ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² написании студСнчСских Ρ€Π°Π±ΠΎΡ‚
АнтистрСссовый сСрвис

ЭкспрСссия Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ² ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅-ассоциированного Π³Π΅Π½Π° ΠΌΡƒΡ†ΠΈΠ½Π° 1 ΠΌΡ‹ΡˆΠ΅ΠΉ ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΈΠΌΠΌΡƒΠ½ΠΎΠ³Π΅Π½Π½ΠΎΠΉ активности этих Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ²

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

Π’Ρ‹Ρ€Π°ΠΆΠ°ΡŽ Π±Π»Π°Π³ΠΎΠ΄Π°Ρ€Π½ΠΎΡΡ‚ΡŒ своСму Π½Π°ΡƒΡ‡Π½ΠΎΠΌΡƒ Ρ€ΡƒΠΊΠΎΠ²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŽ БвирщСвской Π•Π»Π΅Π½Π΅ Π’ΠΈΠΊΡ‚ΠΎΡ€ΠΎΠ²Π½Π΅, Π±Π΅Π· Π΅Π΅ ΠΏΠΎΠΌΠΎΡ‰ΠΈ ΠΈ Ρ€ΡƒΠΊΠΎΠ²ΠΎΠ΄ΡΡ‚Π²Π° Ρ€Π°Π±ΠΎΡ‚Π° Π±Ρ‹Π»Π° Π±Ρ‹ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Π°, МоисССвой Π•ΠΊΠ°Ρ‚Π΅Ρ€ΠΈΠ½Π΅ Π’ΠΈΠΊΡ‚ΠΎΡ€ΠΎΠ²Π½Π΅ ΠΈ Π§Π°Π°Π΄Π°Π΅Π²ΠΎΠΉ АлСксандрС Π·Π° ΡƒΡ‡Π°ΡΡ‚ΠΈΠ΅ Π² ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Ρ…, всСм сотрудникам Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€ΠΈΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… взаимодСйствий Π·Π° ΡΠΎΠ²Π΅Ρ‚Ρ‹ ΠΈ ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΡƒ, ΠΌΠΎΠΈΠΌ родитСлям ΠΈ Ρ‡Π»Π΅Π½Π°ΠΌ сСмьи Π·Π° ΠΏΠΎΠΌΠΎΡ‰ΡŒ ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ Π·Π°Π½ΠΈΠΌΠ°Ρ‚ΡŒΡΡ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ. Π Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ Π² ΡΠΏΠΎΠ½Ρ‚Π°Π½Π½ΠΎΠΉ… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

ЭкспрСссия Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ² ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅-ассоциированного Π³Π΅Π½Π° ΠΌΡƒΡ†ΠΈΠ½Π° 1 ΠΌΡ‹ΡˆΠ΅ΠΉ ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΈΠΌΠΌΡƒΠ½ΠΎΠ³Π΅Π½Π½ΠΎΠΉ активности этих Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ² (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • БПИБОК Π˜Π‘ΠŸΠžΠ›Π¬Π—Π£Π•ΠœΠ«Π₯ Π‘ΠžΠšΠ ΠΠ©Π•ΠΠ˜Π™
  • Π’Π‘Π’Π£ΠŸΠ›Π•ΠΠ˜Π•
  • ГЛАВА 1. ΠžΠ‘Π—ΠžΠ  Π›Π˜Π’Π•Π ΠΠ’Π£Π Π«
    • 1. 1. РаспознаваниС ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ
    • 1. 2. БистСма ΠΈΠΌΠΌΡƒΠ½Π½ΠΎΠ³ΠΎ контроля роста ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ
    • 1. 3. Π˜Π½Π΄ΡƒΠΊΡ†ΠΈΡ толСрантности ΠΊ ΠΎΠΏΡƒΡ…ΠΎΠ»ΡŒ-ассоциированным Π°Π½Ρ‚ΠΈΠ³Π΅Π½Π°ΠΌ
    • 1. 4. Π‘Ρ‚Ρ€Π°Ρ‚Π΅Π³ΠΈΠΈ ΠΈΠΌΠΌΡƒΠ½ΠΎΡ‚Π΅Ρ€Π°ΠΏΠΈΠΈ Ρ€Π°ΠΊΠ°
    • 1. 5. ΠœΡ‹ΡˆΠΈΠ½Ρ‹Π΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ для изучСния ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²ΠΎΠ³ΠΎ ΠΈΠΌΠΌΡƒΠ½ΠΈΡ‚Π΅Ρ‚Π°
    • 1. 6. ΠŸΡ€Π΅Π²Π΅Π½Ρ‚ΠΈΠ²Π½Ρ‹Π΅ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Π΅ Π²Π°ΠΊΡ†ΠΈΠ½Ρ‹
  • ГЛАВА 2. ΠœΠΠ’Π•Π Π˜ΠΠ›Π« И ΠœΠ•Π’ΠžΠ”Π«
  • РЕЗУЛЬВАВЫ Π‘ΠžΠ‘Π‘Π’Π’Π•ΠΠΠ«Π₯ Π˜Π‘Π‘Π›Π•Π”ΠžΠ’ΠΠΠ˜Π™
  • ГЛАВА 3. ΠŸΠžΠ›Π£Π§Π•ΠΠ˜Π• MUC1 ΠΠΠ’Π˜Π“Π•ΠΠžΠ’
    • 3. 1. ΠšΠ»ΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ тис234 ΠΈ Ρ‚ис456 Π°ΠΌΠΏΠ»ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ² ΠΌΡƒΡ†ΠΈΠ½Π°
    • 3. 2. ЭкспрСссия Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ² ΠΌΡƒΡ†ΠΈΠ½Π° 1 Π² E. col
  • ГЛАВА 4. Π˜ΠΠ”Π£ΠšΠ¦Π˜Π― Π“Π£ΠœΠžΠ ΠΠ›Π¬ΠΠžΠ“Πž И ΠšΠ›Π•Π’ΠžΠ§ΠΠžΠ“Πž ΠžΠ’Π’Π•Π’Π ΠΠ МУЦИН 1 Π‘ Π˜Π‘ΠŸΠžΠ›Π¬Π—ΠžΠ’ΠΠΠ˜Π•Πœ Π”ΠΠš
  • Π˜ΠœΠœΠ£ΠΠ˜Π—ΠΠ¦Π˜Π˜
    • 4. 1. Анализ экспрСссии Π³Π΅Π½Π° MUC1 Π² ΡΠΏΠΈΡ‚Π΅Π»ΠΈΠΈ ΠΌΠΎΠ»ΠΎΡ‡Π½Ρ‹Ρ… ΠΆΠ΅Π»Π΅Π· ΠΈ Π°Π΄Π΅Π½ΠΎΠΊΠ°Ρ€Ρ†ΠΈΠ½ΠΎΠΌΠ°Ρ… ΠΌΠΎΠ»ΠΎΡ‡Π½Ρ‹Ρ… ΠΆΠ΅Π»Π΅Π· ΠΌΡ‹ΡˆΠ΅ΠΉ
    • 4. 2. Анализ Π³ΡƒΠΌΠΎΡ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΎΡ‚Π²Π΅Ρ‚Π° Π½Π° ΠΈΠΌΠΌΡƒΠ½ΠΈΠ·Π°Ρ†ΠΈΡŽ Π”ΠΠš, Π”ΠΠš/Π±Π΅Π»ΠΎΠΊ
    • 4. 3. Π˜Π½Π΄ΡƒΠΊΡ†ΠΈΡ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ ΠΈΠΌΠΌΡƒΠ½Π½ΠΎΠ³ΠΎ ΠΎΡ‚Π²Π΅Ρ‚Π° Π½Π° MUC
  • ГЛАВА 5. ΠžΠ¦Π•ΠΠšΠ ΠŸΠ ΠžΠ’Π˜Π’ΠžΠžΠŸΠ£Π₯ΠžΠ›Π•Π’ΠžΠ“Πž Π­Π€Π€Π•ΠšΠ’Π Π˜ΠœΠœΠ£ΠΠ˜Π—ΠΠ¦Π˜Π˜ МУЦИНОМ 1 Π’ Π’Π ΠΠΠ‘ΠŸΠ›ΠΠΠ’Π˜Π Π£Π•ΠœΠžΠ™ ΠœΠžΠ”Π•Π›Π˜ ΠΠ”Π•ΠΠžΠšΠΠ Π¦Π˜ΠΠžΠœΠ« ΠœΠžΠ›ΠžΠ§ΠΠžΠ™ Π–Π•Π›Π•Π—Π« ΠœΠ«Π¨Π•Π™
    • 5. 1. МодСли Ρ€Π°ΠΊΠ° ΠΌΠΎΠ»ΠΎΡ‡Π½Ρ‹Ρ… ΠΆΠ΅Π»Π΅Π·
    • 5. 2. ВлияниС ΠΈΠΌΠΌΡƒΠ½ΠΈΠ·Π°Ρ†ΠΈΠΈ Π²Π°ΠΊΡ†ΠΈΠ½Π°ΠΌΠΈ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΌΡƒΡ†ΠΈΠ½Π° Π½Π° Ρ€ΠΎΡΡ‚ ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ ΠΈ Π²Ρ‹ΠΆΠΈΠ²Π°Π½ΠΈΠ΅ ΠΌΡ‹ΡˆΠ΅ΠΉ
  • ГЛАВА 6. Π­Π€Π€Π•ΠšΠ’Π˜Π’ΠΠžΠ‘Π’Π¬ Π”ΠΠš Π’ΠΠšΠ¦Π˜ΠΠ« ΠΠ ΠžΠ‘ΠΠžΠ’Π• МУЦИНА 1 Π’ Π‘ΠŸΠžΠΠ’ΠΠΠΠžΠ™ ΠœΠžΠ”Π•Π›Π˜ РАКА ΠœΠžΠ›ΠžΠ§ΠΠ«Π₯ Π–Π•Π›Π•Π— Π£ ΠœΠ«Π¨Π•Π™
    • 6. 1. Бпонтанная модСль Π°Π΄Π΅Π½ΠΎΠΊΠ°Ρ€Ρ†ΠΈΠ½ΠΎΠΌΡ‹ ΠΌΠΎΠ»ΠΎΡ‡Π½Ρ‹Ρ… ΠΆΠ΅Π»Π΅Π·
    • 6. 2. ВлияниС ΠΈΠΌΠΌΡƒΠ½ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΌΡƒΡ†ΠΈΠ½ΠΎΠΌ Π½Π° Ρ€ΠΎΡΡ‚ ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ ΠΈ Π²Ρ‹ΠΆΠΈΠ²Π°Π½ΠΈΠ΅ ΠΌΡ‹ΡˆΠ΅ΠΉ Π² ΡΠΏΠΎΠ½Ρ‚Π°Π½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ
    • 6. 3. ВлияниС ΠΈΠΌΠΌΡƒΠ½ΠΈΠ·Π°Ρ†ΠΈΠΈ Π½Π° ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡŽ ΠΌΡƒΡ†ΠΈΠ½Π°
    • 6. 4. Анализ Π³ΡƒΠΌΠΎΡ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΎΡ‚Π²Π΅Ρ‚Π° Π½Π° ΠΌΡƒΡ†ΠΈΠ½
    • 6. 5. Анализ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ ΠΎΡ‚Π²Π΅Ρ‚Π° Π½Π° ΠΌΡƒΡ†ΠΈΠ½
    • 6. 6. Π˜Π½Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΡ ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚Π°ΠΌΠΈ
    • 6. 7. ΠŸΡ€ΠΈΠ·Π½Π°ΠΊΠΈ Π°ΡƒΡ‚ΠΎΠΈΠΌΠΌΡƒΠ½Π½Ρ‹Ρ… процСссов
  • ΠžΠ‘Π‘Π£Π–Π”Π•ΠΠ˜Π•
  • Π’Π«Π’ΠžΠ”Π«

Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… Π°Π½Ρ‚ΠΈΠ³Π΅Π½ΠΎΠ² Π² ΠΌΠ΅ΡΡ‚Π° формирования ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ Π½Π° Ρ‡Π°ΡΡ‚ΠΎΡ‚Ρƒ возникновСния ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ ΠΈ Π²Ρ‹ΠΆΠΈΠ²Π°Π½ΠΈΠ΅ ΠΌΡ‹ΡˆΠ΅ΠΉ, ΠΈΠΌΠΌΡƒΠ½ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π”ΠΠšΠ±Π΅Π»ΠΎΠΊ Π²Π°ΠΊΡ†ΠΈΠ½ΠΎΠΉ. ГЛАВА 1. ΠžΠ‘Π—ΠžΠ  Π›Π˜Π’Π•Π ΠΠ’Π£Π Π«.

Π²Ρ‹Π²ΠΎΠ΄Ρ‹.

1. ΠšΠ»ΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Ρ‹ ΠΌΡ‹ΡˆΠΈΠ½ΠΎΠ³ΠΎ Π³Π΅Π½Π° ΠΌΡƒΡ†ΠΈΠ½Π° 1, ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ экзонам 234 ΠΈ 456, ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½Ρ‹Π΅ Π±Π΅Π»ΠΊΠΈ.

2. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° Π²Π°ΠΊΡ†ΠΈΠ½Π° Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ комплСкса Π”ΠΠš-Π±Π΅Π»ΠΎΠΊ ΠΈ Π»ΠΈΠΏΠΎΡΠΎΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π°Π΄ΡŒΡŽΠ²Π°Π½Ρ‚Π°, способная Π²Ρ‹Π·Ρ‹Π²Π°Ρ‚ΡŒ Ρƒ ΠΌΡ‹ΡˆΠ΅ΠΉ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΎΡ‚Π²Π΅Ρ‚Π° Π½Π° ΠœΡƒΡ†ΠΈΠ½ 1 ΠΏΠΎ Ρ‚ΠΈΠΏΡƒ Txl.

3. Π’ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΏΠ΅Ρ€Π΅Π²ΠΈΠ²Π°Π΅ΠΌΠΎΠΉ Π°Π΄Π΅Π½ΠΎΠΊΠ°Ρ€Ρ†ΠΈΠ½ΠΎΠΌΡ‹ ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ отсутствиС ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²ΠΎΠ³ΠΎ эффСкта Π”ΠΠš-Π±Π΅Π»ΠΎΠΊ Π²Π°ΠΊΡ†ΠΈΠ½Ρ‹.

4. Π Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ Π² ΡΠΏΠΎΠ½Ρ‚Π°Π½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π°Π΄Π΅Π½ΠΎΠΊΠ°Ρ€Ρ†ΠΈΠ½ΠΎΠΌΡ‹ ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹ ΡΠΎΠΏΡ€ΠΎΠ²ΠΎΠΆΠ΄Π°Π»ΠΎΡΡŒ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ анэргии ΠΌΡƒΡ†ΠΈΠ½-спСцифичных CD8+ Π’ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΈ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†ΠΈΠ΅ΠΉ IgGl Π°Π½Ρ‚ΠΈΡ‚Π΅Π», ассоциированных с Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠ΅ΠΉ Π’Ρ…2.

5. Π˜ΠΌΠΌΡƒΠ½ΠΈΠ·Π°Ρ†ΠΈΠΈ Π”ΠΠš-Π±Π΅Π»ΠΎΠΊ Π²Π°ΠΊΡ†ΠΈΠ½ΠΎΠΉ Π½Π° ΡΡ‚Π°Π΄ΠΈΠΈ, ΠΏΡ€Π΅Π΄ΡˆΠ΅ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΉ ΠΌΠ°Π»ΠΈΠ³Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ, Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ускоряСт Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ спонтанных ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ ΠΌΠΎΠ»ΠΎΡ‡Π½Ρ‹Ρ… ΠΆΠ΅Π»Π΅Π· Ρƒ ΠΌΡ‹ΡˆΠ΅ΠΉ ΠΈ ΡƒΡ…ΡƒΠ΄ΡˆΠ°Π΅Ρ‚ ΠΈΡ… Π²Ρ‹ΠΆΠΈΠ²Π°Π½ΠΈΠ΅.

6. Π›ΠΎΠΊΠ°Π»ΡŒΠ½ΠΎΠ΅ воспалСниС достовСрно стимулируСт рост спонтанных ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹, Π½ΠΎ Π½Π΅ Π²Π»ΠΈΡΠ΅Ρ‚ Π½Π° Π²Ρ‹ΠΆΠΈΠ²Π°Π½ΠΈΠ΅ ΠΌΡ‹ΡˆΠ΅ΠΉ. ΠŸΡ€ΠΎΠΊΠ°Π½Ρ†Π΅Ρ€ΠΎΠ³Π΅Π½Π½Ρ‹ΠΉ эффСкт воспалСния Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ Ρƒ ΠΌΠΎΠ»ΠΎΠ΄Ρ‹Ρ… ΠΌΡ‹ΡˆΠ΅ΠΉ.

7. Π‘ΠΎΡ‡Π΅Ρ‚Π°Π½ΠΈΠ΅ ΠΈΠΌΠΌΡƒΠ½ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΈ ΡΡ‚имуляции Π²Ρ€ΠΎΠΆΠ΄Π΅Π½Π½ΠΎΠ³ΠΎ ΠΈΠΌΠΌΡƒΠ½ΠΈΡ‚Π΅Ρ‚Π° Π²Ρ‹Π·Ρ‹Π²Π°Π΅Ρ‚ суммированиС ΠΈ ΡƒΡΠΈΠ»Π΅Π½ΠΈΠ΅ эффСктов, приводя ΠΊΠ°ΠΊ ΠΊ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΡŽ выТивания ΠΌΡ‹ΡˆΠ΅ΠΉ, Ρ‚Π°ΠΊ ΠΈ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ формирования ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ.

Π‘Π›ΠΠ“ΠžΠ”ΠΠ ΠΠžΠ‘Π’Π˜.

Π’Ρ‹Ρ€Π°ΠΆΠ°ΡŽ Π±Π»Π°Π³ΠΎΠ΄Π°Ρ€Π½ΠΎΡΡ‚ΡŒ своСму Π½Π°ΡƒΡ‡Π½ΠΎΠΌΡƒ Ρ€ΡƒΠΊΠΎΠ²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŽ БвирщСвской Π•Π»Π΅Π½Π΅ Π’ΠΈΠΊΡ‚ΠΎΡ€ΠΎΠ²Π½Π΅, Π±Π΅Π· Π΅Π΅ ΠΏΠΎΠΌΠΎΡ‰ΠΈ ΠΈ Ρ€ΡƒΠΊΠΎΠ²ΠΎΠ΄ΡΡ‚Π²Π° Ρ€Π°Π±ΠΎΡ‚Π° Π±Ρ‹Π»Π° Π±Ρ‹ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Π°, МоисССвой Π•ΠΊΠ°Ρ‚Π΅Ρ€ΠΈΠ½Π΅ Π’ΠΈΠΊΡ‚ΠΎΡ€ΠΎΠ²Π½Π΅ ΠΈ Π§Π°Π°Π΄Π°Π΅Π²ΠΎΠΉ АлСксандрС Π·Π° ΡƒΡ‡Π°ΡΡ‚ΠΈΠ΅ Π² ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Ρ…, всСм сотрудникам Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€ΠΈΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… взаимодСйствий Π·Π° ΡΠΎΠ²Π΅Ρ‚Ρ‹ ΠΈ ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΡƒ, ΠΌΠΎΠΈΠΌ родитСлям ΠΈ Ρ‡Π»Π΅Π½Π°ΠΌ сСмьи Π·Π° ΠΏΠΎΠΌΠΎΡ‰ΡŒ ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ Π·Π°Π½ΠΈΠΌΠ°Ρ‚ΡŒΡΡ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст

Бписок Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹

  1. П.М. Π₯роничСскоС воспалСниС ΠΏΠΎΠ²Ρ‹ΡˆΠ°Π΅Ρ‚ риск развития ΡΠΏΠΈΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… Π½ΠΎΠ²ΠΎΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ. Вопросы ΠΎΠ½ΠΊΠΎΠ»ΠΎΠ³ΠΈΠΈ. 2006. Π’52 (2): 137 144.
  2. П.М. Π‘Ρ‚Π²ΠΎΠ»ΠΎΠ²Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ ΠΈ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ Ρ€Π°ΠΊΠ° ΠΈ ΠΏΡ€Π΅Π΄Ρ€Π°ΠΊΠΎΠ²ΠΎΠ³ΠΎ окруТСния. ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½Π°Ρ ΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½Π°. 2007(4):3−9.
  3. ЛуТниковаА.А. MMTV ΠΈ ΠΊΠ°Π½Ρ†Π΅Ρ€ΠΎΠ³Π΅Π½Π΅Π· ΠΌΠΎΠ»ΠΎΡ‡Π½Ρ‹Ρ… ΠΆΠ΅Π»Π΅Π· Ρƒ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°. ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½Π°Ρ ΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½Π°. 2007(4):9−19
  4. Π‘.А., ΠšΡƒΠΏΡ€Π°Ρˆ Π”. Π’. Мол. Π‘ΠΈΠΎΠ». Π’41 (2):355−368
  5. Pardoll D. Does the immune system see tumors as foreign or self? Annu Rev Immunol. 2003−21:807−39
  6. Hanahan D, Weinberg R. The hallmarks of cancer. Cell. 2000 Jan 7−100(1):57−70.
  7. Khong H, Restifo N. Natural selection of tumor variants in the generation of «tumor escape» phenotypes. Nat Immunol. 2002 Nov-3(l 1):999−1005
  8. Janeway C, Travers P, Walport M. Immunobiology. Garland Publishing 2001
  9. Van den Eynde Π’ J, van der Bruggen P. T cell defined tumor antigens. Curr Opin Immunol. 1997 Oct-9(5):684−93.
  10. Adjei AA. Blocking oncogenic Ras signaling for cancer therapy. J Natl Cancer Inst. 2001 Jul 18−93(14): 1062−74.
  11. Diamantis ID, McGandy C, Chen TJ, Liaw YF, Gudat F, Bianchi L. A new mutational hot-spot in the p53 gene in human hepatocellular carcinoma. J Hepatol. 1994 Apr-20(4):553−6
  12. Nahari D, McDaniel LD, Task LB, Daniel RL, Velasco-Miguel S, Friedberg EC. Mutations in the Trp53 gene of UV-irradiated Xpc mutant mice suggest a novel Xpc-dependent DNA repair process. DNA Repair (Amst). 2004 Apr l-3(4):379−86.
  13. Maclean J, Rybicki EP, Williamson AL. Vaccination strategies for the prevention of cervical cancer. Expert Rev Anticancer Ther. 2005 Feb-5(l):97−107.
  14. Peng S, Tomson TT, Trimble C, He L, Hung CF, Wu TC. A combination of DNA vaccines targeting human papillomavirus type 16 E6 and E7 generates potent antitumor effects. Gene Ther. 2006 Feb-13(3):257−65.
  15. Choudhury A, Kiessling R. Her-2/neu as a paradigm of a tumor-specific target for therapy. Breast Dis. 2004−20:25−31.
  16. Gendler SJ. MUC1, the renaissance molecule. J Mammary Gland Biol Neoplasia. 2001 Jul-6(3):339−53.
  17. Hollingsworth MA, Swanson BJ. Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer. 2004 Jan-4(l):45−60.
  18. Moore A, Medarova Z, Potthast A, Dai G. In vivo targeting of underglycosylated MUC-1 tumor antigen using a multimodal imaging probe. Cancer Res. 2004 Mar l-64(5):1821−7.
  19. Gaemers 1Π‘, Vos HL, Volders HH, van der Valk SW, Hilkens J. A stat-responsive element in the promoter of the episialin/MUCl gene is involved in its overexpression in carcinoma cells. J Biol Chem. 2001 Mar 2−276(9):6191−9.
  20. Bieche I, Lidereau R. A gene dosage effect is responsible for high overexpression of the MUC1 gene observed in human breast tumors. Cancer Genet Cytogenet. 1997 Oct l-98(l):75−80.
  21. Mukherjee P, Tinder TL, Basu GD, Gendler SJ. MUC1 (CD227) interacts with lck tyrosine kinase in Jurkat lymphoma cells and normal T cells. J Leukoc Biol. 2005 Jan-77(l):90−9.
  22. Wykes M, MacDonald KP, Tran M, Quin RJ, Xing PX, Gendler SJ, Hart DN, McGuckin MA. MUC1 epithelial mucin (CD227) is expressed by activated dendritic cells. J Leukoc Biol. 2002 0ct-72(4):692−701.
  23. Wesseling J, van der Valk SW, Vos HL, Sonnenberg A, Hilkens J. Episialin (MUC1) overexpression inhibits integrin-mediated cell adhesion to extracellular matrix components. J Cell Biol. 1995 Apr-129(l):255−65.
  24. Wesseling J, van der Valk SW, Hilkens J. A mechanism for inhibition of E-cadherin-mediated cell-cell adhesion by the membrane-associated mucin episialin/MUCl. Mol Biol Cell. 1996 Apr-7(4):565−77.
  25. Regimbald LH, Pilarski LM, Longenecker BM, Reddish MA, Zimmermann G, Hugh JC. The breast mucin MUCI as a novel adhesion ligand for endothelial intercellular adhesion molecule 1 in breast cancer. Cancer Res. 1996 Sep 15−56(18):4244−9.
  26. Rahn JJ, Shen Q, Mah BK, Hugh JC. MUCI initiates a calcium signal after ligation by intercellular adhesion molecule-1. J Biol Chem. 2004 Jul 9−279(28):29 386−90.
  27. Wen Y, Caffrey TC, Wheelock MJ, Johnson KR, Hollingsworth MA. Nuclear association of the cytoplasmic tail of MUCI and beta-catenin. J Biol Chem. 2003 Sep 26−278(39):38 029−39.
  28. Beachy PA, Karhadkar SS, Berman DM. Tissue repair and stem cell renewal in carcinogenesis. Nature. 2004 Nov 18−432(7015):324−31.
  29. Huang L, Ren J, Chen D, Li Y, Kharbanda S, Kufe D. MUCI cytoplasmic domain coactivates Wnt target gene transcription and confers transformation. Cancer Biol Ther. 2003 Nov-Dec-2(6):702−6.
  30. Schroeder JA, Masri AA, Adriance MC, Tessier JC, Kotlarczyk KL, Thompson MC, Gendler SJ. MUCI overexpression results in mammary gland tumorigenesis and prolonged alveolar differentiation. Oncogene. 2004 Jul 29−23(34):5739−47.
  31. Spicer AP, Rowse GJ, Lidner TK, Gendler SJ. Delayed mammary tumor progression in Muc-1 null mice. J Biol Chem. 1995 Dec 15−270(50):30 093−101.
  32. Yin L, Li Y, Ren J, Kuwahara H, Kufe D. Human MUCI carcinoma antigen regulates intracellular oxidant levels and the apoptotic response to oxidative stress. J Biol Chem. 2003 Sep 12−278(37):35 458−64.
  33. Wei X, Xu H, Kufe D. Human MUCI oncoprotein regulates p53-responsive gene transcription in the genotoxic stress response. Cancer Cell. 2005 Feb-7(2): 167−78.
  34. Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol. 2005 Apr-5(4):331−42.
  35. Seong SY, Matzinger P. Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat Rev Immunol. 2004 Jun-4(6):469−78.
  36. Hussein MR. Tumour-HHOiltrating lymphocytes and melanoma tumorigenesis: an insight. Br J Dermatol. 2005 Jul- 153(1): 18−21.
  37. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002 Nov-3(ll):991−8.
  38. Stockert E, Jager E, Chen YT, Scanlan MJ, Gout I, Karbach J, Arand M, Knuth A, Old LJ. A survey of the humoral immune response of cancer patients to a panel of human tumor antigens. J Exp Med. 1998 Apr 20- 187(8): 1349−54.
  39. Kaplan DH, Shankaran V, Dighe AS, Stockert E, Aguet M, Old LJ, Schreiber RD. Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci USA. 1998 Jun 23−95(13):7556−61.
  40. Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, Schreiber RD. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature. 2001 Apr 26−410(6832):1107−11.
  41. Street SE, Cretney E, Smyth MJ Perforin and interferon-gamma activities independently control tumor initiation, growth, and metastasis. Blood. 2001 Jan l-97(l):192−7.
  42. Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity. 2004 Aug-21(2): 137−48
  43. Gao Y, Yang W, Pan M, Scully E, Girardi M, Augenlicht LH, Craft J, Yin Z. Gamma delta T cells provide an early source of interferon gamma in tumor immunity. J Exp Med. 2003 Aug 4−198(3):433−42.
  44. Taniguchi T, Takaoka A A weak signal for strong responses: interferon-alpha/beta revisited. Nat Rev Mol Cell Biol. 2001 May-2(5):378−86.
  45. Dunn GP, Bruce AT, Sheehan КБ, Shankaran V, Uppaluri R, Bui JD, Diamond MS, Koebel CM, Arthur C, White JM, Schreiber RD. A critical function for type I interferons in cancer immunoediting. Nat Immunol. 2005 Jul-6(7):722−9.
  46. Girardi M, Oppenheim DE, Steele CR, Lewis JM, Glusac E, Filler R, Hobby P, Sutton B, Tigelaar RE, Hay day AC. Regulation of cutaneous malignancy by gammadelta T cells. Science. 2001 Oct 19−294(5542):605−9.
  47. Winter H, Ни HM, Urba WJ, Fox BA. Tumor regression after adoptive transfer of effector T cells is independent of perforin or Fas ligand (APO-1L/CD95L). J Immunol. 1999 Oct 15−163(8):4462−72.
  48. Barth RJ Jr, Mule JJ, Spiess PJ, Rosenberg SA. Interferon gamma and tumor necrosis factor have a role in tumor regressions mediated by murine CD8+ tumor-HHOiltrating lymphocytes. J Exp Med. 1991 Mar l-173(3):647−58.
  49. Schuler T, Blankenstein T. Cutting edge: CD8+ effector T cells reject tumors by direct antigen recognition but indirect action on host cells. J Immunol. 2003 May 1−170(9):4427−31.
  50. Mumberg D, Monach PA, Wanderling S, Philip M, Toledano AY, Schreiber RD, Schreiber H. CD4(+) T cells eliminate MHC class II-negative cancer cells in vivo by indirect effects of IFN-gamma. Proc Natl Acad Sci USA. 1999 Jul 20−96(15):8633−8.
  51. Rohn ВА, Schadendorf D, Sun Y, Nguyen XD, Roeder D, Langen H, Vogt AB, Kropshofer H. Melanoma cell necrosis facilitates transfer of specific sets of antigens onto MHC class II molecules of dendritic cells. Eur J Immunol. 2005 Oct-35(10):2826−39.
  52. Qin Z, Blankenstein T. CD4+ T cell—mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFN gamma receptor expression by nonhematopoietic cells. Immunity. 2000 Jun-12(6):677−86
  53. Pardoll D. Does the immune system see tumors as foreign or self? Annu Rev Immunol. 2003−21:807−39
  54. Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity. 2004 Aug-21(2): 137−48.
  55. Smyth MJ, Crowe NY, Godfrey DI. NK cells and NKT cells collaborate in host protection from methylcholanthrene-induced fibrosarcoma. Int Immunol. 2001 Apr-13(4):459−63
  56. Hayakawa Y, Rovero S, Forni G, Smyth MJ. Alpha-galactosylceramide (KRN7000) suppression of chemical- and oncogene-dependent carcinogenesis. Proc Natl Acad Sci USA. 2003 Aug 5−100(16):9464−9. Epub 2003 Jul 16.
  57. Qin Z, Blankenstein T. A cancer immunosurveillance controversy. Nat Immunol. 2004 Jan-5(l):3−4-
  58. Qin Z, Kim HJ, Hemme J, Blankenstein T. Inhibition of methylcholanthrene-induced carcinogenesis by an interferon gamma receptor-dependent foreign body reaction. J Exp Med. 2002 Jun 3−19^v -):1479−90
  59. Enzler T, Gillessen S, Manis JP, Ferguson D, Fleming J, Alt FW, Mihm M, Dranoff G. Deficiencies of GM-CSF and interferon gamma link HHOlammation and cancer. J Exp Med. 2003 May 5- 197(9): 1213−9.
  60. Erdman SE, Poutahidis T, Tomczak M, Rogers AB, Cormier K, Plank B, Horwitz BH, Fox JG. CD4+ CD25+ regulatory T lymphocytes inhibit microbially induced colon cancer in Rag2-deficient mice. Am J Pathol. 2003 Feb- 162(2): 691 -702.
  61. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002 Nov-23(l l):549−55.
  62. Nakamoto Y, Guidotti LG, Kuhlen CV, Fowler P, Chisari FV. Immune pathogenesis of hepatocellular carcinoma. J Exp Med. 1998 Jul 20−188(2):341−50.
  63. Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer. 2005 Apr-5(4):263−74
  64. Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S. Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol. 2000−74:181−273.
  65. Karre K, Ljunggren HG, Piontek G, Kiessling R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature. 1986 Feb 20−26−319(6055):675−8.
  66. Seino K, Kayagaki N, Okumura K, Yagita H. Antitumor effect of locally produced CD95 ligand. Nat Med. 1997 Feb-3(2): 165−70.
  67. Bogen B. Peripheral T cell tolerance as a tumor escape mechanism: deletion of CD4+ T cells specific for a monoclonal immunoglobulin idiotype secreted by a plasmacytoma. Eur J Immunol. 1996 Nov-26(l l):2671−9.
  68. Lauritzsen GF, Hofgaard PO, Schenck K, Bogen B. Clonal deletion of thymocytes as a tumor escape mechanism. Int J Cancer. 1998 Oct 5−78(2):216−22.
  69. Nguyen LT, Elford AR, Murakami K, Garza KM, Schoenberger SP, Odermatt B, Speiser DE, Ohashi PS. Tumor growth enhances cross-presentation leading to limited T cell activation without tolerance. J Exp Med. 2002 Feb 18−195(4):423−35.
  70. Drake CG, Doody AD, Mihalyo MA, Huang CT, Kelleher E, Ravi S, Hipkiss EL, Flies DB, Kennedy EP, Long M, McGary PW, Coryell L, Nelson WG,
  71. Pardoll DM, Adler AJ Androgen ablation mitigates tolerance to a prostate/prostate cancer-restricted antigen. Cancer Cell. 2005 Mar-7(3):239−49.
  72. Willimsky G, Blankenstein T. Sporadic immunogenic tumours avoid destruction by inducing T-cell tolerance. Nature. 2005 Sep l-437(7055):141−6.
  73. Yu P, Lee Y, Liu W, Krausz T, Chong A, Schreiber H, Fu YX. Intratumor depletion of CD4+ cells unmasks tumor immunogenicity leading to the rejection of late-stage tumors. J Exp Med. 2005 Mar 7−201(5):779−91.
  74. Pardoll DM. Spinning molecular immunology into successful immunotherapy. Nat Rev Immunol. 2002 Apr-2(4):227−38.
  75. Hartmann G, Weiner GJ, Krieg AM. CpG DNA: a potent signal for growth, activation, and maturation of human dendritic cells. Proc Natl Acad Sci USA. 1999 Aug 3−96(16):9305−10
  76. Hurwitz АА, Foster Π’ A, Kwon ED, Truong T, Choi EM, Greenberg NM, Burg MB, Allison JP. Combination immunotherapy of primary prostate cancer in a transgenic mouse model using CTLA-4 blockade. Cancer Res. 2000 May l-60(9):2444−8.
  77. Nanda NK, Sercarz EE. Induction of anti-self-immunity to cure cancer. Cell. 1995 Jul 14−82(l):13−7
  78. Slingluff CL Jr, Hunt DF, Engelhard VH. Direct analysis of tumor-associated peptide antigens. Curr Opin Immunol. 1994 0ct-6(5):733−40.
  79. Gervois N, Guilloux Y, Diez E, Jotereau F. Suboptimal activation of melanoma HHOiltrating lymphocytes (TIL) due to low avidity of TCR/MHC-tumor peptide interactions. J Exp Med. 1996 May l-183(5):2403−7.
  80. Slansky JE, Rattis FM, Boyd LF, Fahmy T, Jaffee EM, Schneck JP, Margulies DH, Pardoll DM. Enhanced antigen-specific antitumor immunity with altered peptide ligands that stabilize the MHC-peptide-TCR complex. Immunity. 2000 Oct-13(4):529−38.
  81. Li Y, Bohlen P, Hicklin DJ. Vaccination against angiogenesis-associated antigens: a novel cancer immunotherapy strategy. Curr Mol Med. 2003 Dec-3(8):773−9.
  82. Lake RA, Robinson BW. Immunotherapy and chemotherapy—a practical partnership. Nat Rev Cancer. 2005 May-5(5):397−405.
  83. Sasaki S, Amara RR, Oran AE, Smith JM, Robinson HL. Apoptosis-mediated enhancement of DNA-raised immune responses by mutant caspases. Nat Biotechnol. 2001 Jun-19(6):543−7.
  84. Leitner WW, Hwang LN, Bergmann-Leitner ES, Finkelstein SE, Frank S, Restifo MP. Apoptosis is essential for the increased efficacy of alphaviral replicase-based DNA vaccines. Vaccine. 2004 Mar 29−22(11−12):1537−44.
  85. Ostrand-Rosenberg S. Animal models of tumor immunity, immunotherapy and cancer vaccines. Curr Opin Immunol. 2004 Apr- 16(2): 143−50.
  86. Provinciali M, Smorlesi A, Donnini A, Bartozzi B, Amici A. Low effectiveness of DNA vaccination against HER-2/neu in ageing. Vaccine. 2003 Feb 14−21(9−10):843−8.
  87. Guy CT, Cardiff RD, Muller WJ. Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol. 1992 Mar-12(3):954−61.
  88. Callahan R. MMTV-induced mutations in mouse mammary tumors: their potential relevance to human breast cancer. Breast Cancer Res Treat. 1996−39(l):33−44.
  89. Czarneski J, Rassa JC, Ross SR. Mouse mammary tumor virus and the immune system. Immunol Res. 2003−27(2−3):469−80.
  90. Wang Y, Jiang JD, Xu D, Li Y, Qu C, Holland JF, Pogo BG. A mouse mammary tumor virus-like long terminal repeat superantigen in human breast cancer. Cancer Res. 2004 Jun 15−64(12):4105−11
  91. Mant C, Cason J. A human murine mammary tumour virus-like agent is an unconvincing aetiological agent for human breast cancer. Rev Med Virol. 2004 May-Jun- 14(3): 169−77.
  92. Katz E, Lareef MH, Rassa JC, Grande SM, King LB, Russo J, Ross SR, Monroe JG. MMTV Env encodes an ITAM responsible for transformation of mammary epithelial cells in three-dimensional culture. J Exp Med. 2005 Feb 7−201(3):431−9.
  93. Blishchenko EY, Sazonova OV, Kalinina OA, Moiseeva EV, Vass AA, Karelin AA, Ivanov VT. Antitumor effect of valorphin in vitro and in vivo: combined action with cytostatic drugs. Cancer Biol Ther. 2005 Jan-4(l):l 18−24.
  94. Moiseeva EV, Chaadaeva AV, Semushina SG, Demidova YV, Tan J, Dijk J, Otter W. Mouse mammary carcinoma associated with multifocal epithelial lesions as models for multiple cancer cases in familial breast cancer (Π² ΠΏΠ΅Ρ‡Π°Ρ‚ΠΈ)
  95. Muller WJ, Sinn E, Pattengale PK, Wallace R, Leder P. Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell. 1988 Jul 1−54(1):105−15.
  96. Hakim FT, Flomerfelt FA, Boyiadzis M, Gress RE. Aging, immunity and cancer. Curr Opin Immunol. 2004 Apr-16(2):151−6.
  97. Curigliano G, Spitaleri G, Pietri E, Rescigno M, de Braud F, Cardillo A, Munzone E, Rocca A, Bonizzi G, Brichard V, Orlando L, Goldhirsch A. Breast cancer vaccines: a clinical reality or fairy tale? Ann Oncol. 2006 May-17(5):750−62.
  98. Lollini PL, Cavallo F, Nanni P, Forni G. Vaccines for tumour prevention. Nat Rev Cancer. 2006 Mar-6(3):204−16.
  99. Doria-Rose N., Haigwood N DNA vaccine strategies: candidates for immune modulation and immunization regimens. Methods 2003 Nov-31(3):207−16
  100. Gajewski TF, Meng Y, Blank C, Brown T, Immune resistance orchestrated by the tumor microenviroment. Immunological Reviews. 2006 Vol. 213, 131 145
  101. Bo Huang, Jie Zhao, Hongxing Li, Kai-Li He, Yibang Chen, Lloyd Mayer, Jay C. Unkeless, and Huabao Xiong Toll-Like Receptors on Tumor Cells Facilitate Evasion of Immune Surveillance. Cancer Res. 2005 65: 5009−5014
  102. Wolff JA, Ludtke JJ, Acsadi G, Williams P, Jani A. Long-term persistence of plasmid DNA and foreign gene expression in mouse muscle. Hum Mol Genet. 1:363−369, 1992
  103. Haupt К, Roggendorf M, Mann К. The potential of DNA vaccination against tumor-associated antigens for antitumor therapy. Exp Biol Med (Maywood). 2002 Apr-227(4):227−37
  104. Sparwasser T, Koch ES, Vabulas RM, Heeg K, Lipford GB, Ellwart JW, Wagner H. Bacterial DNA and immunostimulatory CpG oligonucleotides trigger maturation and activation of murine dendritic cells. Eur J Immunol 28:2045−2054, 1998
  105. Kamperschroer C, Quinn DG. Quantification of epitope-specific MHC class-II-restricted T cells following lymphocytic choriomeningitis virus infection-Cell Immunol. 1999. 193(2). 134−46.
  106. Kelly M, Alvero A, Chen R, Silasi D, Abrahams V, Cha S, Visintin I, Rutherford T, Мог G, TLR-4 Signaling Promotes Tumor Growth and Paclitaxel Chemoresistance in Ovarian Cancer. Cancer Res. 2006 66: 3859−3868.
  107. Huang B, Zhao J, Li H, He L, Chen Y, Mayer L,. Unkeless J, Xiong H. TollLike Receptors on Tumor Cells Facilitate Evasion of Immune Surveillance. Cancer Res. 2005 65: 5009−5014.
  108. Chen D, Xia J, Tanaka Y, Chen H, Koido S, Wernet O, Mukherjee P, Gendler SJ, Kufe D, Gong J. Immunotherapy of spontaneous mammary carcinoma with fusions of dendritic cells and mucin 1-positive carcinoma cells. Immunology. 2003. 109(2): 300−307.
  109. Chung MA, Luo Y, O’Donnell M, Rodriguez C, Heber W, Sharma S, Chang HR: Development and preclinical evaluation of a Bacillus Calmette-Guerin-MUCl-based novel breast cancer vaccine. Cancer Res. 2003. 63(6): 12 801 287.
  110. Mukherjee P, Madsen CS, Ginardi AR, Tinder TL, Jacobs F, Parker J, Agrawal B, Longenecker BM, Gendler SJ.: Mucin 1-specific immunotherapy in a mouse model of spontaneous breast cancer. J Immunother. 2003. 26(1): 4762.
  111. Morgan R, Dudley M, Wunderlich J, Rosenberg S, Cancer regression in patients after transfer of genetically enginered lymphocytes. Science 2006 314 (5796): 126 129
  112. PET system manual, 10th edition. P. 42, 48. URL: http://www.takara-bio.co.jp/goods/catalog/pdf/petsys.pdf
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ