Помощь в написании студенческих работ
Антистрессовый сервис

Генетический «нокдаун» протимозина альфа методом интерференции РНК

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Цель данной работы заключалась в отработке метода интерференции РНК протимозина альфа в клетках человека. Используя этот метод, мы также попытались пролить свет на возможную роль протимозина альфа в механизме ответа клетки на окислительный стресс. Эти исследования,'несомненно, важны для понимания основных регуляторных путей молекулярного механизма защиты клетки от окислительного стресса… Читать ещё >

Генетический «нокдаун» протимозина альфа методом интерференции РНК (реферат, курсовая, диплом, контрольная)

Содержание

  • Список условных обозначений
  • 1. Интерференция РНК и ее применение в молекулярной биологии (обзор литературы)
    • 1. 1. Феномен интерференции РНК
    • 1. 2. Предлагаемые модели молекулярного механизма интерференции РНК
    • 1. 3. Особенности протекания процесса интерференции РНК в клетках млекопитающих
    • 1. 4. Роль интерференции РНК в жизнедеятельности клетки
    • 1. 5. Характеристика систем осуществления интерференция РНК в клетках высших эукариот
      • 1. 5. 1. Химический синтез
      • 1. 5. 2. Транскрипция in vitro
      • 1. 5. 3. Получение интерферирующих РНК с помощью фермента Diser
      • 1. 5. 4. Экспрессионные векторы
    • 1. 6. Примеры использования интерференции РНК в молекулярной биологии
  • 2. Генетический «нокдаун» протимозина альфа человека методом интерференции РНК (результаты и их обсуждение)
    • 2. 1. Осуществление протимозин альфа-специфичной интерференции РНК в клетках человека.,
      • 2. 1. 1. Конструирование плазмид для осуществления генетического «нокдауна» протимозина альфа в клетках человека
      • 2. 1. 2. Оптимизация условий интерференции РНК протимозина альфа
    • 2. 2. Доказательства осуществления генетического «нокдауна» протимозина альфа методом интерференции РНК
      • 2. 2. 1. Оценка снижения количества мРНК протимозина альфа в клетках
  • HeLa, трансфицированных pSuperRNAi-ProTa
    • 2. 2. 2. Специфичность использованных интерферирующих РНК
    • 2. 2. 3. Оценка снижения экспрессии гена протимозина альфа на уровне белкового продукта
    • 2. 3. Специфичность эффекта снижения экспрессии гена протимозина альфа
    • 2. 4. Исследование участия протимозина альфа в ответе клетки на окислительный стресс
  • 3. Экспериментальная часть
    • 3. 1. Используемые штаммы микроорганизмов, клеточные линии и реактивы
    • 3. 2. Используемые методы
    • 3. 3. Манипуляции с клетками млекопитающих
    • 3. 4. Конструирование плазмид
  • Выводы.'

Одной из наиболее интересных и сложных для решения задач в области молекулярной биологии является изучение функции генов. Появление всего лишь нескольких мутаций в нуклеотидной последовательности гена, кодирующего, например, белок, вовлеченный в процесс регуляции деления клеток, может дать начало росту злокачественной опухоли. Поэтому изучение функции генов важно не только в связи с возможными I фундаментальными открытиями, но также существенно для создания подходов, позволяющих воздействовать на биологические функции, например, подавлять рост опухоли или размножение вируса. К настоящему моменту некоторые гены достаточно полно охарактеризованы на молекулярном уровнеизвестны их полные нуклеотидные последовательности, известно какой белок они кодируют, как этот белок взаимодействует с другими белками. Но, несмотря, на это чаще всего детальные сведения об участии этих генов в тех или иных клеточных I процессах и механизмах их регуляции чрезвычайно скудны. А функцию большинства генов генома еще только предстоит выяснить.

Путь от обнаружения гена к выяснению его функции сложен. Определение функции какого-либо гена в клетке и соответственно кодируемого этим геном белка основано на использовании методов молекулярной биологии, генетики и биохимии. В число этих методов входит, например, направленный мутагенез и его частный случай — «нокаут». Еще один способ понять, какую функциональную значимость несет тот или иной белок в клетке — это поиск его молекулярных партнеров. Искать белки, взаимодействующие с исследуемым белком, позволяет мощный и широко используемый метод двугибридной системы. Этот список может продолжить открытое не так давно явление интерференции РНК, позволяющее осуществить в клетке процесс генетического «нокдауна», т. е. специфически подавить уровень экспрессии избранного гена-мишени, но не выключить его работу полностью. Таким образом, интерференция РНК дает возможность изучать функцию жизненно важных для клетки генов, для которых генетический «нокаут» не может быть применим, так как в этом случае нокаутированные клетки будут нежизнеспособны.

Настоящая работа посвящена использованию явления интерференции РНК для осуществления «нокдауна» гена протимозина альфа. Протимозин, альфа является высококонсервативным, жизненно важным белком. Это ядерный мультикопийный белок с молекулярной массой 13 кДа. Его первичная структура содержит половину остатков глутаминовой и аспаргиновой аминокислот. Протимозин альфа не имеет каких-либо элементов вторичной и третичной структуры [1]. Несмотря на значительное количество накопившихся к настоящему времени экспериментальных данных, касающихся возможной роли этого белка в жизни клетки, механизм его действия неизвестен. Было показано, что этот белок важен для процесса клеточного деления. Совсем недавно в нашей лаборатории было установлено, что протимозин альфа имеет на С-конце сигнал для узнавания каспазами-3 и -7 и является антиапоптотическим белком. Кроме того, посредством дрожжевой двугибридной системы был обнаружен один из молекулярных партнеров протимозина альфа. Им оказался белок Keapl — репрессор активатора транскрипции генов ответа на окислительный стресс Nrf2. Приведенные данные указывают на то, что протимозин альфа может выполнять в организме несколько функций, т. е. он является белком многоцелевого назначения.

Цель данной работы заключалась в отработке метода интерференции РНК протимозина альфа в клетках человека. Используя этот метод, мы также попытались пролить свет на возможную роль протимозина альфа в механизме ответа клетки на окислительный стресс. Эти исследования,'несомненно, важны для понимания основных регуляторных путей молекулярного механизма защиты клетки от окислительного стресса, нарушение которых тем или иным образом может оказаться губительным для клетки. Детали же участия протимозина альфа в процессе регуляции ответа клетки на окислительный стресс, а также его возможное участие в других важных клеточных процессах, очевидно, еще только предстоит выяснить.

1. ИНТЕРФЕРЕНЦИЯ РНК И EEJ ПРИМЕНЕНИЕ В МОЛЕКУЛЯРНОЙ БИОЛОГИИ (обзор литературы).

ВЫВОДЫ:

1. Осуществлен генетический «нокдаун» протимозина альфа в клетках человека линии HeLa методом интерференции РНК. Снижение количества протимозина альфа в ответ на введение в клетки плазмиды pSuperRNAi-ProTa подтверждено тремя независимыми методами: б лот-гибридизацией РНК, электрофоретическим анализом препаратов частично очищенного протимозина альфа и иммуноферментным анализом протимозина альфа в клеточных лизатах.

2. Показана специфичность генетического «нокдауна» протимозина альфа: протимозин альфа-специфичные siRNA подавляют экспрессию протимозина альфа, но не влияют на уровень ряда клеточных белков. siRNA, несущие точечные мутации, не способны вызывать деградацию мРНК протимозина альфа.

3. Снижение концентрации протимозина альфа в клетках линии HeLa в нормальных условиях и условиях окислительного стресса приводит к подавлению экспрессии гена гемоксигеназы-1 (одного из генов ответа клетки на окислительный стресс), что подтверждает предложенную модель участия протимозина альфа в защите клеток от окислительного стресса.

Показать весь текст

Список литературы

  1. J.D., Сагу P.D., Sautiere P., Crane-Robinson С. (1990) Thymosins: both nuclear and cytoplasmic proteins. Eur. J. Biochem., 192, 643−651.
  2. J. (2003) Antisense technologies. Improvement through novel chemical modifications. Eur. J. Biochem., 270, 1628−44.
  3. Fire A., Xu S., Montgomery M.K., Kostas S.A., Driver S.E., Mello C.C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806−811.
  4. C., Lemieux C., Jorgensen R. (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous gene in trans. Plant Cell, 2, 279−289.
  5. N., Macino G. (1992) Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol Microbiol., 22, 3343−3353.
  6. H., Sarkissian M., Kelly W.G., Fleenor J., Grishok A., Timmons L., Fire A., Mello C.C. (1999) The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell, 99, 123−132.
  7. J.R., Pottier M., Vekris A., Opolon P., Maksimenko A., Malvy C. (2002) Comparison of antisense oligonucleotides and siRNAs in cell culture and in vivo. Biochem. Biophys. Res. Commun., 296, 1000−1004.
  8. M., Hayashi M., Taira K. (2003) Comparison of the suppressive effects of antisense oligonucleotides and siRNAs directed against the same targets in mammalian cells. Antisense Nucleic Acid Drug Dev., 13, 1−7.
  9. Vickers T.A., Koo S., Bennett C.F., Crooke S.T., Dean N.M., Baker B.F. (2003) Efficient reduction of target RNAs by small interfering RNA and RNase Hidependent antisense agents. A comparative analysis. J. Biol. Chem., 278, 71 087 118.
  10. Montgomery, M.K. and A. Fire. (1998) Double-stranded RNA as a mediator in sequence-specific genetic silencing and co-suppression. Trends Genet., 14, 255 258.
  11. Montgomery M.K., Xu S., Fire A. (1998) RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc. Natl. Acad. Sci. U. S. A., 95, 15 502−15 507.
  12. O., Baulcombe D.C. (1998) Initiation and maintenance of virus-induced gene silencing. Plant Cell- 10, 937−946.
  13. Volpe T.A., Kidner C., Hall I.M., Teng G., Grewal S.I., and Martienssen R.A. (2002) Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science, 297, 1833−1837.
  14. Chan S.W., Zilberman D., Xie Z., Johansen L.K., Carrington J.C. (2004) RNA silencing genes control de novo DNA methylatioh. Science, 303, 1336.
  15. Verdel A., Jia S., Gerber S., Sugiyama Т., Gygi S., Grewal S.I., Moazed D. (2004) RNAi-Mediated Targeting of Heterochromatin by the RITS Complex. Science, 303, 672−678.
  16. D.P. (2004) MicroRNAs: genomics, biogenesis mechanism, and function. Cell- 116, 281−297.
  17. Yang D., Lu H., Erickson J.W. (2000) Evidence that processed small dsRNAs may mediate sequence-specific mRNA degradation during RNAi in Drosophila embryos. CurrBiol., 10, 1191−200
  18. Т., Zamore P.D., Lehmann R., Bartel D.P., Sharp P.A. (1999) Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev., 13, 31 913 197.
  19. S.M., Bernstein E., Beach D., Hannon G.J. (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature, 404, 293 296 .
  20. Hammond S.M., Boettcher S., Caudy A.A., Kol? ayashi R., Hannon G.J. (2001) Argonaute2, a link between genetic and biochemical analyses of RNAi. Science, 293, 1146−1150.
  21. A.A., Hannon G.J. (2004) Induction and biochemical purification of RNA-induced silencing complex from Drosophila S2 cells. Methods Mol. Biol., 265, 59−72.
  22. Waterhouse, P.M., Graham, M.W., and Wang, M.B. (1998) Virus resistance and gene silencing in plants can be induced by simultane expression of sense and antisense RNA. Proc. Natl. Acad. Sci. USA, 95, 13 959−13 964.
  23. Zamore P.D., Tuschl Т., Sharp P.A., Bartel D.P.,(2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide
  24. T intervals. Cell, 101, 25−33.
  25. Elbashir S.M., Lendeckel W., and Tuschl T. (2001a) RNA interference is mediated by 21 and 22 nt RNAs. Genes Dev., 15, 188−200.
  26. M., Pallotta V., Brown D., Ford L.P. (2002) RNAi in mammalian cells: visualizing siRNA and analyzing induction of RNAi. Ambion Tech. Notes, 9, 68.
  27. E., Caudy A.A., Hammond S.M., Hannon G.J. (2001) Role for a ^ bidentate ribonuclease in the initiation step of RNA interference. Nature, 409,363.366.
  28. Knight S.W. and Bass B. L. (2001) A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science, 293, 2269−2271.
  29. Lee Y.S., Nakahara K., Pham J.W., Kim K., He Z., Sontheimer E.J., and Carthew R.W. (2004) Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell, 117, 69−81.
  30. H.D., Webster R.E., Zinder N.D. (1968) Purification and propertiesof ribonuclease III from Escherichia coli. J. Biol. Chem., 243, 82−91.
  31. A.W. (2003) The ribonuclease III superfamily: forms and functions in RNA maturation, decay, and gene silencing. In RNAi: A Guide to Gene Silencing, Hannon G. J, ed. Cold Spring Harbor Laboratory Press, 149−174.
  32. Kolb F.A., Zhang H., Jaronczyk K., Tahbaz Nv Hobman T.C., Filipowicz W. (2005) Human Dicer: Purification, Properties, and Interaction with PAZ PIWI Domain Proteins. Methods Enzymol., 392, 316−36.
  33. P., Dishart D., Doucet J., Frendewey D., Samuelsson В., Radmark O. (2002) Ribonuclease activity and RNA binding of recombinant human Dicer. EMBO J., 21,5864−5874.
  34. J.W., Jones J.T., Meyer Т., Ferrell J.E. (2003) Recombinant Dicer efficiently converts large dsRNAs into siRNAs suitable for gene silencing. Nat. Biotechnol., 21, 324−328.
  35. Elbashir SM, Martinez J, Patkaniowska A, Li^ndeckel W, Tuschl T. (2001) Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J., 20, 6877−6888.
  36. H., Sarkissian M., Kelly W.G., Fleenor J., Grishok A., Timmons L., Fire A., Mello C.C. (1999) The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell- 99, 123−32
  37. C., Azzalin G., Macino G., Cogoni C. (2000) Gene silencing in worms and fungi. Nature, 404, 245.
  38. Pal-Bhadra M., Bhadra U., Birchler J.A. (2002) RNAi related mechanisms affect both transcriptional and posttranscriptional transgene silencing in Drosophila Mol. Cell, 9, 315−327.
  39. Song J.J., Liu J., Tolia N.H., Schneiderman J., Smith S.K. (2003) The crystal Argonaute2 PAZ domain reveals an RNA binding, motif in RNAi effector complexes. Nat. Struct. Biol., 10, 1026−1032.
  40. Yan K.S., Yan S., Farooq A., Han A., Zeng L., Zhou M.M., Maine E. (2003) Structure and conserved RNA binding of the PAZ domain. Nature, 426, 468 474.
  41. N., Kolb F.A., Zhang H., Jaronczyk K., Filipowicz W. (2000) Characterization of the interactions between, mammalian PAZ PIWI domain proteins and Dicer. EMBO Rep., 5, 189−194.
  42. M., Ketting R.F., Okihara K.L., Sijen Т., Plasterk R.H. (2002) RNA helicase MUT-14-dependent gene silencing triggered in C. elegans by short antisense RNAs. Science, 295, 694−671.
  43. S., Fire A. (2001) Distinct roles for RDE-1 and RDE-4 during RNA interference in Caenorhabditis elegans. RNA, 7,1397−1402.
  44. R.W., Rubin G.M. (2002) ARGONAUTE1 is required for efficient RNA interference in Drosophila embryos. Proc. Natl. Acad. Sci. USA, 99, 6889−6894.
  45. A.A., Myers M., Hannon G.J., Hammond S.M. (2002) Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev., 16, 2491−2496.
  46. J., Patkaniowska A., Urlaub H., Luhrmann R., Tuschl T. (2002) Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell, 110, 563−574.
  47. Zou C., Zhang Z., Wu S., Osterman J.C. (1998) Molecular nucleotide sequences of cloning and characterization of a rabbit eIF2C protein. Gene, 211, 187−194.
  48. Doi N., Zenno S., Ueda R., Ohki-Hamazaki H., Ui-Tei K., Saigo K. (2003) Short-interfering-RNA-mediated gene silencing in mammalian cells requires Dicer and eIF2C translation initiation factors. Curr Biol., 13, 41−46.
  49. G., Zamore P.D. (2002) microRNA in a multiple-turnover RNAi enzyme complex. Science- 297, 2056−2060.
  50. Z., Dostie J., Paushkin S., Sharma A., Charroux В., Abel L., Rappsilber J., Mann M., Dreyfuss G. (2002) miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev., 16, 720−728.
  51. Caudy AA, Ketting RF, Hammond SM, Denli AM, Bathoorn AM, Tops BB, Silva JM, Myers MM, Hannon GJ, Plasterk RH. (2003) A micrococcal nuclease homologue in RNAi effector complexes. Nature, 425, 411−414.
  52. A., Tabara H., Mello C.C. (2000) Genetic requirements for inheritance of RNAi in C. elegans. Science, 287, 2494−2497.
  53. Yi R., Qin Y., Macara I.G. (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev., 17, 3011−3016.
  54. E., Guttinger S., Calado A. (2004) Nuclear export of microRNA precursors. Science, 303, 95−98.
  55. Winston. (2002) Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science, 295, 2456−2459.
  56. E.H., Hunter C.P. (2003) Transport of dsRNA into cells by the transmembrane protein SID-1. Science, 301, 1545−1547.
  57. C., Macino G. (1999) Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase. Nature, 399, 166— 169.
  58. Т., Hamilton A., Rudd S., Angell S., Baulcombe D.C. (2000) An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell, 101,543−553.
  59. A., Spoerke J.M., Stacey S.C., Klein M.E., Mackin N., Maine E.M. (2000) EGO-1 is related to RNA-directed RNA polymerase and functions in germ-line development and RNA interference in C. elegans. Curr. Biol., 10, 169−178.
  60. D.S., Hutvagner G., Haley B. (2002) Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. Mol. Cell, 10, 537−548.
  61. P., Svoboda P., Anger M., Schultz R.M. (2003) RNAi: mammalian oocytes do it without RNA-dependent RNA polymerase. RNA, 9, 187−192.
  62. C.E. (1991) Antiviral actions of interferon. Interferon-regulated cellular proteins and their surprisingly selective antiviral activities. Virology, 183, 1−11.
  63. P. (1990) Interferon-induced proteins and the antiviral state. Adv. Virus Res., 38, 147−200.
  64. D.C., Samuel C.E. (1993) Mechanism of interferon action: evidence1r for intermolecular autophosphorylation and autoactivation of the interferoninduced, RNA-dependent protein kinase PKR. J Virol., 67, 7695−7700.
  65. C.E. (1993) The eIF-2 alpha protein kinases, regulators of translation in eukaryotes from yeasts to humans. J. Biol. Chem., 268, 7603−7606.
  66. M.A., West D.K., Benvin S., Baglioni C. (1979) Structural requirements of double-stranded RNA for the activation of 2,5-oligo(A) polymerase and protein kinase of interferon-treated HeLa cells. J. Biol. Chem., 254, 1 018 010 183. A
  67. M. A. (1992) Interferon-induced human protein MxA is a GTPase which binds transiently to cellular proteins. J. Virol., 66, 4705—4709.
  68. E., Brondani V., Zhang H., Muller U., Filipowicz W. (2001) Specific interference with gene expression induced by long, double-stranded RNA in mouse embryonal teratocarcinoma cell lines. Proc. Natl. Acad. Sci U. S. A., 98, 14 428−14 433.
  69. P. (2004) Long dsRNA and silent genes strike back:RNAi in mouse oocytes and early embryos. Cytogenet. Genome Res., 105, 422−434.
  70. P.J., Caudy A.A., Hannon G.J. (2002) Stable suppression of gene expression by RNAi in mammalian cells. Proc. Natl. Acad. Sci. U. S. A. 99, 1443−1448.
  71. P. A., Mathews M. B. (1995) Interactions between the double-stranded RNA binding motif and RNA: definition of the binding site for the interferoninduced protein kinase DAI (PKR) on adenovirus VA RNA. RNA, 1, 17−20.
  72. R., Gray M.M. (1994) Proteins that interact with PKR. Biochimie., 76, 779−791.
  73. L., Green S.R., Schmedt C., Mathews M.B. (1992) Interactions between double-stranded RNA regulators and the protein kinase DAI. Mol. Cell Biol., 12, 5238−5248.
  74. N.J., Parrish S., Imani F., Fire A., Morgan R.A. (2001) Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc. Natl. Acad. Sci., 98, 9742−9747.
  75. S.M., Harborth J., Lendeckel W., Yalcin A., Weber K., Tuschl T. (2001b) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 411, 494−498.
  76. Persengiev S.P., Zhu X., Green M.R. (2004) Nonspecific, concentration-dependent stimulation and repression of mammalian gene expression by small interfering RNAs (siRNAs). RNA, 10, 12−18.
  77. C.A., Holko M., Veer M.J., Silverman R.H., Williams B.R. (2003) Activation of the interferon system by short-interfering RNAs. Nat. Cell Biol., 5, 834−839.
  78. A.J., Pebernard S., Ducraux A., Nicoulaz A.L., Iggo R. (2003) Induction of an interferon response by RNAi vectors in mammalian cells. Nat. Genet., 34, 263−264.
  79. D., Frost L., Sarthy A., Kroeger P., Halbert D.N., Fesik S. W. (2003) Specificity of short interfering RNA determined through gene expression signatures. Proc. Natl. Acad. Sci. U. S. A., 100, 6347−6352.
  80. D. (1995) Viruses and gene silencing in plants. Arch. Virol. Suppl., 15, 189−201.
  81. Т., Plasterk R.H. (2003) Transposon silencing in the elegans germ line by natural RNAi. Nature, 426, 310−314.
  82. R.J., Hobert O. (2003) A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature, 426, 845−849.
  83. A. (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell, 106,23−34.
  84. Lagos-Quintana M., Rauhut R., Meyer J., Borkhardt A., Tuschl T. (2003). New microRNAs from mouse and human. RNA, 9, 175−179.
  85. Lee R. C., Feinbaum R. L., Ambros V. (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75, 843−854.
  86. B. J. (2000)The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 403, 901−906.
  87. Hutvagner G., McLachlan J., Pasquinelli A.E., Balint E., Tuschl Т., Zamore P.D. (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science, 293, 834−838.
  88. V. (2001) Development. Dicing up RNAs. Science, 293, 811−813.
  89. Lee Y., Ahn C., Han J., Choi H., Kim J., Yim J., Lee J., Provostton J.C., Weigel D. (2003) The nuclear RNaselll Drosha initiates microRNA processing. Nature, 425,415−419.
  90. P.H., Ambros V. (1999) The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol., 216, 671−680.
  91. J.G., Petersen C.P., Sharp P.A. (2003) siRNAs can function as miRNAs. Genes & Dev., 17, 438−442.
  92. A., Voinnet O., Chappell L., Baulcombe D. (2002) Two classes of short interfering RNA in RNA silencing. EMBO J., 21, 4671−4679.
  93. Y.L., Rana T.M. (2002) siRNA function in RNAi: a chemical modification analysis. RNA, 9, 1034−1048.
  94. Elbashir S.M., Harborth J., Weber K., TuscHl T. (2002) Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods, 26, 199−213.
  95. Yu J.Y., DeRuiter S.L., Turner D.L. (2002) RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc. Natl. Acad. Sci. U. S. A., 99, 6047−6052.
  96. O., Picard D. (2002) RNA interference in mammalian cells using siRNAs synthesized with T7 RNA polymerase Nucleic Acids Res., 30, 46.
  97. F., Haubensak W., Yang D., Huttner W., Buchholz F. (2002) Tissue-specific RNA interference in postimplantdtion mouse embryos with endoribonuclease-prepared short interfering RNA. PNAS, 99, 14 236.
  98. Kawasaki H., Suyama E., Iyo M., Taira K. (2003) siRNAs generated by recombinant human Dicer induce specific and significant but target site-independent gene silencing in human cells. Nucleic Acids Res., 31, 981−987.
  99. M.W., Cheng A.M., Ford L.P. (2003)'Characterizing RNAi Induced with siRNA Cocktails Generated by RNase III. Ambion Tech. Notes, 10(1), 4−6.
  100. T.R., Bernards R., Agami R. (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science, 296, 550 553.
  101. C.P., Good P.D., Winer I., Engelke D.R. (2002) Effective expression of small interfering RNA in human cells. Nat. Biotechnol., 205, 505−508.
  102. M., Nilsen T.W., Costigan C., Altman S. (1990) Structure and transcription of a human gene for HI RNA, the RNA component of human RNase P. Nucleic Acids Res., 18, 97−103. '
  103. D.A., Guthrie С. (1990) Transcription of a yeast U6 snRNA gene requires a polymerase III promoter element in a novel position. Genes Dev., 4, 1345−1356.
  104. H., Taira K. (2003) Short hairpin type of dsRNAs that are controlled by tRNA(Val) promoter significantly induce RNAi-mediated gene silencing in the cytoplasm of human cells. Nucleic Acids Res., 31, 700−707.
  105. Boden D., Pusch O., Lee F., Tucker L., Shank P.R., Ramratnam B. (2003) Promoter choice affects the potency of HIV-l specific RNA interference. Nucleic Acids Res., 31, 5033−5038.
  106. Shen C., Buck A.K., Liu X., Winkler M., Reske S.N. (2003) Gene silencing by adenovirus-delivered siRNA. FEBS Lett., 539, 111−114.
  107. J., Taira K. (2000) Control of the functional activity of an antisense RNA by a tetracycline-responsive derivative of the human U6 snRNA promoter. Hum. Gene Ther., 11, 577−585.
  108. Fraser A.G., Kamath R.S., Zipperlen P., Martinez-Campos M., Sohrmann M., Ahringer J. (2000) Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature, 408, 325−330.
  109. Berns K, Hijmans EM, Mullenders J, Brummelkamp TR, Velds A, Heimerikx ^ M, Kerkhoven RM, Madiredjo M, Nijkamp W, Weigelt B, Agami R, Ge W,
  110. Cavet G, Linsley PS, Beijersbergen RL, Bernards R. (2004) A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature, 428,431−437.
  111. Arteaga H.J., Hinkula J., van Dijk-Hard I., Dilber M.S., Wahren В., Christensson В., Mohamed A.J., Smith C.I. (2003) Choosing CCR5 or Rev siRNA in HIV-1. Nat. Biotechnol., 21, 230−231.
  112. S.K., Layden T.J., Gartel A.L. (2004) RNA interference as a ' new strategy against viral hepatitis. Virology, 323, 173−181.
  113. Wilson J.A., Jayasena S., Khvorova A., Sabatinos S., Rodrigue-Gervais I.G., Arya S., Sarangi F., Harris-Brandts M., Beaulieu S., Richardson C.D. (2003)
  114. RNA interference blocks gene expression and RNA synthesis from hepatitis Сireplicons propagated in human liver cells. Proc. Natl. Acad. Sci. U.S.A., 100, 2783−2788.
  115. McCaffrey A.P. (2003) Inhibition of hepatitis В virus in mice by RNA interference. Nat. Biotechnol., 21, 639−644.
  116. L.A. (2002) Synthetic small inhibiting RNAs: efficient tools to inactivate oncogenic mutations and restore p53 pathways. Proc. Natl. Acad. Sci. U. S. A., 99, 14 849−14 854.
  117. Brummelkamp T.R. et al. (2002) Stable suppression of tumorigenicity byvirus-mediated RNA interference. Cancer Cell, 2, 243−247.t
  118. Scherr M. et al. (2003) Specific inhibition of brc-abl gene expression by small interfering RNA. Blood, 101, 1566−1569.
  119. Wu, H. et al. (2003) Small interfering RNA-induced suppression of MDR1 (P-glycoprotein) restores sensitivity to multidrug-resistant cancer cells. Cancer Res. 63, 1515−1519.
  120. Tsuruo Т. et al. (2003) Molecular targeting therapy of cancer: drug resistance, apoptosis and survival signal. Cancer Sci., 94, 15−21.
  121. M., Milner J. (2003) Bcl-2 constitutively suppresses p53-dependent apoptosis in colorectal cancer cells. Genes Dev., 17, 832−837.
  122. Zhang L. et al. (2003) Vector-based RNAi, a novel tool for isoformspecific knock-down of VEGF and anti-angiogenesis gene therapy of cancer. Biochem. Biophys. Res. Commun., 303, 1169−1178.
  123. M., Sioud M. (2002) Gene silencing inmammalian cells by preformed small RNA duplexes. Biochem. Biophys. Res. Commun., 295, 744−748.
  124. M., Bujard H. (1992) Tight control of gene expression in mammalian cells by tetracycline-response promoters. Proc. Natl. Acad. Sci. U. S. A., 89, 5547−5551.
  125. G.A., Cullen B.R. (2002) Potent and specific inhibition of human immunodeficiency virus type 1 replication by RNA interference. J. Virol., 76, 9225−9231.
  126. Lee N.S. et al. (2002) Expression of small interfering RNAs targeted against HIV-I rev transcripts in human cells. Nat. Biotechnol., 20, 500−505.
  127. Jacque J.M. et al. (2002) Modulation of HIV-1 replication by RNA interference. Nature, 418, 435−438.
  128. M., Milner J. (2002) Selective silencing of viral gene expression in HPV-positive human cervical carcinoma cells treated with siRNA, a primer of RNA interference. Oncogene, 21, 6041−6048.
  129. Martinez M.A. et al. (2002) Suppression of chemokine receptor expression by RNA interference allows for inhibition of HIV-1 replication. AIDS, 16, 23 852 390.
  130. K.J., Carami A. (1994) Tumour necrosis factor: a pleiotropic cytokine and therapeutic target. Annu. Rev. Med., 45, 491−503.
  131. Ogita S, Uefuji H, Morimoto M, Sano H. (2003) Producing decaffeinated coffee plants. Nature, 423, 823.
  132. С., Stahli С., Fabien N., Monier J.C. (1987) Intracellular localization of thymosin alpha 1 by immunoelectron microscopy using a monoclonal antibody. J. Histochem., 35, 181−187.
  133. A.A., Goodall GJ., Horecker B.L. (1984) Prothymosin alpha: isolation and properties of the major immunoreactive form of thymosin alpha 1 in rat thymus. Proc. Natl. Acad. Sci. USA, 81, 1008−1011.
  134. M., Schirm S., Bishop J.M. (1991)' The MYC protein activates transcription of the alpha-prothymosin gene. EMBO J., 10, 133−141.
  135. Gomez-Marquez J., Segade F., Dosil M., Pichel J. G., Bustelo X. R., Freire M. (1989) The expression of prothymosin alpha gene in T lymphocytes and leukemic lymphoid cells is tied to lymphocyte proliferation. J. Biol. Chem., 264, 8451−8454.
  136. A.R., Manrow R.E., Berger S.L. (1991) Prothymosin alpha antisense oligomers inhibit myeloma cell division. Proc. Natl. Acad. Sci. USA, 88, 253 257.
  137. Rodriguez P., Vinuela J. E., Alvarez-Fernandez L., Gomez-Marquez J. (1999) Prothymosin alpha antisense oligonucleotides induce apoptosis in HL-60 cells. Cell Death Differ., 6, 3−5.
  138. Watts J.D., Cary P.D., Crane-Robinson C. (1989) Prothymosin alpha is a nuclear protein. FEBS Lett., 245, 17−20.
  139. Т., Tsolas O. (1994) Prothymosin alpha binds to histone HI in vitro. FEBS Lett., 345, 71−75.
  140. Z., Kretsovali A., Murphy C., Tsolas O., Papamarcaki T. (2002) Prothymosin alpha interacts with the CREB-binding protein and potentiates transcription. EMBO Rep., 3, 361−366.
  141. R.S., Cotter M.A., Subramanian C., Robertson E.S. (2000) Prothymosin alpha functions as a cellular oncoprotein by inducing transformation of rodent fibroblasts in vitro. J. Biol. Chem., 276, 1794−1799.
  142. A.G., Belov G.A., Kalkum M., Chichkova N.V., Bogdanov A.A., Agol V.I., Vartapetian A.B. (2000) Prothymosin alpha fragmentation in apoptosis. FEBS Lett., 467, 150−154.
  143. K., Wakabayashi N., Katoh Y., Ishii Т., Igarashi K., Engel J.D., Yamamoto M. (1999) Keapl repress nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes and Develop., 13, 76−86.
  144. Brown D., Jarvis R., Pallotta V., Byrom M., Ford L (2002) RNA Interference in Mammalian Cell Culture: Design, Execution and Analysis of the siRNA Effect. Ambion Tech Notes, 9.
  145. D.K., Jelinek D.F. (2002) The effectiveness of double-stranded short inhibitory RNAs (siRNAs) may depend on the method of transfection. Antisense Nucleic Acid Drug Dev., 12, 411−418.
  146. A.R., Manrow R.E., Berger S.L. (1990) Human prothymosin alpha: purification of a highly acidic nuclear protein by means of a phenol extraction. Protein Expr. Purif., 1, 184−190.
  147. Xue F., Cooley L. (1993) kelch encodes a component of intercellular bridges in Drosophila egg chambers. Cell, 72, 681−693.
  148. Т., Фрич Э., Сэмбрук Д. Методы генетической инженерии. Молекулярное клонирование. Москва, «Мир», 1984
  149. QIAEXII Handbook, QIAGEN, 1995.161. «Sequenase 2.0», United States Biochemicals, 1990.
  150. U.K. (1970) Nature, 227, 68.
  151. Chung С.Т., Miller Roger H. (1988) A rapid and convenient method for the preparation and storage of competent bacterial cells.'Nucleic Acids Research, 16, 3580.
  152. Unifectin-56 Transfection Kit. UNIFECT, 2003.
  153. M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding Anal Biochem., 72, 248−254.
Заполнить форму текущей работой