrison D.H., McCoy T.J. (2000) Chronology and petrology of silicates from HE iron meteorites: Evidence of a complex parent body evolution. Geochim. Cosmochim. Acta 64,2133−2154.
  46. J.S., Hatherly M., Malin A.S. (1978) Iron-nickel superlattice formation by corrosion of Santa Catharina meteorite. Nature 276,168−169.
  47. F., Nazarov M.A., Kurat G. (2003) Barringerite from the Santa Catharina ungrouped iron meteorite. Lunar and Planetary Science XXXIV, abstr. 1681.
  48. F., Koeberl C., Kurat G. (1991) The discovery of iron barringerite in lunar meteorite Y-793 274. Geochim. Cosmochim. Acta 55,1173−1174.
  49. A.J., Jones R.H. (1998) Chondritic meteoritres. in: Papike, J.J. (Ed.), Reviews in Mineralogy, Planetary Materials, Vol. 36, Mineralogical Society of America, Washington pp. 3−1 to 3−398.
  50. S.N., Rudashevsky N.S., Krivovichev S.V., Burns P.C., Polekhovsky Y.S. (2002) Allabogdanite, (Fe, Ni)2P, a new mineral from the Onello meteorite: The occurrence and crystal structure. Amer. Mineral. 87, 1245−1249.
  51. V.F. (1966) The Iron-Nickel-Phosphorus System and the Structure of Iron Meteorites. Acta Polytechnica Scandinavica 51,45 pp.
  52. V.F. (1975) Handbook of iron meteorites. University of California Press, Berkeley.
  53. V.F. (1977) The mineralogy of iron meteorites. Phil. Trans. Roy. Soc. London, A286,453−491.
  54. V.F. (1984) Phosphate mineral in meteorites and lunar rocks. In Phosphate Minerals, Nriagu J.O., Moore P.B., editors, 199−214. Springer-Verlag, Berlin.
  55. V.F. (1990) A new mineral arupite, Ni3(P04)2*8H20, the nickel analog of vivianite. Neues Jahrb. Mineral. Monatsch. 1, 76−80.
  56. V.F., Nielsen H.P. (1981) Roaldite, a new nitride in iron meteorites. Lunar Planet. Sci. 12, 112−114.
  57. Burke E.A.J., Ferraris G. (2006) New minerals approved in 2006. Nomenclature modifications approved in 2006 by the Commission on New Minerals and Mineral Names, International Mineralogical Association. CNM IMA report 2006.
  58. Burns S., Hargreaves J.S.J., Hunter S.M. (2006) On the use of methane as a reductant inthe synthesis of transition metal phosphides. Catalysis Communications, doi: 10.1016/j .catcom.2006.10.001.
  59. P.R. (1969) Phosphide from meteorites: barringerite, a new iron-nickel mineral. Science 165,169−171.
  60. P.R. (1977) Pallasite meteorites Mineralogy, petrology and geochemistry. Geochim. Cosmochim. Acta 41,711−740.
  61. P.R., Clark J. (1984) Zaisho a pallasite containing pyroxene and phosphoran olivine. Mineral. Mag. 48,229−35.
  62. P.R., Goldstein J.I. (1969) Olivine compositions and cooling rates of pallasitic meteorites. Bull. Geol. Soc. Amer. 80,2141−2158.
  63. P.R., Holdsworth E. (1977) Phosphate minerals in pallasite meteorites. Mineral. Mag. 41,91−102.
  64. A., Laugier J., Penisson J.M. (1979) Electron irradiation effects on iron-nickel invar alloys. J. Magn. Magnetic Mater. 10, 139−144.
  65. Chao E.C.T., Dwornik E.J., Littler J. (1964) New data on the nickel-iron spherules from Southeast Asian tektites and their implications. Geochim Cosmochim. Acta 28, 971−980.
  66. Chen K., Jin Z., Peng Z. (1983) The discovery of iron barringerite, (Fe2P), in China. Sci. Geol. Sinica, 199−202.
  67. B., Soubeyroux J.L., Bacmann M., Fruchart D., Fruchart L. (1987) The high temperature orthorhombic-hexagonal phase transformation of iron manganese phosphide (FeMnP). Solid State Comm. 64, 57−61.
  68. B., Ouyang X., Wasson J.T. (1995) Classification and origin of IAB and IIICD iron meteorites. Geochim. Cosmochim. Acta 59, 593−612.
  69. Clarke R.S., Jr., Goldstein J.I. (1978) Schreibersite growth and its influence on the metallography of coarse-structured iron meteorites. Smithson. Contrib. Earth Sci. 21, 180.
  70. Clarke R.S., Scott E.R.D. (1980) Tetrataenite ordered FeNi, a new mineral in meteorites. Amer. Mineral. 65,624−630.
  71. E. (1894) Meteoreisen-Studien III: Rhabdit. Annalen des K.K. Naturhistorischen Hofmuseums, IX, 97−118.
  72. Danon J., Scorzelli R., Souza Azevedo I., Curvello W., Albertsen J. F., Knudsen J. M. (1979) Iron-nickel 50−50 superstructure in the Santa Catharina meteorite. Nature 277, 283−284.
  73. A.S. (1969) Barringerite: how it formed in the Ollague pallasite. Meteoritics 4, 269−270.
  74. A.S., Goldstein J.I. (1970) The ternary phase diagram, Fe-Ni-P. Metall. Trans. 1, 1759−1767.
  75. A.S., Goldstein J.I. (1969) The formation of phosphides in iron meteorites. In: Meteorite Research, P.M. Millman, Ed. (Reidel, Dordrecht), p. 682.
  76. F.D. (1970) Die Kristallstructur des meteoritischen Rhabdits (Fe, Ni)3P. Z. Kristallogr. Abt. A, 131, 232−236.
  77. E. (1977) Phosphate in Angra Dos Reis: structure and composition of the Ca3(P04)2 minerals. Earth Planet. Sci. Lett. 35,347−351.
  78. M. (2006) Phosphide solid-solutions within the metal-rich portion of the quarternary system Co-Fe-Ni-P at 800 °C, and mineralogical implications. Can. Mineral. 44,399−408.
  79. M., Skala R. (2002) Phase relations in pseudo-ternary system, Co2P-Fe2P-Ni2P. Int. Mineral. Assoc., 18th Gen Meeting, Programme with Abstr., 201−202.
  80. Du Fresne E.R., Roy S.K. (1961) A new phosphate mineral from the Springwater pallasite. Geochim. Cosmochim. Acta 24, 198−205.
  81. El Goresy A. (1965) Mineral stability and structures of graphite and sulfide inclusions in iron meteorites. Geochim. Cosmochim. Acta 29, 1131−51.
  82. El Goresy A., Ramdohr P., Taylor L.A. (1971) The geochemistry of the opaque minerals in Apollo 14 crystalline rocks. Earth Planet. Sci. Lett. 13, 121−129.
  83. M. (1965) The crystal structure ofNi5P4. Acta Chem. Scand. 19,1694−1704.
  84. M., Mittemejer E.J. (2001) The reconstructive phase transformation beta-Co2P —(X-C02P and the structure of the high-temperature phosphide P-Co2P. Z. Anorg. Allg. Chem. 627,2257−2260.
  85. O.C. (1915) Meteorites, their structure, composition, and terrestrial relations. Chicago, 225 pp.
  86. A.M., Zipfel J. (2004) Barbianello: An ungrouped nickel-rich iron meteorite found in Italy. Meteor. Planet. Sci. 39 (8 Suppl.), A143-A149.
  87. Fioretti A.M., Zipfel J., de Michele V., Spettel B., Huisl W. (2001) Classification of a new iron meteorite found in Italy. 64th Annual Meteoritical Society Meeting, abstract 5040.
  88. H.D. (1983) On enantiomorph-polarity estimation. Acta Cryst. A39, 876−881.
  89. H.D., Bernardinelli G. (1999) Absolute structure and absolute configuration. Acta Cryst. A55,908−915.
  90. R., Roger A., Senateur J.P. (1969) Crystallographic and magnetic properties of solid solutions of the phosphides M2P, M = chromium, manganese, iron, cobalt, and nickel. J. Appl. Phys. 40, 1250−1257.
  91. L.H. (1967) Stanfieldite: A new phosphate mineral from stony-iron meteorites. Science 158, 910−911.
  92. L.H., Olsen E., Henderson E.P. (1967) On the occurrence of brianite and panethite, two new phosphate minerals from the Dayton meteorite. Geochim. Cosmochim. Acta 31, 1711−1719.
  93. J., Stimpfl M. (2000) Cation ordering in orthopyroxenes from two stony-iron meteorites: Implications for cooling rates and metal-silicate mixing. Geochim. Cosmochim. Acta 64, 1291−1297.
  94. V., Wagner G., Nolze G., Moretzki O. (2005) Investigations of the meteoritic mineral (Fe, Ni)3P. Cryst. Res. Technol. 40, 52−64.
  95. S. (1955) The crystal structure of Co2Si. Acta Crystall. 8, 83−87.
  96. J.I., Ogilvie R.E. (1965) The growth of the Widmanstatten pattern in metallic meteorites. Geochim. Cosmochim. Acta 29, 893−920.
  97. J.I., Ogilvie R.E. (1963) Electron microanalysis of Metallic Meteorites, Part.l: Phosphides and Sulfides. Geochim. Cosmochim. Acta 27, 623−637.
  98. J.I., Short J.M. (1967) The iron meteorites, their thermal history and parent bodies. Geochim. Cosmochim. Acta 31, 1733−1770.
  99. C.A., Bird J.M. (1985) Formation of iron-carbon alloys in basaltic magma at Uivfaq, Disko Island- the role of carbon in mafic magmas. J. Geol. 93,475−492.
  100. Gounelle M., Zolensky M.E., Liou J.-C., Bland P.A., Alard O. (2003) Mineralogy of carbonaceous chondritic microclasts in howardites: identification of CM2 fossil micrometeorites. Geochim. Cosmochim. Acta 67, 507−527.
  101. M. (2000) Catalogue of Meteorites (5th edition). Cambridge University Press, Cambridge, U.K., 689 p.
  102. D. (1959) A New Iron Meteorite from bellsbank, Barkly West District. Trans. Geol. Soc. South Africa 62, 75−79.
  103. V.l. (1997) Weathering-induced reciystallisation of kamacite. 60th Annual Meteoritical Society Meeting, abstr. 5061.
  104. S. (1977) The mineralogy of the Hatrurim Formation. Israel Geol. Surv. Bull. No. 70, 80 pp.
  105. J.N., Zipfel J. (2001) The Meteoritical Bulletin, No. 85, 2001 September. Meteor. Planet. Sei. 36, A293-A322.
  106. J. (1927) J. iron Steel Inst. 115,477. Цитировано по: Самсонов и Верейкина (1961).
  107. V.F., Herschkowitsch E., Preub E. (1932) Ein neuer hexahedrit von Cerros del Buen Huerto, Chile. Chem. der Erde 7,483−502.
  108. M.A., Larimer J.W., Goldstein J.I. (1994) A comparison of metallographic cooling rate methods used in meteorites. Geochim. Cosmochim. Acta 58, 1353−1365.
  109. R.H. (1984) The case for a melt matrix in plagioclase-POIK mesosiderites. Proc. 15th Lunar Planet. Sei. Conf.: Part I. J. Geophys. Res. 89, C289-C297.
  110. R.H. (1988) Petrology and pairing of mesosiderites from Victoria Land, Antarctica. Meteoritics 23, 123−129.
  111. G., Vaniman D., French B.M. (1991) The Lunar SourceBook. Cambridge Univ. Press, 736 pp.
  112. D.E., Kronz A., Viljoen K.S. (2004) Cohenite, native iron and troilite inclusions in garnets from polycrystalline diamond aggregates. Contrib. Mineral. Petrol. 146, 566−576.
  113. K.P., Seufert M., Begemann F. (1980) On the distribution of major and trace elements between metal and phosphide phases of some iron meteorites. Zeitschr. Naturforsch., 35A, 57−63.
  114. Kim Y.K., Cho Y.W. (2004) Synthesis of transition metal pnictide nanocrystalline powders by mechanochemical reaction. J. Alloys. Compounds xxx (2004).
  115. S.A., Schwarcz H.P., Scott S.D. (1986) Application of the sphalerite cosmobarometer to group IAB iron meteorites. Geochim. Cosmochim. Acta 50, 371−378.
  116. N.I. (1870) Uber den Olivin aus dem Pallas-Eisen. Mem. Acad. Sci. St. Petersbourg 15, 1−40.
  117. N. (1910) Z. Anorg. Chem. 221, 997. Цитировано по: Самсонов и Верейкина (1961).
  118. A., Willis J., Wasson J. T. (1980) Chemical classification of iron meteorites-IX. A new group (IIF), revision of IAB and IIICD, and data on 57 additional irons. Geochim. Cosmochim. Acta 44, 773−787.
  119. W., Nolze G. (1997) PowderCell for Windows. Version 1.0. Federal Institute for Material Research and Testing, Berlin.
  120. Krot A.N., Keil K., Goodrich C.A., Scott E.R.D., Weisberg M.K. (2003) Classification of Meteorites. Treatise on Geochemistry, v.l. Elsevier Ltd., p.83−128.
  121. Kulpecz A.A., Jr., Hewins R.H. (1978) Cooling rate based on schreibersite growth for the Emery mesosiderite. Geochim. Cosmochim. Acta 42, 1495−1500.
  122. S., Chander S., Krishnamurthy A., Srivastava B.K. (2001) Magnetic behaviour of alloys in the series (Fe.xCox)2P. J. Magnetism Magnetic Mater. 237, 135−142.
  123. D.J., Wang D., Wasson J. T. (1984) Chemical classification of iron meteorities-X. Multielement studies of 43 irons, resolution of group IIIE from IIIAB, and evaluation of Cu as a taxonomic parameter. Geochim. Cosmochim. Acta 48, 785−804.
  124. F. (2003) Solidification mode and feeding behavior of phosphorus alloyed gray cast iron. Amer. Foundry Soc. Trans., paper 03−164 (05), 1−17.
  125. Manuel O.K., Hvvaung, G. (1983) Solar abundances of the elements. Meteoritics 18, 209 222.
  126. R.R., Keil K. (1965) Polymineralic inclusions in the Odessa iron meteorite. Icarus 4,461−479.
  127. U.B. (1962) Cristobalite in the Carbo iron meteorite. Nature 196,634−636.
  128. B. (1967) Extraterrestrial mineralogy. Amer. Mineral. 52, 307−325.
  129. McCoy T.J., Steele I.M., Keil K., Leonard B.F., Endress M. (1994) Chladniite, Na2CaMg7(P04)6'. A new mineral from the Carlton (IIICD) iron meteorite. Amer. Mineral. 79,375−380.
  130. S., Pasero M., Perchialli N. (1993) Crystal structure of paralaurionite and its OD relationships with laurionite. Mineral. Mag. 57,323−328.
  131. S., Pasero M., Perchiazzi N., Gianfagna A. (1995) X-ray and electron diffraction study of penfieldite: average structure and multiple cells. Mineral. Mag. 59,341 -347.
  132. Mikouchi T., Zolensky M., Tachikawa O., Komatsu M., Ivanova M.A., Lee L., Gounelle M. (2006) Electron back-scatter diffraction (EBSD) analysis of two unusual minerals in carbonaceous chondrites. Lunar. Planet. Sci. XXXVII, abstract 1855.
  133. M. K., Russell K. F. (1992) An APFIM investigation of a weathered region of the Santa Catharina meteorite. Surface Science 266,441−445.
  134. Mittlefehldt D.W., Chou C.-L., Wasson J.T. (1979) Mesosiderites and howardites: igneous formation and possible genetic relationships. Geochim. Cosmochim. Acta 43, 673−688.
  135. Mittlefehldt D.W., McCoy T.J., Goodrich C.A., Kracher A. (1998) Non-chondritic meteorites from asteroidal bodies, in: Papike, J.J. (Ed.), Reviews in Mineralogy, Planetaiy Materials, vol. 36, Mineralogical Society of America, Washington pp. 4−1 to 4−195.
  136. O., Doering Th., Geist V., Morgenroth W., Wendschuh M. (2003) Crystal structure of iron nickel phosphide, Fel.8Nil.2P, a Schreibersite extracted from Orange River meteorite. Z. Kristall. New Crystal Structures, 218, 395−396.
  137. Moretzki 0., Morgenroth W., Skala R., Scymanski A., Wendschuh M., Geist V. (2005) Determination of metal ordering in meteoritic (Fe, Ni)3P ciystals. J. Synchrotron Rad. 12, 234−240.
  138. C., Goldstein J.I. (1985) A major revision of iron meteorite cooling rates an experimental study of the growth of the Widmanstatten pattern. Geochim. Cosmochim. Acta 49,397−410.
  139. W.P., Hausel W.D. (1973) Partial pressures of oxygen, phosphorus and fluorine in some lunar lavas. Earth Planet. Sei. Lett. 20, 13−27.
  140. M.A., Brandstaetter F., Kurat G., Ntaflos T. (1998) Chemistiy of P-rich sulfides in Murchison, Cold Bokkeveld and Nogoya CM chondrites. Lunar Planet. Sei. XXIX, abstract 1628.
  141. M.F., Brandstaetter F., Kurat G. (1996) Phosphides and P-rich sulfides in the Mighei (CM) chondrite. Lunar. Planet. Sei. XXVII, 939−940 (abstract).
  142. M.A., Brandstaetter F., Kurat G. (1997) Comparative chemistry of P-rich phases in CM chondrites. Lunar Planet. Sei. XXVIII, abstract 1466.
  143. Novotny H., Henglein, E. (1948) Ein Beitrag zur Kenntnis ternaren Phosphorlegierungen. Monatsch. fur Chemie 79,385−393.
  144. E., Fredriksson K. (1966) Phosphates in iron and pallasite meteorites. Geochim. Cosmochim. Acta 30,459−470.
  145. E. J., Kracher A., Davis A.M., Steele I.M., Hutcheon I.D., Bunch T.E. (1999) The phosphates of IIIAB iron meteorites. Meteor, and Planet. Sei. 34, p.285−300.
  146. E., Erlichman J., Bunch T.E., Moore P.B. (1977) Buchwaldite, a new meteoritic phosphate mineral. Amer. Mineral. 62,362−364.
  147. E.J., Steele I.M. (1997) Galileiite: A new meteoritic phosphate mineral. Meteor. Planet. Sei. 32, A155-A156.
  148. E.G., Baiyshnikova G.V., Novikov G.V. (1982) The Elga USSR. meteorite: Silicate inclusions and shock metamorphism. Geochim. Cosmochim. Acta, Suppl. 16, (Proc. Lunar Planet. Sci. Conf., 12th, 1981, Sect. 2), 1049−68.
  149. S.T. (2003) Novel catalysts for advanced hydroprocessing: transition metal phosphides. J. of Catalysis 216,343−352.
  150. H., Jones A. (2003) Solar System Abundances of the Elements. Treatise on Geochemistry, vol. 1 (ed. Davis A.M.) Elsevier, p.41−61.
  151. J.J., Ryder G., Shearer C.K. (1998) Lunar samples, in: Papike, J.J. (Ed.), Reviews in Mineralogy, Planetary Materials, vol. 36, Mineralogical Society of America, Washington pp. 5−1 to 5−234.
  152. A. (1847) Die resultate der Chemischen Analyse des Arva’er Meteoreisens (Magura). Berichte iiber die Mitteilungen von Freunden der Naturwissenschaften inWien 3,69−71 (printed in 1848).
  153. J., Dautreppe D., Laugier J., Neel L. (1962) Etablissement d’une structure ordonnee FeNi par irradiation aux neutrons. C.R. Acad. Sci. Paris 254, 965−968.
  154. S.H. (1944) The Metallography of Meteoric Iron. U.S. National Museum Bull.
  155. B.N. (1971) Petrology and chemistry of mesosiderites: II. Silicate textures and compositions and metal-silciate relationships. Geochim. Cosmochim. Acta 35, 5−34.
  156. B.N. (1969) Petrology and chemistry of mesosiderites. I. Textures and composition of nickel-iron. Geochim. Cosmochim. Acta 33, 789−810.
  157. Pratesi G., Bindi L., Moggi-Cecchi V. (2006) Icosahedral coordination of phosphorus in the crystal structure of melliniite, a new phosphide mineral from the Northwest Africa 1054 acapulcoite. Amer. Mineral. 91,451−454.
  158. J.M. (2005) Effect of specimen preparation on evaluation of cast iron microstructures. Mater. Characterisation 54,287−304.
  159. A.R., Cameron E.N. (1966) Kamacite and taenite superstructures and a metastable tetragonal phase in iron meteorites. Amer. Mineral. 51,37−55.
  160. E., Eckelmeyer K.H. (1977) Habit planes of platelike schreibersite in hexahedrites. Meteor. Planet. Sci. 12,437−442.
  161. E., Goldstein J.I. (1978) Cooling rates of seven hexahedrites. Geochim. Cosmochim. Acta, 42,221−233.
  162. K.L., Malvin D.J., Buchvvald V.F., Wasson J.T. (1984) Compositional trends and cooling rates of group IVAB iron meteorites. Geochim. Cosmochim. Acta 48, 805
  163. Reed S.J.B. (1965) Electron probe Microanalysis of Schreibersite and Rhabdite in iron meteorites. Geochim. Cosmochim Acta 29, 513−534.
  164. Reed S.J.B. (1972) The Oktibbeha County iron meteorite. Mineral. Mag. 38,623−626.
  165. K.B., Williams D.B., Goldstein J.I. (1988) Low temperature phase transformations in the metallic phases of iron and stony-iron meteorites. Geochim. Cosmochim. Acta 52,617−626.
  166. Rietmeijer F.J.M. (1998) Interplanetary dust particles, in: Papike, J.J. (Ed.), Reviews in Mineralogy, Planetary Materials, Vol. 36, Mineralogical Society of America, Washington, p. 2−1 -2−95.
  167. A.G., Goldstein J.I. (1981) Low temperature phase equilibria in the Fe-Ni and Fe-Ni-P systems: application to the thermal history of metallic phases in meteorites. Geochim. Cosmochim. Acta 45,1187−1197.
  168. A.G., Goldstein J.I. (1980) Determination of the Fe-Ni and Fe-Ni-P phase diagrams at low temperature (700 to 300°C). Metall. Trans. 11A, 1151−1159.
  169. G. (1865) Systematische Eintheilung der Meteoriten. Annalen der Physik und Chemie 124,193−213.
  170. Rubin A. E, Jerde E.A. (1987) Diverse eucritic pebbles in the Vaca Muerta mesosiderite. Earth Planet. Sci. Lett. 84,1−14.
  171. Rull F., Martinez-Frias J., Sansano A., Medina J., Edwards H.G.M. (2004) Comparative micro-Raman study of the Nakhla and Vaca Muerta meteorites. J. Raman Spectrosc. 35, p. 497−503.
  172. S., Jellinek F. (1959) The structures of Ni6Si2B, Fe2P and some related phases. Acta Chem. Scand. 13, 422−425.
  173. S. (1962) Binary transition metal phosphides (and crystal-chemical relations between them and transition metal compounds with other nonmetals of small atomic radius. Arkiv foer Kemi 20,67−113.
  174. S. (1962) X-ray invesigations of the ternary system Fe-B-P. Acta Chem. Scand. 16,1−19.
  175. S., Hassler E., Lundvik L. (1962) Refinement of the Ni3P structure. Acta Chem. Scand. 16,242−243.
  176. S., Nawapong P.C. (1966) The crystal structure of ZrFeP and related compounds. Acta Chem. Scand. 20,2250−2254.
  177. S.S., Zipfel J., Grossman J.N., Grady M.M. (2002) The Meteoritical Bulletin, No. 86,2002 July. Meteor. Planet. Sei. 37 (Suppl.), A157-A184.
  178. G.S., Calvert L.D., Taylor J.B. (1964) Compounds of the type M5X2: Pd5As2, Ni5Si2, and Ni5P2. J. Chem. 42,1511 -1517.
  179. R., Wasson J.T., Buchwald V.F. (1972) The chemical classification of iron meteorites-VI. A reinvestigation of irons with Ge concentrations lower than 1 ppm. Icarus 17, 174−192.
  180. Scott E.R.D. (1972) Chemical fractionation in iron meteorites and its interpretation. Geochim. Cosmochim. Acta 36, 1205−1236.
  181. Scott E.R.D. (1977) Formation of olivine-metal textures in pallasite meteorites. Geochim. Cosmochim. Acta 41, 693−710.
  182. Scott E.R.D. (1977) Pallasites metal composition, classification and relationships with iron meteorites. Geochim. Cosmochim. Acta 41,349−360.
  183. Scott E.R.D., Bild R.W. (1973) Structure and formation of the San Cristobal meteorite, other IB irons and group IIICD. Geochim. Cosmochim. Acta 38, 1379−1391.
  184. Scott E.R.D., Haack H., Love S.G. (2001) Formation of mesosiderites by fragmentation and reaccretion of a large differentiated asteroid. Meteorit. Planet. Sei. 36, 869−881.
  185. Scott E.R.D., Wasson J. T. (1975) Classification and properties of iron meteorites. Rev. Geophys. Space Phys. 13, 527−546.
  186. Scott E.R.D., Wasson J. T. (1976) Chemical classification of iron Meteorites-VIII. Groups IC, HE, IIIF and 97 other irons. Geochim. Cosmochim. Acta 40,103−115.
  187. Scott E.R.D., Wasson J.T., Buchwald V.F. (1973) The chemical classification of iron meteorites VII. A reinvestigation of irons with e concentrations between 25 and 80 ppm. Geochim. Cosmochim. Acta 37,1957−1983.
  188. V.V., Kovyazin S.V., Podgornykh N.M. (2006) Mineralogy of olivine-hosted inclusions from the Omolon pallasite. Lunar Planet. Sei. XXXVII, 1235 (abstract).
  189. G.M. (1997) SHELXL-97, Program for the Refinement of Ciystal Structures. Universitat Gottingen, Germany.
  190. R., Drabek M. (2003) Nickelphosphide from Vicenice meteorite: Rietveld crystal structure refinement of a synthetic analogue. Mineral. Mag. 67, 783−792.
  191. R., Fryda J. (1999) Nickel-dominant schreibersite from Vicenice iron. Lunar Planet. Sei. XXX, abstract 1334.
  192. R., Cisarova S. (2005) Crystal structure of meteoritic schreibersites: determination of absolute structure. Phys. Chem. Minerais 31,721−732.
  193. R., Drabek M. (1999) Fe/Ni-distribution over crystallographically non-equivalent sites in the crystal structure of two synthetic schreibersites. Lunar Planet. Sci. XXX, abstr. 1553.
  194. R., Drabek M. (2000) Variation of unit-cell dimensions of experimentally synthesized members of Fe3P-Ni3P solid solution. Lunar Planet. Sci. XXXI, abstr. 1564.
  195. C.H. (1993) Applications of rapidly solidified soft magnetic alloys. In: Liebermann (Ed.) Rapidly Solidified Alloys: Processes, Structures, Properties and Applications. Dekker, New York.
  196. J.L. (1855) Meteoritic iron from Tazewell County, East Tennessee. Amer. J. Sci., 19,153−159.
  197. J.L. (1876) Aragonite on the surface of a Meteoritic Iron and a new mineral (Daubreelite) in the Concretions of the Interior of the same. Amer. J. Sci. 12, 107−110.
  198. L.J. (1951) Reichenbach' and 'Brezina' lamellae in Meteoritic Irons. Mineral. Mag. 29, 545−556.
  199. H., Nickel E.H. (2001) Strunz Mineralogical Tables. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, 870 pp.
  200. H.E., Urey H.C. (1956) Abundances of the elements. Rev. Mod. Phys. 28, 53−74.
  201. H., Ishii T., Otsuki M. (2001) Mineralogy of inclusions in the Campo del Cielo and Mont Dieu irons and segregation of partial melts. Lunar Planet. Sci. XXXII, abstract 1183.
  202. Tarascon J.-M., Armand M. (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414,359−367.
  203. Tarkian M., Krstic S., Klaska K.-H., Liessmann W. (1987) Rhodarsenide, (Rh, Pd)2As, a new mineral. Eur. J. Mineral. 9,1321−1325.
  204. L.A., Williams K.L., Sardi O. (1973) Selected Apollo 17 soils: mineralogy and geochemistry of opaque and non-opaque phases. Earth Planet. Sci. Lett. 21,6−12.
  205. G. (1804) On the Malleable Iron, etc: Essai sur le fer malleable trouve en Siberie par le Prof. Pallas. Bibliotheque Britannique, 27 (2, October 1804), 135−154.
  206. G. (1808) Sur ferro malleabile trovato da Pallas in Siberie. Atti Accademia delle Scienze di Siena 9, 37−57.
  207. A.H., Gleason J.D., Bogard D.D. (2000) The SNC meteorites are from Mars. Planet. Space Sei. 48, 1213−1230.
  208. Ulff-Moller F. (1985) Solidification history of the Kitdilt Lens- immiscible metal and sulfide liquids from a basaltic dyke on Disko, central West Greenland. J. Petrol. 26, 6491.
  209. G.F. (1984) Metallography, Principles and Practice. McGraw-Hill, New York.
  210. C.C., Rentzeperis P.J. (1975) The crystal structure of laurionite, Pb(OH)Cl. Z. Kristall. 141,246−259.
  211. J.D. (2005) Metallurgy of Steel for Bladesmiths & Others who Heat Treat and Forge Steel. Iowa State University, Ames, Iowa, USA, 201 pp.
  212. R. (1951) Die geftigeformen des Meteoreisen und ihre Erklarung auf Grund des Zustandsdiagrammes des Systems Eisen-Nickel-Phosphor. N. Jahrb. Mineral. Abh. 83, 23−52.
  213. R. (1952) Uber rhabdit und schreibersit. N. Jahr. Mineral. Abh. 84,327−349.
  214. R., Baum H. (1931) Uber das ternare System Eisen Nickel — Phosphor. Archiv fur das Eisenhuttenwesen 5,269−278.
  215. R., Gontermann H. (1922) Arch. Eisenhuttenwesen 3, 369. Цитировано по: Самсонов и Верейкина (1961).von Reichenbach С. (1861) Ueber die nahern Bestandtheile des Meteoreisens. Annalen der Physik und Chemie 114,477−491.
  216. Voncken J.H.L., Scheepers E., Yang Y. (2006) Analysis of uranium-bearing Fe-phosphide from a submerged arc furnace for phosphorus production. Mineral. Petrol. 88, 407−418.
  217. Wai C.M. (1970) The metal phase of Horse Creek, Mount Egerton, and Norton County enstatitic meteorites. Mineral. Mag. 37,905−908.
  218. X. (2002) Novel, high activity hydroprocessing catalysts: iron group phosphides. Ph.D. Thesis, Virginia Polytechnic Institute, Blackburg, Virginia, 154 pp.
  219. J.T. (1967) The chemical classification of iron meteorites: I. A study of iron meteorites with low concentrations of gallium and germanium. Geochim. Cosmochim.1. Acta 31,161−180.
  220. J.T. (1969) The chemical classification of iron meteorites III. Hexahedrites and other irons with germanium concentrations between 80 and 200 ppm. Geochim. Cosmochim. Acta 33, 859−876.
  221. J.T. (1970) The chemical classification of iron meteorites IV. Irons with Ge concentrations greater than 190 ppm and other meteorites associated with group I. Icarus 12,407−423.
  222. J.T. (1974) Meteorites: Classification and Properties. Berlin and New York, Springer Verlag, 316 pp.
  223. Wasson J.T., Choi B.G., Ulff-Moller F., Jerde E. (1998) Chemical classification of iron meteorites: XII. New members of the magmatic groups. Geochim. Cosmochim. Acta 62, 715−724.
  224. Wasson J.T., Choi B.-K. (2003) Main-group pallasites: Chemical composition, relationship to IIIAB irons, and origin. Geochimica et Cosmochimica Acta 67, 3079— 3096.
  225. J.T., Kimberlin J. (1967) The chemical classification of iron meteorites II. Irons and pallasites with germanium concentrations between 8 and 100 ppm. Geochim. Cosmochim. Acta 31,2065−2093.
  226. J.T., Ouyang X., Wang J., Jerde E. (1989) Chemical classification of iron meteorites: XI. Multi-element studies of 38 new irons and the high abundance of ungrouped irons from Antarctica. Geochim. Cosmochim. Acta 53,735−744.
  227. J.T., Richardson J.W. (2001) Fractionation trends among IVA iron meteorites: Contrasts with IIIAB trends. Geochim. Cosmochim. Acta 65, 951−970.
  228. J.T., Schaudy R. (1971) The chemical classification of iron meteorites-V. Groups IIIC and IIID and other irons with germanium concentrations between 1 and 25 ppm. Icarus 14,59−70.
  229. J.T., Wang J. (1986) A nonmagmatic origin of group-IIE iron meteorites. Geochim. Cosmochim. Acta 50,725−732.
  230. Wasson J.T., Willis J., Wai C.M., Kracher A. (1980) Origin of iron meteorite groups IAB and IIICD. Zeits. Naturforsch. 35a, 781−795.
  231. E.T. (1917) Merrillite, meteoritic calcium phosphate. Amer. Mineral. 2, 119.
  232. White J. S, Henderson E. P, Mason B. (1967) Secondary minerals produced by weathering of the Wolf Creek meteorite. Amer.Mineral. v.52,1190−1197.
  233. J., Wasson J.T. (1978) Cooling rates of group IVA iron meteorites. Earth and Planetary Sci. Lett. 40, 141−150.
  234. D., Palme H. (1997) A revision of the solar system phosphorus abundance. 60th Annual Meteoritical Society Meeting, abstract 5143.
  235. Xie X., Minitti M.E., Chen M" Mao H.-K., Wang D., Shu J., Fei Y. (2003) Tuite, y-Ca3(P04)2: a new mineral from the Suizhou L6 chondrite. Eur. J. Mineral. 15,1001−1005.
  236. Yang C.-W., Williams D.B., Goldstein J.I. (1996) A revision of Fe-Ni phase diagram at low temperatures (<400 °C). Journ. Phase Equilibria 17, 522−531.
  237. Yang C.-W., Williams D.B., Goldstein J.I. (1997) A new empiricalcooling rate indicator for meteorites based on the size of the cloudy zone of the metallic phases. Meteor. Planet. Sci. 32,423−429.
  238. Zhang J., Williams D. B., Goldstein J. I., Clarke R. S., Jr. (1990) Electron microscopy study of the iron meteroite Santa Catharina. Meteoritics 25, 167−175.
  239. Zolensky M. et al. (Stardust Mineralogy/Petrology subteam) (2006) Mineralogy and petrology of comet Wild2 nucleus samples. Lunar Planet. Sci. XXXVII, abstract 1203.
  240. M., Ivanov A. (2003) The Kaidun microbreccia meteorite: a harvest from the inner and outer asteroid belt. Chem. Erde 63, 185−246.
Заполнить форму текущей работой