Механизмы регуляции внутриклеточного рН в корнях злаков в условиях гипоксии и аноксии
Диссертация
Самой простой количественной характеристикой гипоксии может служить степень насыщения: отношение скорости поглощения кислорода при данной его концентрации во внешней среде к максимальной скорости его поглощения в условиях нормоксии. Переход из нормоксии к гипоксии сопровождается снижением количества АТФ в клетке, отношения/, и аденилатного энергетического заряда (АЭЗ), которые коррелируют… Читать ещё >
Список литературы
- Гринева Г. М., Брагина Т. В. Структурные и функциональные параметры формирования адаптации к затоплению у кукурузы. // Физиология растений. 1993. Т. 40. № 4. С. 662−667.
- Куличихин К.Ю., Курчакова Е. В., Чиркова Т. В. Активность малатдегидрогеназ и содержание эндогенного малата в корнях злаков в условиях аноксии // Вестник СПбГУ. 2000. Сер 3. Вып. 3. № 19. С. 70−76.
- Лакин Г. Ф. Биометрия. М.: Высш. Школа, 1980. С. 215−231.
- Магомедов И.М., Тищенко Н. Н. Методика исследования главных ферментов С4-фотосинтеза.// Труды по прикладной ботанике, генетике и селекции. 1978. Т.61. № 3. С. 105.
- Макеев A.M., Землянухин А. А. Влияние газового состава среды на содержание органических веществ в листьях гороха и подсолнечника.// Труды Воронежского университета. 1971. Т.78. С.57−63.
- Маслов Ю.И. Статистическая обработка данных биохимических исследований./ В книге: Методы биохимического анализа растений. Под ред. Полевого В. В., Максимова Г. Б. Л.: Изд-во Ленингр. ун-та, 1978. С.163−186.
- Настинова Г. Э., Чиркова Т. В. О возможности синтеза алкоголь- и лактатдегидрогеназы при недостатке кислорода. // Физиология растений. 1978. Т. 25. № 1. С. 55−63.
- Чиркова Т.В., Баржинкова 3., Баркова И. Г., Магомедов И. М. Малатдегидрогеназа корней пшеницы и риса в условиях аэрации и после анаэробного воздействия.// Вестник ЛГУ. Сер. 3 «Биология». 1984, № 21, С. 59−68.
- Чиркова Т.В., Баркова И. Г., Баржинкова 3., Магомедов И. М. Дикарбоновые органические кислоты корней пшеницы и риса в условиях аэрации и анаэробиоза. // Вестник ЛГУ. 1985. Т.24. С. 48−56.
- Чиркова Т.В., Бенько Г. Н. Значение нитратов в дыхании корней в условиях временного анаэробиоза. // Сельскохозяйственная биология. 1973. T.VIII. № 2. С. 258−262.
- Чиркова Т.В., Верзилин Н. Н., Баржинкова З. И., Петряевская Т. Г. Влияние условий анаэробиоза на сдвиги рН в конях пшеницы и риса. II Физиология и биохимия культурных растений. 1981. Т. 13. № 6. С. 587−593.
- Чиркова Т.В., Иванова Т. И., Чулановская М. В. Определение содержания интермедиатов цикла Кребса. / В книге: Практикум по фотосинтезу и дыханию растений. Под ред. Полевого В. В., Чирковой Т. В. -СПб.: Изд-во С.-Петербург, ун-та, 1997. С. 97−102.
- Чиркова Т.В., Настинова Г. Э. Особенности метаболизма 14С-глюкозы в корнях пшеницы и риса в различных условиях аэрации II Физиология растений. 1977. Т. 24. № 2. С. 291−297.
- Чиркова Т.В. (1988а) О путях приспособления растений к гипоксии и аноксии. //Физиология растений. 1988. Т. 35. № 2. С. 393−411.
- Чиркова Т.В. (19 886) Пути адаптации растений к гипоксии и аноксии./Л.: Изд-во Ленинградского Университета, 1988. 244 с.
- Armstrong W. Aeration in higher plants. //Adv. Bot. Res. 1979. Vol. 7. P. 225−332.
- Armstrong W., Brandle R., Jackson M.B. Mechanisms of flood tolerance in plants. //Acta Bot. 1994. Vol.43. № 4. P. 307−358.
- Armstrong W. Oxygen diffusion from the roots of woody species. II Physiol. Plant. 1968. Vol. 21. P. 539−543. Цит. no: Armstrong et al., 1994.
- Arpagaus S., Braendle R. The significance of a-amylase under anoxia stress in tolerant rhizomes (Acorus calamus L.) and nontolerant tubers (Solanum tuberosum L., van Desiree). II J. Exp. Bot. 2000. Vol. 51. № 349. P. 1475−1477.
- Bailey-Serres J., Kloekener-Gruissem В., Freeling M. Genetic and molecular approaches to the study of the anaerobic response and tissue specific gene expression in maize. II Plant Cell Environ. 1988. Vol. 11. № 5. P. 351-.
- Bates G.W., Goldsmith M.H.M. Rapid response of the plasma-membrane potential in oat coleoptiles to auxin and other weak acids. // Planta. 1983. Vol. 159. P. 231−237.
- Berry L.J., Norris J.R. Studies of onion root respiration. Velocity of 02 consumption in different segments of root at different temperatures as a function of partial pressure of 02. // Biochim. Biophys. Acta. 1949. Vol. 3. P. 593−606.
- Bertani A., Brambilla I. Effect of decreasing oxygen concentrations on some aspects of protein and amino acids metabolism in rice roots. // Z. Pflanzenphysiol. 1982. Vol. 107. P. 193−200.
- Blackwell P. S. Measurement of aeration in waterlogged soils: some improvement of techniques and application to experiments using lysimeters. // J. Soil Sci. 1983. Vol. 34. P. 271−285.
- Botrel A., Magne C., Kaiser W.M. Nitrate reduction, nitrite reduction and ammonium assimilation in barley roots in response to anoxia. // Plant Physiol. Biochem. 1996. Vol. 34. P. 645−652.
- Bouny J.M., Saglio P.H. Glycolytic flux and hexokinase activities in anoxic maize root tips acclimated by hypoxic treatment. // Plant Physiol. 1996. Vol. 111. P. 187−194.
- Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. // Anal. Biochem. 1976. Vol. 22. P. 248−254.
- Bucher M., Braendle R., Kuhlemeier C. Ethanolic fermentation in transgenic tobacco expressing Zygomonas mobilis pyruvate decarboxylase. // The EMBO Journal. 1994. Vol. 13. P. 2755−2763.
- Bucher M., Brandle R., Kuhlemeier C. Glycolytic gene expression in amphibious Acorus calamus L. under natural conditions. // Plant and Soil. 1996. Vol. 178. P. 75−82.
- Bucher M., Kuhlemeier C. Long-term anoxia tolerance. Multilevel regulation of gene expression in the amphibious plant Acorus calamus L. // Plant Physiol. 1993. Vol. 103. P. 441−448.
- Campbell R., Drew M.C. Electron microscopy of gas space (aerenhyma) formation in adventitious roots of Zea mays L. subjected to oxygen shortage. // Planta. 1983.157. P. 350−357.
- Carystinos G. D, Macdonald H.R., Monroy A.F., Dhinsda R.S., Poole R.J. Vacuolar H±translocating pyrophosphatase is induced by anoxia or chilling stress in seedlings of rice. // Plant Physiol. 1995. Vol. 108. P. 641−649.
- Crawford R.M.M., Braendle R. Oxygen deprivation stress in a changing environment.//J. Exp. Bot. 1996. Vol. 47 № 295. P. 145−159.
- Crawford R.M.M., Chapman H.M., Hodge H. Anoxia-tolerance in high-arctic vegetation. //Arctic and Alpine Research. 1994. № 3. Vol. 26. P. 308−312.
- Christopher M.E., Good A.G. Characterization of hypoxically inducible lactate dehydrogenase in maize. // Plant Physiol. 1996. Vol. 112. P. 1015−1022.
- Das A., Nanda B.B., Sarkar R.K., Lodh S.B. Effect of complete submergence on the activity of starch phosphorylase enzyme in rice (Oryza sativa L.) leaves. // J. Plant Biochem. Biotechnol. 2000. Vol. 9. P. 41−43.
- Drew M.C., He C.-J., Morgan P.W. Programmed cell death and aerenchyma formation in roots. // Trends in Plant Science. 2000. Vol. 5. № 3. P. 123−127.
- Drew M.C., Jackson M. В., Giffard S. Ethylene promoting adventitious rooting and cortical air spaces (aerenchyma) in roots may be adaptive responses to flooding in lea mays L. II Planta. 1979. Vol. 147. P. 83−88. Цит. no: Armstrong et al., 1994.
- Drew M.C. Oxygen deficiency and root metabolism: injury and acclimation under anoxia and hypoxia.// Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 1997. Vol.48. P. 223−250.
- Drew M.C., Saglio P.H., Pradet A. Higher adenylate energy charge and ATP/ADP ratios in aerenchymatous roots of lea mays in anaerobic media as a consequence of improved internal oxygen transport. // Planta. 1985. Vol. 165. P. 51−58. Цит. no: Drew, 1997.
- Fan T.W.M., Higashi R.M., Frenkiel T.A., Lane A.M. Anaerobic nitrate and ammonium metabolism in flood-tolerant rice coleoptiles. // J. Exp. Bot. 1997. Vol.48. P. 1655−1666.
- Fan T.W., Higashi R.M., Lane A.N. An in vivo 1H and 31P NMR investigation of the effect of nitrate on hypoxic metabolism in maize roots. // Arch. Biochem. Biophys. 1988. Vol. 266. № 2. P. 592−606.
- Fan T.W., Lane A.N., Higashi R.M. Hypoxia does not affect rate of ATP synthesis and energy metabolism in rice shoot tips as measured by 31P-NMR in vivo. //Arch. Biochem. Biophys. 1992. Vol. 294. P. 314−318.
- Felle H., Bertl A. Light-induced cytoplasmic pH-changes and their interrelation to the activity of the electrogenic pump in Riccia fluitans. // Biochim. Biophys. Acta. 1986. Vol. 848. P. 176−182.
- Felle H. Control of cytoplasmic pH under anoxic conditions and its implication for plasma membrane proton transport in Medicago sativa root hairs. // J. Exp. Bot. 1996. Vol. 47. P. 967−973.
- Felle H. pH regulation in anoxic plants // Ann. Bot. 2005. Vol. 96. P. 519−532.
- Fox G.G., Ratcliffe R.G., Southon Т.Е. Airlift systems for in vivo NMR spectroscopy of plant tissues. // J. Magn. Res. 1989. Vol. 82. P. 360−366.
- Freeling M. Simultaneous induction by anaerobiosis or 2,4-D of multiple enzymes specified by two unlinked genes: Differential Adh1-Adh2 expression in maize. // Mol. Gen. Genet. 1973. Vol. 127. P.215−227.
- Gerendas J., Schurr U. Physicochemical aspects of ion relations and pH regulation in plants a quantitative approach. II J. Exp. Bot. 1999. Vol. 50. № 336. P. 1101−1114.
- Germain V., Ricard В., Raymond P., Saglio P.H. The role of sugars, hexokinase, and sucrose synthase in the determination of hypoxically induced tolerance to anoxia in tomato roots. // Plant Physiol. 1997. Vol.114. P.167−175.
- Gibbs J., de Bruxelle G., Armstrong W., Greenway H. Evidence for anoxic zones in 2−3 mm tips of aerenchymatous maize roots under low 02 supply. //Aust. J. Plant Physiol. 1995. Vol. 22. P.723−730. Цит. no: Drew, 1997.
- Gibbs J., Greenway H. Mechanism of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. II Funct. Plant. Biol. 2003. Vol. 30 № 1. P. 1−47.
- Good A.G., Muench D.G. Long-term anaerobic metabolism in root tissue. Metabolic products of pyruvate metabolism.// Plant Physiol. 1993. Vol. 101. P. 1163−1168.
- Gout E., Boisson A.M., Aubert S., Douce R., Bligny R. Origin of the cytoplasmic pH changes during anaerobic stress in higher plant cells. Carbon-13 and phosphorous-31 nuclear magnetic resonance studies. Plant Physiol. 2001. Vol. 125. P. 912−925.
- Greenway H., Gibbs J. Mechanisms of anoxia tolerance in plants. II. Energy requirement for maintenance and energy distribution to essential processes II Funct. Plant. Biol. 2003. Vol. 30. P. 999−1036.
- Guglielminenti L., Wu Y., Boschi E., Yamaguchi J., Favati A., Vergara M., Perata P., Apli A. Effect of anoxia on sucrose degrading enzymes in cereal seeds. II J. Plant Physiol. 1997. Vol. 150. P. 251−258.
- Guglielminetti L, Yamaguchi J., Perata P., Apli A. Amylolytic activity activities in cereal seeds under aerobic and anaerobic conditions. II Plant Physiol. 1995. Vol. 109. P. 1069−1076.
- Gupta K.J., Stoimenova M., Kaiser W.M. In higher plants, only root mitochondria, but not leaf mitochondria reduce nitrite to NO, in vitro and in situ. H J. Exp. Bot. 2005. Vol. 56. P. 2601−2609.
- Hageman R.H., Flesher D. The effect of anaerobic environment on the activity of alcohol dehydrogenase and other enzymes of corn seedlings.// Arch. Biochem. Biophys. 1960. Vol. 87. P. 203−207.
- He C.-J., Morgan P.W., Drew M.C. Transduction of an ethylene signal is required for cell death and lysis in the root cortex of maize during aerenchyma formation induced by hypoxia. II Plant Physiol. 1996. Vol. 112. P. 463−472.
- Hochachka P.W., Mommsen T.P. Protons and anaerobiosis.// Science. 1983. Vol. 219. P. 1391−1397.
- Hoffman N.E., Bent A.F., Hanson A.D. Induction of lactate dehydrogenase isozymes by oxygen deficit in barley root tissue II Plant Physiol. 1986. Vol. 82. P. 658−663.
- Hohorst H.J. Determination of L-malate with MDH and DPN./ In: Bergmeyer H.U. Methods of enzymatic analysis. N-J-Z AP. 1965. P. 328.
- Howard E.A., Walker J.C., Dennis E.S., Peacock W.J. Regulated expression of an alcohol dehydrogenase chimeric gene introduced into maize protoplasts II Planta. 1987. Vol. 170. P. 535−540.
- Huq E., Hodges Т.К. An anaerobically inducible early (a/'e) gene family from rice. II Plant Mol. Biol. 1999. Vol. 40. P. 591−601.
- Joly C.A., Crawford R.M.M. Variation in tolerance and metabolic responses to flooding in some tropical trees. // J. Exp. Bot. 1982. Vol. 33. N235. P. 799−809.
- Kawase M. Effect of ethylene on aerenchyma formation.// Amer. J. Bot. 1981. Vol. 68. P. 651−658. Цит. no: Armstrong, 1994
- Kawase M. Role of cellulase in aerenchyma development in sunflower. //Amer. J. Bot. 1979. Vol. 66. P. 651−658.
- Kawase M. Role of ethylene in induction of flooding damage in sunflower.// Physiol Plant. 1974. Vol. 31. P. 29−38.
- Keiley P.M., Freeling M. Anaerobic expression of maize fructose-1,6-diphosphate aldolase. //J. Biol. Chem. 1984. Vol. 259. № 22. P. 14 180−14 183.
- Kinoshita Т., Nishimura M., Shimazaki K. Cytosolic concentration of Ca2+ regulates the plasma membrane H±ATPase in guard cells of Fava bean. II Plant Cell. 1995. Vol. 7. P. 1333−1342.
- Klok E.J., Wilson I.W., Wilson D., Chapman S.C., Ewing R.M., Somerville S.C., Peacock W.J., Dolferus R., Dennis E.S. Expression profile analysis of the low-oxygen response in Arabidopsis root cultures. // Plant Cell. 2002. Vol. 14. P. 2481−2494.
- Knee M. Fruit metabolism and practical problems of fruit storage under hypoxia and anoxia. // In: Plant life in oxygen deprivation. Ecology, physiology and biochemistry. / Eds.: Jackson M.B., Davies D.D., Lambers H. The Hague: SPB Academic. P. 229−243.
- Koch K.E., Ying Z., Wu Y., Avigne W.T. Multiple paths of sugar-sensing and sugar/oxygen overlap for genes of sucrose and ethanol metabolism. // J. Exp. Bot. 2000. Vol. 51. GMP Special issue. P. 417−427.
- Kurkdijan A., Guern J. Intracellular pH: measurement and importance in cell activity. // Annu. Rev. Plant Physiol. Plant Mol. Biol. 1989. Vol. 40. P. 271 303.
- Laan P., Berrovoets M.J., Lythe S" Armstrong W., Blom C.W.P.M. 1989(a) Root morphology and aerenchyma formation as indicators of flood-tolerance Rumex species.11 J. Ecol. 1989. Vol. 77. P. 693−703.
- Laan P., Smolders A., Blom C.W.P.M., Armstrong W. 1989(b) The relative role of internal aeration, radial oxygen losses, iron exclusion and nutrient balances in flood-tolerance of Rumex species.11 Acta Bot. Neerl. 1989. Vol. 38. P.131−145.
- Laszlo A., Lawrence P.St. Parallel induction and synthesis of PDC and ADH in anoxic maize roots. // Mol Gen Genet. 1983. Vol. 192. P. 110−117.
- Leblova S. Pyruvate conversion in higher plants during natural anaerobiosis. // In: plant life in anaerobic environment. / Eds: Hook D.D., Crawford R.M.M. Ann Arbor Science, Ann Arbor, Ml 1978. P. 155−168.
- Lee R.B., Ratcliffe R.G. Development of an aeration system for use in plant tissue NMR experiments.//J. Exp. Bot. 1983. Vol. 34. P. 1213−1221.
- Libourel I.G.L., van Bodegom P.M., Flicker M.D., Ratcliffe R.G. Nitrite reduces cytoplasmic acidosis under anoxia. // Plant Physiol. 2006. Vol. 142. P. 1710−1717.
- Linchart J.В., Baker J. (ntrapopulation differentiation of physiological response to flooding in a population of Veronica peregrina L // Nature. 1973. Vol. 242. № 5395. P.275−276.
- Loreti E., Poggi A., Novi G., Alpi A., Perata P. A genome-wide analysis of the effects of sucrose on gene expression in Arabidopsis seedlings under anoxia. // Plant Physiol. 2005. Vol. 137. P. 1130−1138.
- Manjunath S., Lee C.-H.K., VanWinkle P., Bailey-Serres J. Molecular and biochemical characterization of cytosolic phosphoglucomutase in maize. // Plant Physiol. 1998. Vol. 117. P. 997−1006.
- Marre M.T., Romani G., Marre E. Transmembrane hyperpolarisation and increase of K+ uptake in maize roots treated with permeant weak acids. // Plant Cell Environ. 1983. Vol. 6. P. 617−623.
- Mattana M., Corragio I., Bertani A., Reggiani R. Expression of the enzymes of nitrate reduction during the anaerobic germination of rice. II Plant Physiol. 1994. Vol. 106. P. 1605−1608.
- Maurino V.G., Saigo M., Andreo C.S., Drincovich M.F. Non-photosynthetic «malic-enzyme» from maize: a constitutively expressed enzyme that responds to plant defence inducers // Plant. Mol. Biol. 2001. Vol. 45. P. 409−420.
- McElfresh K.C., Chourey P. S. Anaerobiosis induces transcription but not translation of sucrose synthase in maize. // Plant Physiol. 1988. Vol. 87. P. 542−546.
- McMonmon M., Crawford R.M.M. A metabolic theory of flooding tolerance: the significance of enzyme distribution and behaviour. // New Phytol. 1971. Vol. 70. № 2. P. 299−306.
- Mendelssohn I.A., McKee K.L., Patrik W.H. Oxygen deficiency in Spartina alterniflora roots: metabolic adaptation to anoxia.// Science. 1981. Vol. 214. № 4519. P.439−441.
- Mendelssohn I.A., McKee K.L. Root metabolic response of Spartina alterniflora to hypoxia. // In: Plant Life in Aquatic and Amphibious Habitats. 1987.
- British Ecological Society. Special publications. № 5. P. 239−253. Цит. no: Drew, 1997.
- Menegus F., Cattaruzza L, Mattana M., Beffagna N., Ragg E. Response to anoxia in rice and wheat seedlings. Changes in pH of intracellular compartments, glucose-6-phosphate level and metabolic rate // Plant Physiol. 1991. Vol. 95. P. 760−767.
- Mimura Т., Reid R.J., Smith F.A. Control of phosphate transport across the plasma membrane of Chara corallina. II J. Exp. Bot. 1998. Vol. 49. P. 13−19.
- Mohanty M., Wilson P.M., ap Rees T. Effect on anoxia on growth and carbohydrate metabolism in suspension cultures of soybean and rice. // Phytochemistry. 1993. Vol. 34. № 1. P. 75−82.
- Monk L.S., Crawford R.M.M., Braendle R. Fermentation rates and ethanol accumulation in relation to flooding tolerance in rhizomes of monocotyledonous species. // J. Exp. Bot. 1984. Vol. 35. P. 738−745.
- Mujer C.V., Rumpho M.E., Lin J.-J., Kennedy R.A. Constitutive and inducible aerobic and anaerobic stress proteins in the Echinochloa complex and rice. // Plant Physiol. 1993. Vol. 101. P. 217−226.
- Mustroph A., Albrecht G. Tolerance of crop plants to oxygen deficiency stress: fermentative activity and photosynthetic capacity of entire seedlings under hypoxia and anoxia // Physiol Plant. 2003. Vol. 117. P. 508−520.
- Nobel P. S. Physicochemical and environmental plant physiology. / Academic Press, San Diego. 1999. xxiv+474 p.
- Olson D.C., Oetiker J.H., Yang S.F. Analysis of LE-AC53, a 1-aminocyclopropane-1-carboxylic acid synthase gene expressed during flooding in the roots of tomato plants. II J. Biol. Chem. 1995. Vol. 270. P. 14 056−14 061.
- Peeters A.J.М., Сох M.C.H., Benshop J.J., Vreeburg R.A.M., Bou J., Voesenek L.A.C.J. Submergence research using Rumex palustris as a model- looking back and going forward. II J. Exp. Bot. 2002. Vol. 53. № 368. P. 391−398.
- Peng H.-P., Chan C.-S., Shin M.-C., Yang S. F. Signalling events in the hpoxic induction of alcohol dehydrogenase gene in Arabidopsis. II Plant Physiol. 2001. Vol. 126. P. 742−749.
- Perata P., Apli A. Ethanol induced injuries to carrot cells: the role of acetaldehyde. II Plant Physiol. 1991. Vol. 95. P. 748−752.
- Perata P., Guglielminetti L, Apli A. Mobilization of endosperm reserves in cereal seeds under anoxia. //Ann. Bot. 1997. Vol. 79. Suppl. A. P. 4956.
- Plaxton W.C. Organization and regulation of plant glycolysis. II Annu. Rev. Plant Physiol. Plant Mol. Biol. 1996. Vol. 47. P. 185−214.
- Polyakova Li, Vartapetian B.B. Exogenous nitrate as a terminal acceptor of electrons in rice (Oryza sativa) coleoptiles and wheat (Triticum aestivum) roots under strict anoxia. II Russ. J. Plant Physiol. 2003. Vol. 50. P. 808 812.
- Ponnamperuma F.N. Effect of flooding on soils. II In: Flooding and plant growth. / Ed.: Kozlowski T.T. Academic Press, London. 1984. P. 10−45.
- Reggiani R., CantCi C.A., Brambilla I., Bertani A. Accumulation and interconversion of amino acids under anoxia. // Plant Cell Physiol. 1988. Vol. 29. P. 981−987.
- Reggiani R., Laoretti P. Evidence for the involvement of phospholipase С in the anaerobic signal transduction. // Plant Cell Physiol. 2000. Vol. 41. № 12. P. 1392−1396.
- Reggiani R., Nebuloni M., Mattana M., Brambilla I. Anaerobic accumulation of amino acids in rice roots: role of glutamine synthetase/glutamate synthase cycle. //Amino Acids. 2000. Vol. 18. P. 207−217.
- Reid R.J., Loughman B.C., Ratcliffe R.G. 31P NMR measurement of cytoplasmic pH changes in maize root tips. II J. Exp. Bot. 1985. Vol. 36. P. 889 897.
- Reid R.J., Smith F.A. The cytoplasmic pH stat. // In: Handbook of plant growth: pH as the master variable in plant growth. / Ed. Rengel Z. Marcel Dekker, New York. 2002. P. 49−71.
- Reid R.J., Smith F.A., Whitington J. Control of intracellular pH in Chara corallina during uptake of weak acid. // J. Exp. Bot. 1989. Vol. 40. P. 883 891.
- Ricard В., Couee I., Raymond P., Saglio P.H., Saint-Ges V., PradetA. Plant metabolism under hypoxia and anoxia. // Plant Physiol. Biochem. 1994. Vol. 32. P.1−10.
- Ricard В., Rivoal J., Spiteri A., Pradet A. Anaerobic stress induces the transcription and translation of sucrose synthase in rice. // Plant Physiol. 1991. Vol.95. P. 669−674.
- Ricard В., VanToai Т., Chourey P., Saglio P. Evidence for the critical role of sucrose synthase for anoxic tolerance of maize roots using a double mutant. // Plant Physiol. 1998. Vol.116. P. 1323−1331.
- Ridge I. Ethylene and growth control in amphibious plants. // In: Plant life in aquatic and amphibious habitats. / Ed. Crawford R.M.M., Blackwell, Oxford. 1987. P. 53−76.
- Rivoal J., Hanson A.D. Evidence for a large and sustained glycolytic flux to lactate in anoxic roots of some members of the halophytic genus Limonium. // Plant Physiol. 1993. Vol. 101. P. 553−560.
- Rivoal J., Richard В., Pradet A. Lactate dehydrogenase in Oryza sativa L. seedlings and roots // Plant Physiol. 1991. Vol. 95. P. 682−686.
- Roberts J.K.M., Andrade F.N., Anderson I.C. Further evidence that cytoplasmic acidosis is a determinant of flooding intolerance in plants.// Plant Physiol. 1985. Vol. 77. P. 492−494.
- Roberts J.KM., Callis J., Jardetzky O., Walbot V., Freeling M. (1984a) Cytoplasmic acidosis as a determinant of flooding intolerance in plants. // Proc. Natl. Acad. Sci. USA. Vol. 81. P. 6029−6033.
- Roberts J.K.M., Callis J., Wemmer D., Walbot V., Jardetzky O. (1984b) Mechanism of cytoplasmic pH-regulation in hypoxic maize root tips and its role in survival under hypoxia. // Proc. Natl. Acad. Sci. USA. Vol. 81. P. 3379−3383.
- Roberts J.K.M., Wemmer D., Ray P.M., Jardetzky 0. Regulation of cytoplasmic and vacuolar pH in maize (Zea mays) root tips under different experimental conditions. // Plant Physiol. 1982. Vol. 69. P. 1344−1347.
- Rumpho M.E., Kennedy R.A. Anaerobic metabolism in germinating seeds of Echinochloa crus-galli (Barnyard grass). Metabolite and enzyme studies. //Plant Physiol. 1981. Vol .68. № 1. P.165−168.
- Sachs M.M., Freeling M., Okimoto R. The anaerobic proteins of maize. // Cell. 1980. Vol. 20., P. 761−767.
- Sachs M.M., Subbaian C.C., Saab I.N. Anaerobic gene expression and flooding tolerance in maize. //J. Exp. Bot. 1996. Vol. 47. № 294. P. 1−15.
- Saglio P.H., Rancillac M., Bruzau F., Pradet A. Critical oxygen pressure for growth and respiration of excised and intact roots. // Plant Physiol. 1984. Vol. 76. P. 151−154.
- Saglio P.H., Raymond P., Pradet A. Metabolic activity and energy charge of excised maize root tips under anoxia. // Plant Physiol. 1980. Vol. 66. P.1053−1057.
- Sakano K., Kiyota S., Yasaki Y. Acidification and alkalinization of culture medium by Catharantus roseus cells Is anoxic production of lactate acause of cytoplasmic acidification?// Plant Cell Physiol. 1997, Vol.38. № 9. P. 1053−1059.
- Sakano K. Revision of biochemical pH-stat: Involvement of alternative pathway metabolism. // Plant Cell Physiol. Vol. 3. P. 466−472.
- Sauter M. Rice in deep water: how to take heed against a see of troubles. // Naturwissenschaften. 2000. Vol. 87. P. 289−303.
- Smith A.M., ap Rees T. (1979a) Effect of anaerobiosis on carbohydrate oxidation by roots of Pisum sativum. II Phytochemistry. 1979. Vol. 18. № 9. P. 1453−1458.
- Smith A.M., ap Rees T. (1979b) Pathways of carbohydrate fermentation in the roots of marsh plants.// Planta. 1979. Vol. 146. P. 327−334.
- Subbaiah C.C., Bush D.S., Sachs M.M. 1994(a) Elevation of cytosolic calcium precedes anoxic gene expression in maize suspension-cultured cells. // Plant Cell. 1994. Vol. 6. № 12. P. 1747−1762.
- Subbaiah C.C., Bush D.S., Sachs M.M. Mitochondrial contribution to the anoxic Ca2+ signal in maize suspension-cultured cells. // Plant Physiol. 1998. Vol.118. P. 759−771.
- Subbaiah C.C., Zhang J., Sachs M.M. 1994(b) Involvement of intracellular calcium in anaerobic gene expression and survival of maize seedlings.// Plant Physiol. 1994. Vol. 105. № 1. P. 369−376.
- Su P.-H., Lin C.-H. Metabolic responses of luffa roots to long-term flooding. // J. Plant Physiol. 1996. Vol. 148. P. 735−740.
- Swartz D. An example of gene fixation resulting from selective advantage in suboptimal conditions.//American Naturalist. 1969. Vol. 103. P. 479 481.
- Thomson C.J., Greenway H. Metabolic evidence for stelar anoxia in maize root s exposed to low 02 concentrations. // Plant Physiol. 1991. Vol. 96. P.1294−1301. Цит. no: Drew, 1997.
- Ulrich C.I., Novacky A.J. Extra and intracellular pH and membrane potential changes induced by к+, сг, н2ро- and no3 uptake and fusicoccin in roothairs of Limonium stoloniferum. II Plant Physiol. 1990. Vol. 94. P. 1561−1567.
- Umeda M., Uchimiya H. Differential transcript level of genes associated with glycolisis and alcohol fermentation in rice plants (Oryza sativa L.) under submergence stress.// Plant Physiol. 1994. Vol. 106. P. 1015−1022.
- Vanlerberghe G.C., Feil R., Turpin DM. Anaerobic metabolism in the N-limited green alga Selenastrum minimum. I. Regulation of carbon metabolism and succinate as a fermentation product.// Plant Physiol. 1990. Vol. 94. P. 11 161 123.
- Vanlerberghe G.C., Mcintosh L. Alternative oxidase: from gene to function. //Annu. Rev. Plant Physiol. Plant Mol. Biol. 1997. Vol. 48. P. 703−734.
- Vatrapetian B.B., Andreeva I.N., Kozlova G.I., Agapova LP. Mitochondrial ultrastructure in roots of mesophytes and hydrophytes at anoxia and after glucose feeding. // Protoplasma. 1977. Vol. 91. P. 243−256.
- Vatrapetian B.B., Andreeva I.N., Kozlova G.I. The resistance to anoxia and the mitochondrial fine structure of rice seedlings. // Protoplasma. 1976. Vol. 88. P. 215−224.
- Vartapetian B.B., Jackson M.B. Plant adaptation to anaerobic stress. //Ann. Bot. 1997. Vol. 79. Suppl A. P. 3−20.
- Vergata B.S., Jackson В., de Datta S.K. Deep-water rice and its responses to deep water stress. // In: Climate and Rice. / International Rice Research Institute. Los Banos. The Philippines. 1976. P. 301−320.
- Vriezen W.H., de Graaf В., Marian! C., Voesenek L.A.C.J. Submergence induces expansin gene expression in flooding-tolerant Rumex palustris and not in floodinf intolerant Rumex acetosa. II Planta. 2000. Vol. 210. P. 956−963.
- Warncke J., Slayman C.L. Metabolic modulation of stoichiometry in a proton pump. II Biochim. Biophys. Acta. 1980. Vol. 591. P. 224−233.
- Webb Т., Armstrong W. The effect of anoxia and carbohydrates on the growth and viability of rice, pea and pumpkin roots. // J. Exp. Bot. 1983. Vol. 34. P. 579−603.
- Webster C., Kim C.-Y., Roberts J.KM. Elongation and termination reactions of protein synthesis on maize root tip polyribosomes studied in a homologous cell-free system. // Plant Physiol. 1991. Vol. 91. P. 418−425.
- Xia J.-H., Saglio M. Lactic acid efflux as a mechanism of hypoxic acclimation of maize root tips to anoxia // Plant Physiol. 1992. Vol. 100. P. 40−46.
- Xia J.-H., Saglio P., Roberts J.K.M. Nucleotide levels do not critically determine survival of maize root tips acclimated to a low-oxygen environment. II Plant Physiol. 1995. Vol. 108. P. 589−595.
- Xie Y., Wu R. Rice alcohol dehydrogenase genes: anaerobic induction, organ specific expression and characterization of cDNA clones. // Plant Mol. Biol. 1989. Vol. 13. P. 53−68.
- Zarembinski T.I., Theologis A. Anaerobiosis and plant growth hormones induce two genes encoding 1-amonocyclopropane-1-carboxylate synthase in rice (Oryza sativa L.). // Mol. Biol. Cell. 1993. Vol. 4. P. 363−373.1211. Благодарности
- Я хочу выразить огромную благодарность научным руководителям -Чирковой Тамаре Васильевне и Курту Фагерстедту за неоценимый вклад в проведении этой работы.
- Отдельное спасибо Третьякову Георгию Ивановичу (Кубанский Государственный Аграрный Университет) за помощь с семенами риса.
- Отдельное спасибо Олли Аитио (факультет Факмакологии, университет г. Хельсинки), благодаря которому были осуществлены ЯМР эксперименты.
- Проведение этого исследования поддержано грантами Академии Финляндии №№ 171 978, 178 918 и 1 207 898.