Помощь в написании студенческих работ
Антистрессовый сервис

Молекулярно-генетический анализ моногенных форм атеросклероза и рака молочной железы у жителей Санкт-Петербурга

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Автором создана коллекция ДНК больных СГ и семейными формами рака молочной железы, лично проведены все опыты по клонированию мутантных аллелей в плазмидных векторах, выполнено большинство опытов по первичной идентификации мутаций и секвенированию ДНК, осуществлен анализ наследования мутаций в семьях пробандов. Часть работы проделана совместно с Ф. М. Захаровой, Ю. А. Татищевой, Н. А. Грудининой и… Читать ещё >

Молекулярно-генетический анализ моногенных форм атеросклероза и рака молочной железы у жителей Санкт-Петербурга (реферат, курсовая, диплом, контрольная)

Содержание

  • СПИСОК СОКРАЩЕНИЙ Актуальность проблемы
  • Цель исследования
  • Задачи работы
  • Научная новизна
  • Теоретическое значение работы
  • Практическое значение работы
  • Положения, выносимые на защиту
  • Личный вклад автора
  • Апробация
  • Публикации
  • Структура и объем диссертации
  • 1. ОБЗОР ЛИТЕРАТУРЫ
    • 1. 1. Семейная гиперхолестеринемия
      • 1. 1. 1. Общая характеристика заболевания
      • 1. 1. 2. Риск развития ишемической болезни сердца у носителей 20 мутаций в гене рецептора ЛНП
      • 1. 1. 3. Место семейной гиперхолестеринемии среди моногенных гиперхолестеринемий
      • 1. 1. 4. Рецептор липопротеинов низкой плотности — ключевой белок метаболизма холестерина в организме человека. Механизм атеросклероза при семейной гиперхолестеринемии
      • 1. 1. 5. Диагностика семейной гиперхолестеринемии. Особенности и трудности разных видов диагностики
      • 1. 1. 6. Структура гена рецептора ЛНП и кодируемого им белка- регуляция работы гена- взаимодействующие с рецептором белки
      • 1. 1. 7. Спектры мутаций гена рецептора ЛНП в разных этнических группах
    • 1. 2. Рак молочной железы, обусловленный мутациями в гене
      • 1. 2. 1. Особенности семейных форм рака молочной железы
      • 1. 2. 2. Риск развития рака молочной железы у носительниц мутаций в гене BRCAJ в течение жизни
      • 1. 2. 3. Структура гена BRCA1 и кодируемого им белка
      • 1. 2. 4. Белок BRCA1 — ключевой участник репарации двунитевых разрывов в ДНК
        • 1. 2. 4. 1. Механизм развития заболевания при дефектах BRCA
        • 1. 2. 4. 2. Тканеспецифичность возникновения опухолей при мутациях в гене BRCA
      • 1. 2. 5. Роль гена BRCA1 в развитии рака молочной железы в сопоставлении с другими генами
      • 1. 2. 6. Современные подходы к клинической диагностике и профилактике семейных форм рака молочной железы
      • 1. 2. 7. Спектры мутаций гена BRCA1 в разных этнических группах
    • 1. 3. Молекулярная диагностика семейной гиперхолестеринемии и семейных форм рака молочной железы: сравнительный аспект
  • 2. МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ
    • 2. 1. Пациенты
    • 2. 2. Выделение ДНК
    • 2. 3. Молекулярное клонирование
    • 2. 4. Амплификация и анализ ДНК 99 2.4.1. Полимеразная цепная реакция
      • 2. 4. 2. Идентификация мутации R3500Q (с. 10 658 G>A- CGG>CAG) в гене АРОВ с помощью сайт-направленного мутагенеза
      • 2. 4. 3. Электрофорез продуктов амплификации ДНК в полиакриламидном геле (ПААГ)
      • 2. 4. 4. Протокол получения и идентификации гетеродуплексов для определения мутаций 185delAG и 5382insC в гене BRCA
      • 2. 4. 5. Проведение анализа конформационного полиморфизма однонитевых фрагментов ДНК (SSCP-анализ)
      • 2. 4. 6. Окрашивание ДНК серебром
      • 2. 4. 7. Проведение электрофореза в агарозном геле 109 ^ 2.4.8. Секвенирование и анализ последовательностей ДНК
    • 2. 5. Компьютерный анализ и статистическая обработка данных
  • 3. РЕЗУЛЬТАТЫ
    • 3. 1. Изучение спектра мутаций в гене рецептора ЛНП и в гене BRCA1 в популяции Санкт-Петербурга. Общая стратегия исследования
    • 3. 2. Поиск мутаций в гене рецептора ЛНП. Особенности идентификации отдельных мутаций в гене рецептора ЛНП
    • 3. 3. Идентификация и изучение частоты встречаемости полиморфных маркеров в гене рецептора ЛНП
    • 3. 4. Изучение встречаемости широко распространенной мутации
  • R3500Q в гене АРОВ у больных семейной гиперхолестеринемией
  • Санкт-Петербурга
    • 3. 5. Поиск часто встречающихся в мире мутаций в гене BRCA1: 185delAG, 5382insC и C61G
    • 3. 6. Характеристика мутаций, найденных в одиннадцатом экзоне гена BRCA
    • 3. 7. Идентификация и изучение частоты встречаемости полиморфных маркеров в гене BRCA
    • 3. 8. Подготовка Интернет-ресурсов по молекулярной генетике семейной гиперхолестеринемии и наследуемых форм рака молочной железы
  • 4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ
    • 4. 1. Значение мутаций в гене рецептора ЛНП для развития семейной гиперхолестеринемии
    • 4. 2. Значение обнаруженных мутаций в гене BRCA1 для развития 154 рака молочной железы
    • 4. 3. Особенности спектра мутаций гена рецептора ЛНП и гена
  • BRCA1 России и Санкт-Петербурга
    • 4. 3. 1. Сравнение спектра мутаций гена рецептора ЛНП в Санкт-Петербурге и в других популяциях мира
    • 4. 3. 2. Сравнение спектра мутаций гена BRCA1 в Санкт-Петербурге и в других популяциях мира
    • 4. 3. 3. Сравнение генетического разнообразия гена рецептора ЛНП и гена BRCA
    • 4. 4. Особенности и трудности ДНК-диагностики семейной гиперхолестеринемии и семейных форм рака молочной железы. Практическое значение работы
    • 4. 4. 1. О наличии преобладающих мутаций в гене рецептора ЛНП и в генqBRCAI
    • 4. 4. 2. Эффективность ДНК-диагностики
      • 4. 4. 2. 1. Возможный вклад других локусов в развитие моногенных форм гиперхолестеринемий и рака молочной железы у жителей Санкт-Петербурга
      • 4. 4. 2. 2. Проблемы эффективности поиска мутаций внутри генов
      • 4. 4. 3. Результаты консультирования в семьях пробандов
  • Перспективы в диагностике семейной гиперхолестеринемии и семейных форм рака молочной железы

Актуальность проблемы.

Сердечно-сосудистые и онкологические заболевания являются ведущей причиной смертности в развитых странах мира, в том числе и в России. По статистике, приведенной в «Государственном докладе о состоянии здоровья населения Российской Федерации в 2002 году» (доклад опубликован в 2004 году), в стране за двенадцать месяцев от сердечнососудистых заболеваний умерло 1,3 миллиона человек, из них — 47,2% или более 600 тысяч человек от ишемической болезни сердца (ИБС). В соответствии с тем же официальным документом, рак молочной железы регистрировался как самая часто встречающаяся онкопатология у женщин. В 2002 году по стране в целом заболеваемость раком молочной железы составила 39,2 случая на 100 тысяч женщин. В абсолютном значении приведенная цифра означает, что за год появилось более 30 тысяч пациенток с этой формой злокачественных новообразований. Имеется устойчивая тенденция к росту распространенности ИБС и рака молочной железы в стране из года в год и к снижению возраста, в котором проявляются эти заболевания.

В Санкт-Петербурге отмечается один из самых высоких в России уровней заболеваемости как сердечно-сосудистыми, так и онкологическими заболеваниями (Государственный доклад, 2004). Распространенность сердечно-сосудистых заболеваний в городе в 1,6 раза выше, чем в целом по стране. Санкт-Петербург является «неблагополучным» районом России также и в отношении собственно рака молочной железы. В России максимальные показатели заболеваемости раком молочной железы (43,2 на 100 тыс. женщин) и смертности от него (20,3 на 100 тыс. женщин) зарегистрированы именно в Северо-Западном регионе (Аксель, Двойрин, 1992; Бармина, Трапезников, 1997; Трапезников, Аксель, 1997).

Сердечно-сосудистая и онкологическая патологии в целом относятся к мультифакториальным заболеваниям, в генезе которых имеют значение как наследственный компонент, так и факторы среды. Однако ряд достаточно широко распространенных форм этих заболеваний может быть объяснен преимущественно дефектами в одном гене. К таким формам относятся семейная гиперхолестеринемия (СГ), вызванная мутациями в гене рецептора липопротеинов низкой плотности (ЛНП), и семейные формы рака молочной железы, обусловленные дефектами в гене BRCA1. Эти формы рассматриваются в диссертации как моногенные по причине наличия ведущего генетического фактора риска развития ИБС у пациентов с СГ или рака у носителей мутаций гена BRCA1. Модифицирующее влияние на риск развития и тяжесть проявления этих заболеваний оказывают другие факторы, как генетические, так и средовые. Тем не менее, эти патологии, характеризующиеся ранней манифестацией и тяжелым течением, наследуются как аутосомно-доминантные менделевские признаки (Пузырев, 2003).

Дисфункция рецептора ЛНП при СГ вследствие мутаций в одноименном гене приводит к снижению скорости удаления липопротеинов из кровотока, развитию атеросклероза и существенному повышению риска ИБС. Наследуемые дефекты в гене опухолевого супрессора BRCA1 многократно увеличивают вероятность инактивации его второго аллеля в клетках молочной железы из-за соматических мутаций или гиперметилирования, что ведет к нарушению репарации ДНК и канцерогенезу. Знание мутаций, вызывающих заболевания, позволяет оценить их роль для структуры и функции белков и осуществлять ДНК-диагностику обсуждаемых патологий.

СГ среди людей белой расы встречается с частотой 1 случай на 500 обследованных (Goldstein et al., 2001). Более чем у 80% мужчин с этим наследственным недугом в возрасте до 60 лет развивается инфаркт миокарда (Slack, 1969). Еще более существенно, что СГ повышает в 100 раз риск гибели от ИБС мужчин в возрасте между 20 и 39 годами (Scientific Steering Committee, 1991).

По разным оценкам одна женщина из 800 является носительницей мутации в гене BRCA1 (Antoniou et al., 2000; Баранов и др., 2000). Вероятность развития рака молочной железы или яичника у женщин, имеющих наследуемые мутации гена BRCA1, достигает более 80% в течение их жизни (King et al., 2003). При этом у них в возрасте до 50 лет заболеваемость данной онкопатологией оказывается в 8−10 раз выше, чем в общей популяции (Struewing et al., 1997).

Представляется актуальным изучение мутаций в гене рецептора ЛНП и в гене BRCA1, поскольку они приводят к рано проявляющимся, тяжелым и одновременно с этим часто встречающимся формам сердечнососудистых и онкологических заболеваний. Особенно важно то, что раннее выявление носителей мутаций как в гене рецептора ЛНП, так и в гене BRCA1 обеспечивает своевременное начало лечения пациентов с наследственными заболеваниями и существенно продлевает им жизнь. Спектры мутаций обсуждаемых локусов сильно различаются между отдельными странами и этническими группами. Этим обусловлена необходимость провести отдельное исследование гена рецептора ЛНП и гена BRCA1 в российской популяции.

Цель исследования:

На основе данных о спектре мутаций гена рецептора ЛНП у больных СГ и гена BRCA1 у больных раком молочной железы в Санкт-Петербурге разработать подходы к ДНК-диагностике социально значимых моногенных форм атеросклероза и рака молочной железы.

Задачи работы:

1. Изучить спектр мутаций гена рецептора ЛНП у больных СГ и спектр мутаций гена BRCA1 у больных семейными формами рака молочной железы из числа жителей Санкт-Петербурга;

2. Определить наличие преобладающих и повторно встречающихся мутаций в гене рецептора ЛНП и в гене BRCA1.

3. Провести сравнение спектра мутаций в гене рецептора ЛНП и в гене BRCA1 у жителей Санкт-Петербурга и стран Европы;

4. На основании экспериментальных и литературных данных обосновать роль обнаруженных мутаций в генах рецептора ЛНП и BRCAI для развития гиперхолестеринемии и рака молочной железы.

5. Оценить частоту встречаемости мутации R3500Q в гене АРОВ, вызывающей первичную гиперхолестеринемию, у пациентов с СГ — жителей Санкт-Петербурга;

6. Разработать быстрые и эффективные методы идентификации обнаруженных мутаций для диагностики в семьях пробандов и дальнейшего проведения скрининговых исследований.

Научная новизна.

В результате исследования впервые в России охарактеризовано 33 мутации гена рецептора ЛНП, из которых 18 были обнаружены впервые в мире. Продемонстрирована большая вариабельность гена рецептора ЛНП и практически полное отсутствие эффекта основателя применительно к мутациям этого гена в популяции Санкт-Петербурга, за исключением субпопуляции евреев-ашкенази. Показано, что мутация R3500Q в гене АРОВ не представлена у больных первичной гиперхолестеринемией из Санкт-Петербурга. У пациентов с семейными формами рака молочной железы в Санкт-Петербурге идентифицировано 8 мутаций в гене BRCA1, из них 6 — являются новыми для России, а одна была ранее не известна в мире. Показано наличие преобладающей мутации 5382insC в гене BRCA1 в Российской популяции, что существенно облегчает ДНК-диагностику заболевания. При сравнении спектров мутаций гена рецептора ЛНП и гена BRCA1 в Санкт-Петербурге, в России и в странах Европы сделаны обобщения, которые могут иметь значение при изучении мутационных спектров новых локусов, ответственных за моногенные патологии.

Исследования генетики СГ в России проведены нами впервые (Мандельштам и др., 1988, 1990), а исследования гена BRCA1 в Санкт-Петербурге начали осуществляться (Мандельштам и др., 2001) вскоре после публикации первой совместной работы московских и английских ученых (Gayther et al., 1997). Благодаря этим исследованиям Санкт-Петербург стал регионом России, в котором к настоящему времени охарактеризовано больше видов мутаций в гене рецептора ЛНП и BRCA1, чем где-либо в стране.

Теоретическое значение работы.

Определен спектр мутаций гена рецептора ЛНП и гена BRCA1 в ранее не изучавшейся популяции Санкт-Петербурга, что представляет интерес для сравнительной популяционной генетики. Показано, что в отношении спектра мутаций гена рецептора ЛНП российская популяция занимает свое, достаточно обособленное место среди других изученных популяций. В то же время продемонстрировано, что у онкологических больных Санкт-Петербурга преобладают широко распространенные в.

Европе мутации гена BRCA1. На основании оригинальных экспериментальных данных сделано теоретически важное обобщение, что в пределах одной популяции эффект основателя может быть выражен применительно к одним генам и отсутствовать применительно к другим.

Практическое значение работы.

Идентифицировано 33 мутации гена рецептора ЛНП, из числа которых 30 могут вести к развитию СГ, и 8 мутаций гена BRCA1, 7 из которых являются вероятной причиной развития рака молочной железы. Разработаны быстрые методы обнаружения охарактеризованных мутаций гена рецептора ЛНП и гена BRCA1, которые могут быть внедрены в практическое здравоохранение. Непосредственно осуществлена ДНК-диагностика СГ в семьях 41 пробанда, включая 69 кровных родственников, а также в семьях 11 пробандов с мутациями в гене BRCA1. Показано отсутствие вклада мутаций гена АРОВ в развитие первичных гиперхолестеринемий в Санкт-Петербурге. Выявлена наиболее распространенная мутация гена BRCA1 5382insC, тестирование которой в первую очередь должно быть рекомендовано родственникам больных с семейными формами рака молочной железы или яичника.

Положения, выносимые на защиту.

1. Спектр мутаций гена рецептора ЛНП у больных СГ Санкт-Петербурга существенно отличается от такового в сопредельных странах Европы и в других регионах России.

2. В популяции Санкт-Петербурга отсутствуют мажорные мутации гена рецептора ЛНП. Исключение составляет субпопуляция евреев-ашкенази, в которой распространена мажорная мутация G197del.

3. Среди мутаций гена BRCA1, идентифицированных у Санкт-Петербургских пациентов с раком молочной железы и семейной историей заболевания, преимущественно встречаются варианты последовательности, уже известные в странах Восточной Европы.

4. Мажорной мутацией в гене BRCA1 в Санкт-Петербурге, и, по-видимому, во всей России в силу эффекта основателя или других причин является инсерция 5382insC.

5. Абсолютное большинство идентифицированных мутаций гена рецептора ЛНП и гена BRCA1 является причиной семейной гиперхолестеринемии и семейной предрасположенности к раку молочной железы.

6. Мутация R3500Q гена АРОВ, являющаяся частой причиной первичной гиперхолестеринемии в Европе, крайне редко встречается или отсутствует в Санкт-Петербурге.

7. Учитывая характер преобладающих мутаций в гене BRCA1 (инсерции и делеции), можно рекомендовать гетеродуплексный анализ для их эффективного выявления и обнаружения новых мутаций. Для поиска мутаций в гене рецептора ЛНП из-за преобладания в нем нуклеотидных замен предпочтительно применение других методов.

Личный вклад автора.

Автором создана коллекция ДНК больных СГ и семейными формами рака молочной железы, лично проведены все опыты по клонированию мутантных аллелей в плазмидных векторах, выполнено большинство опытов по первичной идентификации мутаций и секвенированию ДНК, осуществлен анализ наследования мутаций в семьях пробандов. Часть работы проделана совместно с Ф. М. Захаровой, Ю. А. Татищевой, Н. А. Грудининой и В. И. Голубковым. Несколько опытов по секвенированию ДНК произведено X. Шакиром и С. П. Шевцовым в лаборатории проф. Е. И. Шварца (Санкт-Петербургский Институт ядерной физики РАН), что оговорено в соответствующих местах текста. Сотрудниками лаборатории проф. Е. И. Шварца также определены генотипы локуса АРОЕ у пациентов с мутацией deltaG197. Отбор пациентов для исследования гена рецептора ЛНП выполнен проф. Б. М. Липовецким (НИИЭМ АМН СССР, Институт мозга РАН) и проф. В. О. Константиновым (НИИЭМ РАМН), а для исследования гена BRCA1 осуществлен врачом-генетиком Т. В. Брежневой (НИИ онкологии им. проф. Н.Н.Петрова). При создании автором Интернет-ресурса по СГ и раку молочной железы на сайте ГУ НИИЭМ РАМН компьютерный дизайн обеспечила А. А. Дзенискевич (Научная библиотека ГУ НИИЭМ РАМН).

Апробация работы.

Результаты работы докладывались на 36 международных, всероссийских и региональных конференциях. В более полном виде материалы диссертации были заслушаны на научных семинарах Института экспериментальной медицины РАМН (Санкт-Петербург), Института медицинской генетики ТНЦ РАН (Томск), Российского кардиологического научно-производственного комплекса МЗ РФ (Москва), Тартусского университета (Эстония).

Публикации.

По теме диссертации после присвоения автору степени кандидата биологических наук опубликовано 72 печатные работы, в том числе 22 статьи и 50 тезисов в материалах конференций. Из числа напечатанных статей 17 являются непосредственно изложением экспериментальных результатов, а пять — обзорами, включающими результаты собственных исследований. Две из пяти обзорных статей по теме диссертации написаны без соавторов. Из числа 22 статей четыре опубликованы в зарубежных рецензируемых журналах, 18 — в отечественных, преимущественно реферируемых, журналах и сборниках. Из числа 17 опубликованных статей с изложением результатов экспериментов, 15 напечатаны в журналах, | рекомендуемых ВАК. По материалам диссертации подготовлено 48 Интернет-страниц на русском и английском языках.

Структура и объем диссертации

.

Диссертация изложена на 241 странице машинописного текста, содержит 37 таблиц и 37 рисунков. Диссертация содержит разделы «Введение», «Обзор литературы», «Материалы и методы исследования», «Результаты», «Обсуждение результатов», «Заключение» и «Выводы».

Список литературы

включает 301 источник, из них 40 работ на русском языке, 261 — на иностранных.

6. ВЫВОДЫ.

1. Спектр мутаций гена рецептора ЛНП при семейной гиперхолестеринемии у жителей Санкт-Петербурга очень широк и характеризуется значительным своеобразием. Из 33 найденных в Санкт-Петербурге мутаций 18 оказались новыми, не известными в других популяциях мира. Из числа изученных обнаружены лишь две мутации, общие для Москвы и Санкт-Петербурга.

2. У жителей Санкт-Петербурга, за исключением субпопуляции евреев-ашкенази, отсутствуют мажорные мутации гена рецептора ЛНП. В этнической группе евреев-ашкенази мажорная мутация G197del гена рецептора ЛНП обусловливает до 30% случаев семейной гиперхолестеринемии.

3. В гене BRCA1 у онкологических больных Санкт-Петербурга с семейными формами рака молочной железы преобладают мутации, общие с населением Европы. Из числа 8 обнаруженных мутаций гена BRCA1 лишь одна не была известна в других популяциях мира.

4. Инсерция 5382insC в гене BRCA1 является мажорной мутацией в популяции Санкт-Петербурга и встречается приблизительно в 10% семей, отягощенных по раку молочной железы, независимо от этнической принадлежности. Обнаруженное преобладание указанной мутации в Санкт-Петербурге согласуется с ее распространенностью в Москве и в Томске.

5. Из 33 найденных мутаций гена рецептора ЛНП 30 являются вероятной причиной семейной гиперхолестеринемии, а из 8 охарактеризованных мутаций гена BRCA1 7 вызывают предрасположенность к раку молочной железы.

6. Отсутствие мутации R3500Q в гене АРОВ у 74 больных с семейной гиперхолестеринемией свидетельствует в пользу низкой частоты ее встречаемости в популяции Санкт-Петербурга (оценена как меньшая, чем 1/20 000).

7. Преобладание среди мутаций гена BRCA1 коротких делеций и инсерций позволяет рассматривать гетеродуплексный анализ, хорошо выявляющий эти типы мутаций, как наиболее удобный на практике скрининговый метод. Для поиска мутаций в гене рецептора ЛНП из-за преобладания в нем нуклеотидных замен должны быть применены другие методы, например высокочувствительный анализ конформационного полиморфизма однонитевых фрагментов ДНК.

БЛАГОДАРНОСТИ.

Выполнение настоящей работы было бы невозможно без руководства и поддержки со стороны члена-корреспондента РАМН.

Владимира Соломоновича Гайцхоки| (ГУ НИИИЭМ РАМН), при деятельном участии которого были сформулированы основные направления настоящего исследования. Существенный импульс исследованиям генетики семейной гиперхолестеринемии в Санкт.

Петербурге был дан профессором Евгением Иосифовичем Шварцем (ПИЯФ РАН).

Считаю своей приятной обязанностью выразить благодарность всем своим коллегам, с которыми вместе были получены результаты настоящей диссертации.

Финансирование исследований, составивших предмет настоящей диссертации, осуществлялось частично из средств Российского Фонда фундаментальных исследований (РФФИ), а также Государственных программ «Геном человека» и «Атеросклероз». Изучение спектра мутаций гена BRCA1, предрасполагающих к развитию семейных форм рака молочной железы в Санкт-Петербурге было поддержано грантами РФФИ 98−04−49 869 и 01−04−49 627 (руководитель — М.Ю. Мандельштам). Исследование генетики семейной гиперхолестеринемии финансировалось из средств проектов 94−04−12 266а, 97−04−48 887, 00−04−48 962 (руководитель.

В С Гяштуок-и и 05−04−48 235 (руководитель М.Ю. Мандельштам). Часть денежных средств на данную работу поступила также от Программы.

Ведущие научные школы России" (руководитель З. С. Гайцхоки, впоследствии В.Б. Васильев) и от фирмы «Merck» (руководитель проекта MSGP #S-RUS-01 -98-SCbj Е. И. Шварц.

5.

ЗАКЛЮЧЕНИЕ

.

На основании анализа литературных данных о больших различиях в спектре мутаций гена рецептора ЛНП между разными странами Европы и отсутствии мажорных мутаций в восточноевропейских популяциях было сделано предположение, что спектр мутаций при СГ в Санкт-Петербурге будет характеризоваться большим своеобразием, и преобладающих дефектов в этом гене в России найти не удастся. Напротив, наличие общих, в том числе одних и тех же мажорных мутаций в гене BRCA1 в Польше, Чехии и некоторых других европейских популяциях давало основание предполагать, что у онкологических больных Санкт-Петербурга будут найдены преимущественно такие же мутации гена BRCA1, что и в популяциях других стран. Наиболее вероятной преобладающей мутацией в гене BRCA1 в Санкт-Петербурге могла оказаться инсерция 5382insC. Изученные нами спектры мутаций гена рецептора ЛНП и гена BRCA1 в Санкт-Петербурге в значительной мере подтвердили это предсказание. Действительно, из 33 мутаций гена рецептора ЛНП, идентифицированных в Санкт-Петербурге, 18 оказались новыми, не описанными в других странах мира. Применительно к гену BRCA1 картина оказалась совершенно другой: из 8 найденных мутаций лишь одна была новой. Таким образом, диагностика СГ и семейных форм рака молочной железы должна быть построена по-разному: ориентироваться в первую очередь на поиск известных вариантов в случае гена BRCA1 и быть готовой к обнаружению преимущественно неизвестных мутаций при изучении гена рецептора ЛНП. Еще один важный для диагностики аспект состоит в выраженности эффекта основателя в Санкт-Петербургской популяции применительно к мутациям гена BRCA1: инсерция 5382insC ответственна за 10% всех случаев семейных и ранних форм рака молочной железы, и ее можно обнаружить приблизительно в 40% семей с раком яичника.

Напротив, в случае гена рецептора ЛНП в изученной санкт-петербургской выборке, за исключением этнической группы литовских евреев-ашкенази, отсутствовали мажорные мутации гена рецептора ЛНП. Из числа 29 обнаруженных в славянской популяции Санкт-Петербурга мутаций гена рецептора ЛНП, вызывающих СГ, только пять мутаций, , — C139G, c.313+lG>A, c.651−653del3, W422X и C308Y были найдены в двух семьях, а остальные — в уникальных семьях. Эти данные определяют различную стратегию ДНК диагностики в случае семейных форм рака молочной железы, когда следует предлагать пациентам в первую очередь тестирование на мажорные и распространенные мутации, и в случае гена рецептора ЛНП, когда необходимо сразу приступать к изучению всей последовательности гена. Полученные в настоящем исследовании данные о мутациях гена рецептора ЛНП и гена BRCA1 могут быть использованы для создания диагностических наборов, а некоторые тесты на мутации, например на инсерцию 5382insC, уже вошли в практику здравоохранения. Из всех мутаций в гене рецептора ЛНП, как в мире, так и в Санкт-Петербурге преобладают нуклеотидные замены, в гене BRCA1 — короткие делеции и инсерции. Это определяет разные методические подходы к поиску новых и известных мутаций в обсуждаемых генах. Гетеродуплексный анализ, особенно эффективно выявляющий короткие делеции и инсерции, будет наилучшим скрининговым методом при семейных формах рака молочной железы. Напротив, для СГ потребуется применять секвенирование всего гена рецептора ЛНП или высокочувствительный автоматизированый SSCP-анализ для идентификации большинства новых мутаций.

При изучении 74 пробандов с клиническим диагнозом СГ — жителей Санкт-Петербурга не было найдено ни одного носителя мутации R3500Q в гене АРОВ, являющейся частой причиной дислипидемии и связанного с ней атеросклероза в Европе. В той же группе пробандов был выявлен 41 носитель мутаций гена рецептора ЛНП, способных вызвать развитие этого заболевания. Это обстоятельство свидетельствует о крайне низкой частоте встречаемости или отсутствии мутации R3500Q в популяции Санкт-Петербурга и позволяет клиницистам при проведении ДНК-диагностики наследуемых гиперхолестеринемий сосредоточить внимание на изучении локуса рецептора ЛНП, а не локуса АРОВ.

Важным обобщением работы следует считать необходимость оценки возможного эффекта основателя в самом начале исследования локусов наследственных заболеваний, ранее не изучавшихся в стране, то есть еще перед началом разработки диагностических алгоритмов. Эта оценка для России отчасти может быть сделана путем сопоставления данных по спектрам мутаций популяций Восточной Европы, но должна быть в каждом случае подтверждена экспериментально. При наличии эффекта основателя, как в случае мутаций гена BRCA1, диагностика моногенного заболевания может упроститься за счет первоочередного тестирования мажорных мутаций. В отсутствие преобладающих мутаций, как в случае гена рецептора ЛНП при СГ, для выявления генных дефектов и проведения ДНК-диагностики потребуется совершенно другой, заметно больший объем предварительных исследований и скрининговых процедур. Возможность различной степени выраженности эффекта основателя в одной и той же популяции, но применительно к разным заболеваниям, следует учитывать клиницистам, задумывающимся о начале исследования новых моногенных патологий в России.

Показать весь текст

Список литературы

  1. Ф., Кайгер Дж. Современная генетика: В 3-х т. Т 3. Пер. с англ.: М.: Мир, 1988. — 335 с.
  2. Е.М., Двойрин В. В. Статистика злокачественных новообразований: заболеваемость, смертность, тенденции, социально-экономический ущерб, продолжительность жизни. М. 1992.
  3. B.C., Баранова Е. В., Иващенко Т. Э., Асеев М. В. Геном человека и гены «предрасположенности». (Введение в предиктивную медицину). СПб: Интермедика, 2000. — 272 с.
  4. С. С., Шевцов С. П., Максимова С. П. и др. Спектр мутационных повреждений гена фенилаланингидроксилазы у больных фенилкетонурией г. Санкт-Петербурга // Докл. АН. 1995. -N340.-C. 709−711.
  5. Государственный доклад о состоянии здоровья населения Российской Федерации в 2002 году // Здравоохранение Российской Федерации. -2004. -N 1. С. 3−18- N 2. С. 3−23- N 3. С. 3−26.
  6. Н.А., Голубков В. И., Тихомирова О. С. и др. Идентификация мутаций в гене BRCA1 у больных раком молочной железы Санкт-Петербурга // Вестник РНЦРР МЗ РФ. 2004. — N 3. -http://vestnik.rncrr.ru/vestnik/v3/papers/grudin v3. htm
  7. М.Карпухин А. В., Поспехова Н. И., Любченко Л. Н. и др. Частоты однонуклеотидных полиморфизмов и мутаций в гене BRCA1 при наследственно обусловленном раке молочной железы и яичников // Доклады академии наук. 2002. — Т. 383, N 5. — С. 706 — 709.
  8. А.Н., Никульчева Н. Г. Липиды, липопротеиды и атеросклероз. СПб.: Питер Пресс, 1995. — 304 с.
  9. .М. Клиническая липидология. СПб.: Наука, 2 000 119 с.
  10. .М., Мандельштам М. Ю., Васильева Л. Е. и др. О частоте и проявлениях «литовской» мутации среди евреев с гиперлипидемией II типа и их реакции на лечение флувастатином // Кардиология. 1998. — Т. 38, N 5. — С. 39 — 41.
  11. М.Ю., Липовецкий Б. М., Шварцман А.Л., Гайцхоки
  12. B. С. Идентификация новой делеции в гене рецептора липопротеинов низкой плотности человека у пациента с семейной гиперхолестеринемией // Биополимеры и клетка. 1991. — Т. 7, N 3.1. C. 38−45.
  13. М.Ю., Липовецкий Б. М., Шварцман А. Л., Гайцхоки B.C. Мультиэкзонная делеция в гене рецептора липопротеинов низкой плотности человека как причина семейной гиперхолестеринемии // Генетика. 1995а. — Т. 31, N 2. — С. 259 -263.
  14. М.Ю., Липовецкий Б. М., Шварцман А. Л., Гайцхоки В. С. Молекулярная гетерогенность семейной гиперхолестеринемии в популяции жителей Санкт-Петербурга // Генетика. 19 956. — Т. 31, N4.-С. 521 -527.
  15. М.Ю., Сасина Л. К., Шварцман А. Л. ДНК-диагностика семейной гиперхолестеринемии // Биополимеры и клетка. 1990. -Т. 6, N 1.-С. 56−63.
  16. Т., Фрич Э., Сэмбрук Дж. Методы генетической инженерии. Молекулярное клонирование. Пер. с англ. М.: Мир, 1984.-480 с.
  17. ЪЪ.Поспехова Н. И., Логинова А. Н., Любченко Л. Н. и др. Гетерогеность семей с наследственной предрасположенностью к раку молочной железы и яичников по встречаемости мутаций BRCA1 // Медицинская генетика. 2003. — Т. 2, N 11. — 459 — 463.
  18. В.П. Генетика мультифакториальных заболеваний: между прошлым и будущим // Медицинская генетика. 2003. — Т. 2., N 12. -С. 498−508.
  19. О.Л., Мандельштам М. Ю., Голубков В. И. и др. Экспрессия фрагмента кДНК, кодирующего лиганд-связывающий домен рецептора липопротеинов низкой плотности человека, в клетках Escherichia coli II Биохимия. 1997. — Т. 62, N 8. — С. 1037 — 1044.
  20. Ю.А., Мандельштам М. Ю., Голубков В. И. и др. Четыре новые мутации и полиморфные варианты гена рецептора липопротеинов низкой плотности у пациентов с семейнойгиперхолестеринемией Санкт-Петербурга // Генетика. 2001. — Т. 31, N9.-С. 1290−1295.
  21. Ъ9.Шевцов С. П. Отсутствие ДНК-полиморфизмов на участке гена АРОВ, кодирующем предполагаемый домен связывания белка АроВ-100 с рецептором липопротеидов низкой плотности // Генетика. -1996. Т. 32, N 2. — С. 295 — 297.
  22. Al.Amsellem S., Briffaut D., Carrie A. et al. Intronic mutations outside of Alu-repeat-rich domains of the LDL receptor gene are a cause of familial hypercholesterolemia // Hum. Genet. 2002. — Vol. 111. — P. 501 — 510.
  23. Antoniou A.C., Gayther S.A., Stratton J.F. et al. Risk models for familial ovarian and breast cancer // Genet. Epidemiol. 2000. — Vol. 18, N 2. -P. 173- 190.
  24. Al.Bar-Sade R.B., Kruglikova A., Modan B. et al. The 185delAG BRCA1 mutation originated before the dispersion of Jews in the Diaspora and is not limited to Ashkenazim // Hum. Mol. Genet. 1988. — Vol. 7, N 5. — P. 801 -805.
  25. Bassam B.J., Caetano-Anolles G., GresshoffP.M. Fast and sensitive silver staining of DNA in polyacrylamide gels //Anal. Biochem. 1991. — Vol. 196, N 1. — P. 80 — 83 (Erratum in: Anal. Biochem. — 1991. -Vol. 198, N 1. — P. 217).
  26. A9.Beaumont V.B., Jacotot В., Beaumont J.-L. Ischaemic disease in men and women with familial hypercholesterolaemia and xanthomatosis // Atherosclerosis. 1976. — Vol. 24. — P. 441 — 450.
  27. Bergthorsson J.Т., Ejlertsen В., Olsen J.H. et al. BRCA1 and BRCA2 mutation status and cancer family history of Danish women affected with multifocal or bilateral breast cancer at a young age // J. Med. Genet. -2001.-Vol. 38, N6.-P. 361 -368.
  28. Bieri S., Djordjevic J.T., Jamshidi N. et al. Expression and disulfide-bond connectivity of the second ligand-binding repeat of the human LDL receptor // FEBS Lett. 1995b. — Vol. 371, N 3. — P. 341 — 344.
  29. Bilheimer D. W., Ho Y.K., Brown M.S. et al. Genetics of the low density lipoprotein receptor. Diminished receptor activity in lymphocytes from heterozygotes with familial hypercholesterolemia // J. Clin. Invest. -1978. Vol. 61, N 3. — P. 678 — 696.
  30. Birnboim H.C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA // Nucleic Acids. Res. 1979. -Vol.7, N6.-P. 1513- 1524.
  31. Blacklow S.C., Kim P. S. Protein folding and calcium binding defects arising from familial hypercholesterolemia mutations of the LDL receptor // Nat. Struct. Biol. 1996. — Vol. 3, N 9. — P. 758 — 762.
  32. Brown M.S., Herz J., Goldstein J.L. Calcium cages, acid baths and recycling receptors // Nature. 1997. — Vol. 388, N 6643. — P. 629−630.
  33. ЬА.Випп C.F., Lintott C.J., Scott R.S., George P.M. Comparison of SSCP and DHPLC for the detection of LDLR mutations in a New Zealand cohort // Hum. Mutat. 2002. — Vol. 19. — P. 311.
  34. Burke W., Daly M., Garber J. et al. Recommendations for follow-up care of individuals with an inherited predisposition to cancer. II. BRCA1 and BRCA2. Cancer Genetics Studies Consortium // JAMA. 1997. — Vol. 277, N 12.-P. 997−1003.
  35. Callebaut I., Mornon J.P. From BRCA1 to RAP1: a widespread BRCT module closely associated with DNA repair // FEBS Lett. 1997. — Vol. 400.-P. 25−30.
  36. Ы.Сагтепа R., Roy M., Roederer G. et al. Coexisting dysbetalipoproteinemia and familial hypercholesterolemia. Clinical and laboratory observations // Atherosclerosis. 2000. — Vol. 148, N 1. — P. 113−124.
  37. Chakir Kh., Mandelshtam M.Ju., Shevtsov S.P. et al. Two novel low density lipoprotein receptor gene mutations (E397X and 347delGCC) in St. Petersburg familial hypercholesterolemia//Molecular Genet. Metabol. -1998a. Vol. 65, N 4. — P.311 — 314.
  38. Couture P., Vohl M.C., Gagne C. et al. Identification of three mutations in the low-density lipoprotein receptor gene causing familial hypercholesterolemia among French Canadians // Hum. Mutat. 1998. -Suppl l.-P. 226−231.
  39. Davis C.G., Lehrman M.A., Russell D.W. et al The J.D. mutation in familial hypercholesterolemia: aminoacid substitution in cytoplasmic domain impedes internalisation of LDL receptors // Cell. 1986b. — Vol. 45, N l.-P. 15−24.
  40. Dedoussis G.V.Z., Schmidt H., Genschel J. LDL-receptor mutations in Europe // Hum. Mutat. 2004b. — Vol. 24. — P. 443 — 459.
  41. Zl.Dufault M.R., Betz В., Wappenschmidt B. et al. Limited relevance of the CHEK2 gene in hereditary breast cancer // Int. J. Cancer. 2004. — Vol. 110, N3.-P. 320−325.
  42. Dunning A.M., Chiano M., Smith N.R. et al. Common BRCA1 variants and susceptibility to breast and ovarian cancer in the general population // Hum. Mol. Genet. 1997. — Vol. 6, N 2. — P. 285 — 289.
  43. Einbeigi Z., Bergman A., Kindblom L.G. et al. A founder mutation of the BRCA1 gene in Western Sweden associated with a high incidence of breast and ovarian cancer // Eur. J. Cancer. 2001. — Vol. 37, N 15. — P. 1904- 1909.
  44. Elledge S.J., Amon A. The BRCA1 suppressor hypothesis: an explanation for the tissue-specific tumor development in BRCA1 patients // Cancer Cell. 2002. — Vol. 1. — P. 129 — 132.
  45. Evans D.G., Howell A. Are BRCA1- and BRCA2-related breast cancers associated with increased mortality? // Breast Cancer Res. 2004. — Vol. 6.-R8-R17.
  46. Fan J., Ranu R.S., Smith C. et al. DNA sequencing with a-33P. labeled ddNTP terminators: a new approach to DNA sequencing with ThermoSequenaseTM DNA polymerase // BioTechniques. 1996. — Vol. 21, N 6. — P. 1132−1137.
  47. Fass D., Blacklow S., Kim P. S., Berger J.M. Molecular basis of familial hypercholesterolemia from structure of LDL receptor module // Nature. 1997. — Vol. 388, N 6643. — P. 691 — 693.
  48. Fellin R., Zuliani G., Area M. et al. Clinical and biochemical characterization of patients with autosomal recessive hypercholesterolemia (ARH) // Nutr. Metab. Cardiovasc. Dis. 2003. -Vol. 13, N5.-P. 278−286.
  49. Fodor F.H., Weston A., Bleiweis I.J. et al. Frequency and carier risk associated with common BRCA1 and BRCA2 mutations in Ashkenazi Jewish breast cancer patients // Am. J. Hum. Genet. 1998. — V. 63. — P. 45−51.
  50. Foretova L., Machackova E., Navratilova M. et al. BRCA1 and BRCA2 mutations in women with familial or early-onset breast/ovarian cancer in the Czech Republic // Hum. Mutat. 2004. — Vol.23, N 4. — P. 397 — 398.
  51. Fouchier S. W., Defesche J.C., Umans-Eckenhausen M.W., Kastelein J.P. The molecular basis of familial hypercholesterolemia in The Netherlands // Hum. Genet. 2001. — Vol. 109, N 6. — P. 602 — 615.
  52. Foulkes W.D., Stefansson I.M., Chappuis P.O. et al. Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer // J. Natl. Cancer Inst. 2003. — Vol. 95, N 19. — P. 1482 — 1485.
  53. Frank T.S., Deffenbaugh A.M., Reid J.E. et al Clinical characteristics of individuals with germline mutations in BRCA1 and
  54. BRCA2: analysis of 10,000 individuals // J. Clin. Oncol. 2002. — Vol. 20, N6.-P. 1480−1490.
  55. Friedman L.S., Ostermeyer E.A., Szabo C.I. et al. Confirmation of BRCA1 by analysis of germline mutations linked to breast and ovarian cancer in ten families //Nat. Genetics. 1994. — Vol. 8. — P. 399 — 404.
  56. Gagne C., Moorjani S., Brun D. et al. Heterozygous familial hypercholesterolemia // Atherosclerosis. 1979. — Vol. 34. — P. 13 — 24.
  57. Garcia C.K., Wilund K., Area M. et al. Autosomal recessive hypercholesterolemia caused by mutations in a putative LDL receptor adaptor protein // Science. 2001. — Vol. 292. — P. 1394 — 1398.
  58. Gayther S.A., Harrington P., Russell P. et al. Rapid detection of regionally clustered germ-line BRCA1 mutations by multiplex heteroduplex analysis // Am. J. Hum. Genet. 1996. — Vol. 58. — P. 451 -456.
  59. Gayther S.A., Harrington P., Russell P. et al. Frequently occurring germ-line mutations of the BRCA1 gene in ovarian cancer families from Russia // Am. J. Hum. Genet. 1997. — Vol. 60, N 5. — P. 1239 — 1242.
  60. Gayther S.A., Russell P., Harrington P. et al. The contribution of germline BRCA1 and BRCA2 mutations to familial ovarian cancer: no evidence for other ovarian cancer-susceptibility genes // Am. J. Hum. Genet. 1999. — Vol. 65. — P. 1021 — 1029.
  61. Goelen G" Teugels E., Bonduelle M. et al. High frequency of BRCA½ germline mutations in 42 Belgian families with a small numberof symptomatic subjects // J. Med. Genet. 1999. — Vol. 36, N 4. — P. 304 -308.
  62. Goldstein J.L., Basu S.K., Brown M.S. Receptor-mediated endocytosis of low-density lipoprotein in cultured cells // Meth. Enzymol. 1983. — Vol. 98. — P. 241 — 260.
  63. Goldstein J.L., Brown M.S. The LDL receptor and the regulation of cellular cholesterol metablism // J. Cell. Sci. 1985. — Suppl. N 3. — P. 131−137.
  64. Goldstein J.L., Brown M.S. Molecular medicine. The cholesterol quartet//Science.-2001.-Vol. 292.-P. 1310−1312.
  65. Goldstein J.L., Hobbs H.H., Brown M.S. Familial hypercholesterolemia // In: The metabolic and molecular basis of inherited disease. Vol. III. / Eds. C.R. Scriver, A.L. Beaudet, W.S. Sly, D. Valle. N.Y., McGraw Hill. 2001. — P. 2863 — 2914.
  66. Gompel A., Somai S., Chaouat M. et al. Hormonal regulation of apoptosis in breast cells and tissues // Steroids. 2000. — Vol. 65, N 10−11.-P. 593−598.
  67. Gorski В., Byrski Т., Huzarski T. et al. Report founder mutations in the BRCA1 gene in Polish families with breast-ovarian cancer // Am. J. Hum. Genet. 2000. — Vol. 66. — P. 1963 — 1968.
  68. Gorski В., Jakubowska A., Huzarski T. et al. A high proportion of founder BRCA1 mutations in Polish breast cancer families // Int. J. Cancer. 2004. — Vol. 110, N 5. — P. 683 — 686.
  69. Gorski В., Kubalska J., Naruszewicz M., Lubinski J. LDL-R and Apo-B-100 gene mutations in Polish familial hypercholesterolemias // Hum. Genet. 1998. — Vol. 102, N 5. — P. 562 — 565.
  70. Gowen L.C., Avrutskaya A.V., Latour A.M. et al BRCA1 required for transcription-coupled repair of oxidative DNA damage // Science. -1998. Vol. 281, N 5379. — P. 1009 — 10 012.
  71. Gowen L.C., Johnson B.L., Latour A.M. et al. BRCA1 deficiency results in early embryonic lethality characterized by neuroepithelial abnormalities//Nat. Genet.-1996.-Vol. 12, N 2.-P. 191 194.
  72. Greenman J., Mohammed S., Ellis D. et al. Identification of missense and truncating mutations in the BRCA1 gene in sporadic and familial breast and ovarian cancer // Genes Chromosomes Cancer. 1998. -Vol.21,N3.-P. 244−249.
  73. Grzybowska E., Zientek H., Jasinska A. et al. High frequency of recurrent mutations in BRCA1 and BRCA2 genes in Polish families with breast and ovarian cancer // Hum. Mutat. 2000. — Vol. 16, N 6. — P. 482 -490.
  74. Gudnason V., Sigurdsson G., Nissen H., Humphries S.E. Common founder mutation in the LDL receptor gene causing familial hypercholesterolemia in the Icelandic population // Hum. Mutat. 1997. -Vol. 10.-P. 36−44.
  75. Gyllensten U.B., Erlich H.A. Generation of single-stranded DNA by the polymerase chain reaction and its application to direct sequencing of the HLA-DQA locus // Proc. Natl. Acad. Sci. USA.- 1988. Vol. 85, N 20.-P. 7652−7656.
  76. Hall J.M., Lee M.K., Newman B. et al. Linkage of early-onset familial breast cancer to chromosome 17q21 // Science. 1990. — Vol. 250.-P. 1684- 1689.
  77. Hamalainen Т., Palotie A., Aalto-Setala К et al. Absence of familial defective apolipoprotein B-100 in Finnish patients with elevated serum cholesterol // Atherosclerosis. 1990. — Vol. 82. — P. 177 — 183.
  78. Hansen P. S. Familial defective apolipoprotein B-100 // Dan. Med. Bull. 1998. — Vol. 45. — P. 370 — 382.
  79. Hansen P. S., Defesche J. C., Kastelein J. J. P. et al. Phenotypic variation in patients heterozygous for familial defective apolipoprotein В (FDB) in three European countries // Arterioscler. Thromb. Vase. Biol. -1997.-Vol. 17.-P. 741 -747.
  80. Hansen P. S., Rudiger N., Tybjaerg-Hansen A. et al. Detection of the apoB-3500 mutation (glutamine for arginine) by gene amplification and cleavage with Msp I // J. Lipid Res. 1991. — Vol. 32, N 7. — P. 1229- 1233.
  81. HaciaJ.G., Brody L.C., Chee M.S. et al. Detection of heterozygous mutations in BRCA1 using high density oligonucleotide arrays and two-colour fluorescence analysis // Nat. Genet. 1996. — Vol. 14, N. 4 — P. 441−447.
  82. Heath K.E., Humphries S.E., Middleton-Price H., Boxer M. A molecular genetic service for diagnosing individuals with familial hypercholesterolaemia (FH) in the United Kingdom // Eur. J. Hum. Genet.- 2001. Vol. 9, N 4. — P. 244 — 252.
  83. K.E., Whittall R.S., Miller G.J., Humphries S.E. 1705 variant in the low density lipoprotein receptor gene has no effect on plasma cholesterol levels // J. Med. Genet. 2000. — Vol. 37, N 9. — P. 713 — 715.
  84. Heimdal K., Maehle L., Apold J. et al. The Norwegian founder mutations in BRCA1: high penetrance confirmed in an incident cancer series and differences observed in the risk of ovarian cancer // Eur. J. Cancer. 2003. — Vol. 39, N 15. — P. 2205 — 2213.
  85. Hobbs H.H., Brown M.S., Goldstein J.L. Molecular genetics of the LDL receptor gene in familial hypercholesterolemia // Hum. Mutat. -1992.-Vol. l.-P. 445−466.
  86. Hobbs H.H., Brown M.S., Russell D.W. et al. Deletion in the gene for the low-density-lipoprotein receptor in a majority of French Canadians with familial hypercholesterolemia // N. Engl. J. Med. 1987a. — Vol. 317, N 12.-P. 734−737.
  87. Hobbs H.H., Esser V., Russell D.W. Ava II polymorphism in the human LDL receptor // Nucleic Acids Res. 1987b. — Vol. 15, N 1. — P. 379.
  88. Hobbs H.H., Russell D.W., Brown M.S., Goldstein J.L. The LDL receptor locus in familial hypercholesterolemia: mutational analysis of a membrane protein // Annu. Rev. Genet. 1990. — Vol. 24. — P. 133 — 170.
  89. Horsthemke В., Dunning A., Humphries S. Identification of deletions in the human low density lipoprotein receptor gene // J. Med. Genet.- 1987.-Vol. 24.-P. 144−147.
  90. Horton J.D., Goldstein J.L., Brown M.S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver // J. Clin. Invest. 2002. — Vol. 109, N 9. — P. 1125 — 1131.
  91. Horvath A., Ganev V. The mutation АРОВ-100 R3500Q in Eastern Europe // Atherosclerosis. 2001. — Vol. 156. — P. 241 — 242.
  92. Horvath A., Savov A., Kirov S. et al. High frequency of the ApoB-100 R3500Q mutation in Bulgarian hypercholesterolaemic subjects // J. Med. Genet. 2001. — Vol. 38. — P. 536 — 540.
  93. Hunt S.C., Hopkins P.N., Bulka K. et al. Genetic localization to chromosome lp32 of the third locus for familial hypercholesterolemia in a Utah kindred // Arterioscler. Thromb. Vase. Biol. 2000. — Vol. 20. — P. 1089−1093.
  94. Huusko P., Paakkonen K., Launonen V. et al. Evidence of founder mutations in Finnish BRCA1 and BRCA2 families // Am. J. Hum. Genet. 1998. — Vol. 62, N 6. — P. 1544 — 1548.
  95. Ikeda N., Miyoshi Y., Yoneda K. et al. Frequency of BRCA1 and BRCA2 germline mutations in Japanese breast cancer families // Int. J. Cancer.-2001.-Vol. 19, N l.-P. 83−88.
  96. Innerarity T. L., Mahley R.W., Weisgraber K.H. et al. Familial defective apolipoprotein B-100: a mutation of apolipoprotein В that causes hypercholesterolemia // J. Lipid Res. 1990. — Vol. 31. — P. 1337 — 1349.
  97. Innerarity T. L., Weisgraber К. H., Arnold K. S. et al. Familial defective apolipoprotein B-100: low density lipoproteins with abnormal receptor binding // Proc. Natl. Acad. Sci. USA.- 1987. Vol. 84. — P. 6919−6923.
  98. Jacquemier J., Lidereau R., Birnbaum D. et al. Assessing the risk of BRCA1-associated breast cancer using individual morphological criteria // Histopathol. 2001. — Vol. 38. — P. 378 — 379.
  99. Jensen U.K. The molecular genetic basis and diagnosis of familial hypercholesterolemia in Denmark // Dan. Med. Bull. 2002. — Vol. 49. -P. 318−345.
  100. Jensen U.K., Jensen L., Hansen P. S. et al. A G-l-to-A acceptor splice site LDLR mutant allele leads to reduced relative transcript levels in patients with heterozygous familial hypercholesterolemia // Clin. Genet. 1996a. — Vol. 49. — P. 175 — 179.
  101. Jensen H.K., Jensen L.G., Hansen P. S. et al. The Trp23 stop and Тгрбб — gly mutations in the LDL-receptor gene: common causes of familial hypercholesterolemia in Denmark // Atherosclerosis — 1996b. -Vol. 120.-P. 57−65.
  102. Jensen J., Blankenhorn D.H., Kornerup V. Coronary disease in familial hypercholesterolemia // Circulation. 1967. — Vol. 36. — P. 77 -82.
  103. KauffN.D., Perez-Segura P., Robson M.E. et al. Incidence of non-founder BRCA1 and BRCA2 mutations in high risk Ashkenazi breast and ovarian cancer families // J. Med. Genet. 2002. — Vol. 39. — P. 611 -614.
  104. Kiechle M., Gross E., Schwarz-Boeger U. et al. Ten novel BRCA1 and BRCA2 mutations in breast and/or ovarian cancer families from northern Germany // Hum. Mutat. 2000. — Vol. 16, N 6. — P. 529 — 530 (Mutation in Brief #379 (2000) Online).
  105. King M.-C., Marks J.H., Mandell J.B., New York Breast Cancer Study Group. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2 // Science. 2003. — Vol. 302, N 5645. — P. 643 -646.
  106. Kingsley D.M., Krieger M. Receptor-mediated endocytosis of low density lipoprotein: Somatic cell mutants define multiple genes required for expression of surface receptor activity// Proc. Natl. Acad. Sci. USA. — 1984. — Vol. 81, N 17. -P. 5454 — 5458.
  107. Kinzler K.W., Vogelstein B. Cancer-susceptibility genes. Gatekeepers and caretakers // Nature. 1997. — Vol. 386. — P. 761−763.
  108. Klitz W., Brautbar C., Schito A.M. et al. Evolution of the CCR5 Delta32 mutation based on haplotype variation in Jewish and Northern European population samples // Hum. Immunol. 2001. — Vol. 62, N 5. -P. 530−538.
  109. Knott T.J., Wallis S.C., Powell L.M. et al Complete cDNA and derived protein sequence of human apolipoprotein B-100 // Nucleic Acids Res. 1986. — Vol. 14. — P. 7501 — 7503.
  110. Koivisto P. V., Koivisto U.M., Kovanen P.T. et al Deletion of exon 15 of the LDL receptor gene is associated with a mild form of familial hypercholesterolemia. FH-Espoo // Arterioscler. Thromb. 1993. — Vol. 13, N11.-P. 1680- 1688.
  111. Koonin E.V., Altschul S.F., Bork P. BRCA1 protein products: functional motifs // Nat. Genet. 1996. — Vol. 13. — P. 266 — 267.
  112. Kotze M.J., Retief A.E., Brink P.A., Weich H.F.H. A DNA polymorphism in the human low-density lipoprotein receptor gene // S. Afr. Med. J. 1986. — Vol. 70. — P. 77 — 79.
  113. Kotze M.J., Warnich L., Langenhoven E. et al An exon 4 mutation identified in the majority of South African familialhypercholesterolaemics // J. Med. Genet. 1990. — Vol. 27, N 5. — P. 298 -302.
  114. Kunkel L.M., Smith K.D., Boyer S.H. et al. Analysis of human Y-chromosome-specific reiterated DNA in chromosome variants // Proc. Natl. Acad. Sci. USA.- 1977. Vol. 74. — P. 1245 — 1249.
  115. Lakhani S.R., Jacquemier J., Sloane J.P. et al. Multifactorial analysis of differences between sporadic breast cancers and cancers involving BRCA1 and BRCA2 mutations // J. Natl. Cancer. Inst. 1998. -Vol. 90, N 15.-P. 1138−1145.
  116. Landsberger D., Meiner V., Reshef A. et al. A nonsense mutation in the LDL receptor gene leads to familial hypercholesterolemia in the Druze sect // Am. J. Hum. Genet. 1992. — Vol. 50. — P. 427 — 433.
  117. Langlois S., Kastelein J.J.P., Hayden M.R. Characterization of six partial deletions in the low-density-lipoprotein (LDL) receptor gene causing familial hypercholesterolemia (FH) // Am. J. Hum. Genet. 1988. -Vol. 43.-P. 60−68.
  118. Law S.W., Grant S.M., Higuchi K. et al. Human liver apolipoprotein B-100 cDNA: complete nucleic acid and derived amino acid sequence // Proc. Natl. Acad. Sci. USA.- 1986. Vol. 83. — P. 8142−8146.
  119. Lee W.K., Haddad L., Macleod M.J. et al. Identification of a common low density lipoprotein receptor mutation (C163Y) in the West of Scotland // J. Med. Genet. 1998. — Vol. 35. — P. 573 — 578.
  120. Lehrman M.A., Schneider W.J., Brown M.S. et al. The Lebanese allele at the LDL receptor locus: Nonsense mutation produces truncatedreceptor that is retained in endoplasmic reticulum // J. Biol. Chem. -1987.-Vol. 262.-P. 401−410.
  121. Leitersdorf E., Tobin E.J., Davignon J., Hobbs H.H. Common low-density lipoprotein receptor mutations in the French Canadian population // J. Clin. Invest. 1990. — Vol. 85, N 4. — P. 1014 -1023.
  122. Leitersdorf E., van der Westhuyzen D.R., Coetzee G.A., Hobbs H.H. Two common low density lipoprotein receptor gene mutations cause familial hypercholesterolemia in Afrikaners // J. Clin. Invest. 1989. -Vol. 84, N3.-P. 954−961.
  123. Leren T.P. Mutations in the PCSK9 gene in Norwegian subjects with autosomal dominant hypercholesterolemia // Clin. Genet. 2004. -Vol. 65, N5.-P. 419−422.
  124. Leren T.P., Tonstad S., Gundersen K.E. et al. Molecular genetics of familial hypercholesterolemia in Norway // J. Intern. Med. 1997. — Vol. 241.-P. 185−194.
  125. Lind S., Rystedt E., Eriksson M. et al. Genetic characterization of Swedish patients with familial hypercholesterolemia: a heterogeneous pattern of mutations in the LDL receptor gene // Atherosclerosis. 2002. -Vol. 163.-P. 399−407.
  126. Liu X., Barker D.F. Evidence for effective suppression of recombination in the chromosome 17q21 segment spanning RNU2-BRCA1 // Am. J. Hum. Genet. 1999. — Vol. 64, N 5. — P. 1427 — 1439.
  127. Lombardi M.P., Redeker E.J., Defesche J.C. et al. Molecular genetic testing for familial hypercholesterolemia: spectrum of LDLreceptor gene mutations in the Netherlands // Clin. Genet. 2000. — Vol. 57.-P. 116−124.
  128. Lombardi P., Sijbrands E.J., Kamerling S. et al. The T705I mutation of the low density lipoprotein receptor gene (FH Paris-9) does not cause familial hypercholesterolemia // Hum. Genet. 1997. — Vol. 99, N l.-P. 106−107.
  129. Ludwig E.H., McCarthy B.J. Haplotype analysis of the human apolipoprotein В mutation associated with familial defective apolipoprotein В100 // Am. J. Hum. Genet. 1990. — Vol. 47. — P. 712 -720.
  130. Ma Y.H., Betard C., Roy M. et al. Identification of a second «French Canadian» LDL receptor gene deletion and development of a rapid method to detect both deletions // Clin. Genet. 1989. — Vol. 36, N 4.-P. 219−228.
  131. Mandelshtam M.Ju., Chakir Kh., Shevtsov S.P. etal. Prevalence of Lithuanian mutation among St. Petersburg Jews with familial hypercholesterolemia // Hum. Mutat. 1998. — Vol. 12, N 4. — P. 255 -258.
  132. Mandelshtam M.Ju., Lipovetskyi B.M., Schwartzman A.L., Gaitskhoki V.S. A novel deletion in the low density lipoprotein receptor gene in a patient with familial hypercholesterolemia from Petersburg // Hum. Mutat. 1993. — Vol.2, N 4. — P. 256 — 260.
  133. Manguoglu A.E., Luleci G., Ozcelik T. et al. Germline mutations in the BRCA1 and BRCA2 genes in Turkish breast/ovarian cancer patients // Hum. Mutat. 2003. — Vol. 21, N 4. — P. 444 — 445.
  134. Mansukhani M.M., Nastiuk K.L., Hibshooh H. et al. Convenient, nonradioactive heteroduplex-based methods for identifying recurrent mutations in the BRCA1 and BRCA2 genes // Diagnostic Molecular Pathology. 1997. — Vol. 6, N 4. — P. 229 — 237.
  135. A.D., Firth J. С., Blom D.J. Familial hypercholesterolemia in South Africa // Semin. Vase. Med. 2004. — Vol. 4, N 1. — P. 93 — 95.
  136. Markoff A., Savov A., Vladimirov V. et al. Optimization of single-strand conformational polymorphism analysis in the presence of polyethylene glycol // Clin. Chem. 1997. — Vol. 43. — P. 30 — 33.
  137. Maxwell K. N., Breslow J. L. Adenoviral-mediated expression of Pcsk9 in mice results in a lew-density lipoprotein receptor knockout phenotype // Proc. Natl. Acad. Sci. U S A. 2004. — Vol. 101.-P. 71 007 105.
  138. Meijers-Heijboer H., van den Ouweland A., Klijn J. et al. Low-penetrance susceptibility to breast cancer due to CHEK2(*)1100delC in noncarriers of BRCA1 or BRCA2 mutations // Nat. Genet. 2002. — Vol. 31, N1.-P. 55−59.
  139. Meijers-Heijboer H., van Geel В., van Putten W.L. et al. Breast cancer after prophylactic bilateral mastectomy in women with a BRCA1 or BRCA2 mutation // N. Engl. J. Med. 2001. — Vol. 345, N 3. — P. 159 -164.
  140. Meiner V., Landsberger D., Berkman N. et al. A common Lithuanian mutation causing familial hypercholesterolemia in Ashkenazi Jews 11 Am. J. Hum. Genet. 1991. — Vol. 49. — P. 443 — 449.
  141. Metcalfe K., Lynch H.T., Ghadirian P. et al. Contralateral breast cancer in BRCA1 and BRCA2 mutation carriers // J. Clin. Oncol. 2004. — Vol. 22, N 12. — P. 2328 — 2335.
  142. Miki Y., Swensen J., Shattuck-Eidens D. et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1 // Science. -1994. Vol. 266-P. 66−71.
  143. Miltiados G., Cariolou M.A., Elisaf M. HDL cholesterol levels in patients with molecularly defined familial hypercholesterolemia // Annals of Clinical and Laboratory Sciences. 2002. — Vol. 32, N 1. — P. 50 -54.
  144. Mincey B.A. Genetics and the management of women at high risk for breast cancer // The Oncologist. 2003. — Vol. 8. — P. 466 — 473.
  145. Miserez A.R., Muller P.Y. Familial defective apolipoprotein B-100: a mutation emerged in the mesolithic ancestors of Celtic peoples? // Atherosclerosis. 2000. — Vol. 148. — P. 433 — 436.
  146. Miyake Y., Tajima S., Funahashi Т., Yamamoto A. Analysis of a recycling-impaired mutant of low density lipoprotein receptor in familial hypercholesterolemia // J. Biol. Chem. 1989. — Vol. 264, N 28. — P. 16 584- 16 590.
  147. Moller P., Heimdal K., Apold J. et al. Genetic epidemiology of BRCA1 mutations in Norway // Eur. J. Cancer. 2001. — Vol. 37, N 18. -P. 2428 — 2434.
  148. Monteiro A.N.A. BRCA1: the enigma of tissue-specific tumor development // Trends in Genetics. 2003. — Vol. 19, N 6. — P. 312 — 315.
  149. Mozas P., Cenarro A., Civeira F. et al. Mutation analysis in 36 unrelated Spanish subjects with familial hypercholesterolemia: identification of 3 novel mutations in the LDL receptor gene // Hum. Mutat. 2000. — Vol. 15, N 5. — P. 483 — 484.
  150. Myant N.B., Forbes S.A., Day I.N.M., Gallaghers J. Estimation of the age of the ancestral arginine3500-to-glutamine mutation in human apoB-100 // Genomics. 1997. — Vol. 45. — P. 78 — 87.
  151. NarodS.A., Foulkes D. W. BRCA1 and BRCA2: 1994 and beyond // Nature Reviews. Cancer. 2004. — Vol. 4. — P. 665 — 676.
  152. Nauck M.S., Koster W., Dorfer K. et al. Identification of recurrent and novel mutations in the LDL receptor gene in German patients with familial hypercholesterolemia // Hum. Mutat. 2001. — Vol. 18. — P. 165 -166.
  153. L. В., Shefer S., Salen G. et al. A molecular defect in hepatic cholesterol biosynthesis in sitosterolemia with xanthomatosis // J. Clin. Invest. 1990. — Vol. 86. — P. 923 — 931.
  154. Oddoux C., Struewing J.P., Clayton M.C. et al. The carrier frequency of the BRCA2 6174delT mutation among Ashkenazi Jewish individuals is approximately 1% // Nat. Genet. 1996. — Vol. 14, N 2. -P. 188- 190.
  155. Oros K.K., Ghadirian P., Greenwood C.M. et al. Significant proportion of breast and/or ovarian cancer families of French Canadiandescent harbor 1 of 5 BRCA1 and BRCA2 mutations // Int. J. Cancer. -2004. Vol. 112, N 3. — P. 411 — 419.
  156. Osorio A., Barroso A., Martinez B. et al Molecular analysis of the BRCA1 and BRCA2 genes in 32 breast and/or ovarian cancer Spanish families // Br. J. Cancer. 2000. — Vol. 82, N 7. — P. 1266 — 1270.
  157. Ostrer H. A genetic profile of contemporary Jewish populations // Nature Reviews. 2001. — Vol. 2. — P. 891 — 898.
  158. Palacios J., Honrado E., Osorio A. et al. Phenotypic characterization of BRCA1 and BRCA2 tumors based in a tissue microarray study with 37 immunohistochemical markers // Breast Cancer Res. Treat. 2005. — Vol. 90, N 1. — P. 5 — 14.
  159. Peelen Т., van Vliet M., Petrij-Bosch A. et al. A high proportion of novel mutations in BRCA1 with strong founder effects among Dutch and Belgian hereditary breast and ovarian cancer families // Am. J. Hum. Genet. -1997.-Vol. 60, N5.-P. 1041 -1049.
  160. Perkowska M., Brozek I., Wysocka B. et al. BRCA1 and BRCA2 mutation analysis in breast-ovarian cancer families from Northeastern Poland // Hum. Mutat. 2003. — Vol. 21, N 5. — P. 553 — 554 (Mutation in Brief #610 (2003) Online).
  161. Perrin-Vidoz L., Sinilnikova O.M., Stoppa-Lyonnet D. et al. The nonsense-mediated mRNA decay pathway triggers degradation of most BRCA1 mRNAs bearing premature termination codons // Hum. Mol. Genet. 2002. — Vol. 11, N 23. — P. 2805 — 2814.
  162. Petrij-Bosch A., Peelen Т., van Vliet M. et al. BRCA1 genomic deletions are major founder mutations in Dutch breast cancer patients // Nat. Genet. 1997. — Vol. 17, N 3. — P. 341 — 345 (Erratum in: Nat. Genet. — 1997. — Vol. 17, N 4. — P. 503.).
  163. Phelan C.M., Kwan E., Jack E. et al A low frequency of non-founder BRCA1 mutations in Ashkenazi Jewish breast-ovarian cancer families // Hum. Mutat. 2002. — Vol. 20, N 5. — P. 352 — 357.
  164. Pogoda Т., Metelskaya V., Perova N., Limborska S. Detection of the apoB-3500 mutation in a Russian family with coronary heart disease // Hum. Hered. 1998. — Vol. 48, N 5. — P. 291 — 292.
  165. Promega protocols and applications guide. Promega, 1990. -Madison, USA-P.40−41.
  166. Pullinger C.R., Hennessy L.K., Chatterton J.E. et al Familial ligand-defective apolipoprotein B: identification of a new mutation that decreases LDL receptor binding affinity // J. Clin. Invest. 1995. — Vol. 95.-P. 1225−1234.
  167. Rafnar Т., Benediktsdottir K.R., Eldon B.J. et al. BRCA2, but not BRCA1, mutations account for familial ovarian cancer in Iceland: a population-based study // Eur. J. Cancer. 2004. — Vol. 40, N 18. — P. 2788−2793.
  168. Rauh G., Keller C., Schuster H. et al Familial defective apolipoprotein B-100: a common cause of primary hypercholesterolemia // Clin. Invest. 1992. — Vol. 70, N 1. — P. 77−84.
  169. Rebbeck T.R., Lynch H.T., Neuhausen S.L. et al Prophylactic oophorectomy in carriers of BRCA1 or BRCA2 mutations // N. Engl. J. Med. 2002. — Vol. 346, N 21. — P. 1616 — 1622.
  170. Reeves M.D., Yawitch T.M., van der Merwe N.C. et al BRCA1 mutations in South African breast and/or ovarian cancer families: evidence of a novel founder mutation in Afrikaner families // Int. J. Cancer. 2004. — Vol. 110, N 5. — P. 677 — 682.
  171. Reshef A., Nissen H., Triger L. et al. Molecular genetics of familial hypercholesterolemia in Israel // Hum. Genet. 1996. — Vol. 98. — P. 581 -586.
  172. Roa B.B., Boyd A.A., Volcik K, Richards C.S. Ashkenazi Jewish population frequencies for common mutations in BRCA1 and BRCA2 // Nat. Genet.-1996.-Vol. 14, N2.-P. 185 187.
  173. Robson M.E., Boyd J., Borgen P.I., Cody H.S. Hereditary breast cancer // Curr. Probl. Surg. 2001. — Vol. 38. — P. 387 — 480.
  174. Rodningen O.K., Tonstad S., Medh J.D. et al. Phenotypic consequences of a deletion of exons 2 and 3 of the LDL receptor gene // J. Lipid Res. 1999. — Vol. 40. — P. 213 — 220.
  175. Rudenko G., Deisenhofer J. The low-density lipoprotein receptor: ligands, debates and lore // Curr. Opin. Struct. Biol. 2003. — Vol. 13. -P. 683−689.
  176. Rudenko G., Henry L., Henderson К et al. Structure of the LDL receptor extracellular domain at endosomal pH // Science. 2002. — Vol. 298.-P. 2353−2358.
  177. Russell D. W., Yamamoto Т., Schneider W.J. et al. cDNA cloning of the bovine low density lipoprotein receptor: feedback regulation of a receptor mRNA // Proc. Natl. Acad. Sci. U S A. 1983. — Vol. 80, N 24. -P. 7501 -7505.
  178. Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning. A Laboratory Manual. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press, 1989.
  179. Sanger F., Nicklen S., Coulson A.R. DNA sequencing with chain-terminating inhibitors // Proc. Natl. Acad. Sci. USA.- 1977. Vol. 74. -P.5463 — 5467.
  180. Sarantaus L., Huusko P., Eerola H. et al. Multiple founder effects and geographical clustering of BRCA1 and BRCA2 families in Finland // Eur. J. Hum. Genet. 2000. — Vol. 8, N 10. — P. 757 — 763.
  181. Scheuer L., Kauff N., Robson M. et al. Outcome of preventive surgery and screening for breast and ovarian cancer in BRCA mutation carriers // J. Clin. Oncol. 2002. — Vol. 20, N 5. — P. 1260 — 1268.
  182. Schmidt H., Kostner G.M. Familial hypercholesterolemia in Austria reflects the multi-ethnic origin of our country // Atherosclerosis. 2000. -Vol. 148.-P. 431 -432.
  183. Schneider W.J., Beisiegel U., Goldstein J.L., Brown M.S. Purification of the low density lipoprotein receptor, an acidic glycoprotein of 164,000 molecular weight // J. Biol. Chem. 1982. — Vol. 257, N 5. -P. 2664−2673.
  184. Schuster H., Luft F.C. Clinical criteria versus DNA diagnosis in heterozygous familial hypercholesterolemia. Is molecular diagnosis superior to clinical diagnosis? // Arterioscler. Thromb. Vase. Biol. 1998. -Vol. 18.-P. 331 -332.
  185. Schutte M., Seal S., Barfoot R. et al. Variants in CHEK2 other than 1 lOOdelC do not make a major contribution to breast cancer susceptibility // Am. J. Hum. Genet. 2003. — Vol. 72, N 4. — P. 1023 — 1028.
  186. Scientific Steering Committee on behalf of the Simon Broome Register Group. Risk of fatal coronary heart disease in familial hypercholesterolaemia // Brit. Med. J. 1991.-Vol. 303. — P. 893 — 896.
  187. Scientific Steering Committee on behalf of the Simon Broome Register group. Mortality in treated heterozygous familial hypercholesterolaemia: implications for clinical management // Atherosclerosis. 1999. — V. 142. — P. 105 -112.
  188. Seftel H.C., Baker S.G., Jenkins Т., Mendelsohn D. Prevalence of familial hypercholesterolemia in Johannesburg Jews // Am. J. Med. Genet. 1989. — Vol. 34. — P. 545 — 547.
  189. Seidah N. G., Benjannet S., Wickham L. et al. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation // Proc. Natl. Acad. Sci. U S A. 2003. — Vol. 100. — P. 928 — 933.
  190. Shiri-Sverdlov R., Oefner P., Green L. et al. Mutational analyses of BRCA1 and BRCA2 in Ashkenazi and non-Ashkenazi Jewish women with familial breast and ovarian cancer // Hum. Mutat. 2000. — Vol. 16, N6.-P. 491−501.
  191. Siest G., Bertrand P., Herbeth B. et al. Apolipoprotein E polymorphisms and concentration in chronic diseases and drug responses // Clin. Chem. Lab. Med. 2000. — Vol. 38, N 9. — P. 841 — 852.
  192. Simmons Т., Newhouse Y.M., Arnold K.S. et al. Human low density lipoprotein receptor fragment. Successful refolding of a functionallyactive ligand-binding domain produced in Escherichia coli II J. Biol. Chem.- 1997.-Vol. 272, N41.-P. 25 531 -25 536.
  193. Slack J. Risks of ischaemic heart disease in familial hyperlipoproteinaemic states // Lancet. 1969. — ii. — P. 1380−1382.
  194. Slack J. Inheritance of familial hypercholesterolemia // Atheroscler. Rev. 1979.-Vol. 5.-P. 35−66.
  195. Smith T.M., Lee M.K., Szabo C.I. et al. Complete genomic sequence and analysis of 117 kb of human DNA containing the gene BRCA1 // Genome Res. 1996. — Vol. 6, N 11. — P. 1029 — 1049.
  196. Sobczak K., Kozlowski P., Napieralta M. et al. Novel BRCA1 mutations and more frequent intron-20 alteration found among 236 women from western Poland // Oncogene. 1997. — Vol. 15. — P. 1773 -1779.
  197. Soria L.F., Ludwig E.H., Clarke H.R. et al. Association between a specific apolipoprotein В mutation and familial defective apolipoprotein B-100 // Proc. Natl. Acad. Sci. USA.- 1989. Vol. 86, N 2. — P. 587 -591.
  198. Sorlie Т., Tibshirani R., Parker J. et al. Repeated observation of breast tumor subtypes in independent gene expression data sets // Proc. Natl. Acad. Sci. USA.- 2003. Vol. 100, N 14. — P. 8418 — 8423.
  199. Soutar A. K, Naoumova R. P, Traub L.M. Genetics, clinical phenotype, and molecular cell biology of autosomal recessive hypercholesterolemia // Arterioscler. Thromb. Vase. Biol. 2003. — Vol. 23, N 11.-P. 1963−1970.
  200. Southern E.M. Detection of specific sequences among DNA fragments separated by gel electrophoresis // J. Mol. Biol. 1975. — Vol. 98, N3,-P. 503−517.
  201. Starita L., Parvin J.D. The multiple functions of BRCA1: transcription, ubiquitination and DNA repair // Curr. Opin. Cell. Biol. -2003.-Vol. 15.-P. 345−350.
  202. Stein E.A. The lipid disorders centre at the Transvaal Memorial Hospital for Children. A review of the first 30 months // S. Afr. Med. J. -1977. Vol. 52, N 14. — P. 573 — 579.
  203. Stone N.J., Levy R.I., Fredrickson D.S., Verter J. Coronary artery disease in 116 kindred with familial type II hyperlipoproteinaemia // Circulation. 1974. — Vol. 49. — P. 476 — 488.
  204. Struewing J.P., Abeliovich D., Peretz T. et al. The carrier frequency of the BRCA1 185delAG mutation is approximately 1 percent in Ashkenazi Jewish individuals individuals // Nat. Genet. 1995. — Vol. 11, N2.-P. 198−200.
  205. Struewing J.P., Hartge P., Wacholder S. et al. The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews // New Engl. J. Med. 1997.- Vol. 336. — P. 1401−1408.
  206. Stidhof T.C., Goldstein J.L., Brown M.S., Russell D.W. The LDL receptor: a mosaic of exons shared with different proteins // Science. -1985. Vol. 228, N 4701. — P. 815 — 822.
  207. Syrjakoski K., Vahteristo P., Eerola H. et al. Population-based study of BRCA1 and BRCA2 mutations in 1035 unselected Finnish breast cancer patients // J. Natl. Cancer Institute. 2000. — Vol. 92, N 18. — P. 1529- 1531.
  208. Tereschenko J.V., Basham V.M., Ponder B.A., Pharoah P.D. BRCA1 and BRCA2 mutations in Russian familial breast cancer // Hum.
  209. Mutat. 2002. — Vol. 19, N 2. — P. 184 (Mutation in Brief #479 (2002) Online).
  210. Tonin P.N., Mes-Masson A.M., Futreal P.A. et al. Founder BRCA1 and BRCA2 mutations in French Canadian breast and ovarian cancer families // Am. J. Hum. Genet. 1998. — Vol. 63, N 5. — P. 1341 — 1351.
  211. Varret M., Rabes J.-P., Collod-Beroud G. et al. Software and database for the analysis of mutations in the human LDL receptor gene // Nucleic Acids Res. 1997. — Vol. 25. — P. 172 — 180.
  212. Varret M., Rabes J.-P., Saint-Jore B. et al. A third major locus for autosomal dominant hypercholesterolemia maps to Ip34.1-p32 // Am. J. Hum.Genet. 1999. — Vol. 64. — P. 1378 — 1387.
  213. Varret M., Rabes J.-P., Thiart R. et al. LDLR Database (second edition): new additions to the database and the software, and results of the first molecular analysis // Nucleic Acids Res. 1998. — Vol. 26. — P. 248 -252.
  214. Vega G.L., Grundy S.M. In vivo evidence for reduced binding of low density lipoproteins to receptors as a cause of primary moderate hypercholesterolemia // J. Clin. Invest. 1986. — Vol. 78, N 5. — P. 1410
  215. Vehmanen P., Friedman L.S., Eerola H. et al. Low proportion of BRCA1 and BRCA2 mutations in Finnish breast cancer families: evidence for additional susceptibility genes // Hum. Mol. Genet. 1997. -Vol. 6, N 13. — P. 2309−2315.
  216. Verhoog L.C., van den Ouweland A.M., Berns E. et al. H. Large regional differences in the frequency of distinct BRCA1/BRCA2 mutations in 517 Dutch breast and/or ovarian cancer families // Eur. J. Cancer. 2001. — Vol. 37, N 16. — P. 2082 — 2090.
  217. Villeger L., Abifadel M., Allard D. et al. The UMD-LDLR Database: additions to the software and 490 new entries to the database // Hum. Mutat. 2002. — Vol. 20. — P. 81 — 87.
  218. Vohl M.C., Moorjani S., Roy M. et al. Geographic distribution of French-Canadian low-density lipoprotein receptor gene mutations in the Province of Quebec // Clin. Genet. 1997. — Vol. 52, N 1. — P. 1 — 6.
  219. Vuorio A.F., Aalto-Setala K., Koivisto U.-M. et al. Familial hypercholesterolemia in Finland: common, rare and mild mutations of the LDL receptor gene and their clinical consequences. Finnish FH group // Ann. Med. 2001. — Vol. 33. — P. 410 — 421.
  220. Vuorio A.F., Turtola H., Piilahti K.M. et al. Familial hypercholesterolemia in the Finnish north Karelia. A molecular, clinical, and genealogical study // Arterioscler. Thromb. Vase. Biol. 1997b. -Vol. 17, N 11. — P. 3127 -3138.
  221. Wagner T.M., Moslinger R.A., Muhr D. et al. BRCA1-related breast cancer in Austrian breast and ovarian cancer families: specific BRCA1mutations and pathological characteristics // Int. J. Cancer. 1998. — Vol. 77, N3.-P. 354−360.
  222. Wang C., Lin H. J., Chan T.-K., Salen G. et al. A unique patient with coexisting cerebrotendinous xanthomatosis and beta-sitosterolemia // Am. J.Med. 1981.-Vol. 71.-P. 313−319.
  223. Wang Y., Cortez D., Yazdi P. et al. BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures // Genes Dev. 2000. — Vol. 14, N 8. — P. 927 -939.
  224. Wooster R., Bignell G., Lancaster J. et al. Identification of the breast cancer susceptibility gene BRCA2 // Nature. 1995. — Vol. 378, N 6559.-P. 789−792.
  225. Wooster R., Weber B.L. Breast and ovarian cancer // New Engl. J. Med. 2003. — Vol. 348, N 23. — P. 2339 — 2347.
  226. Xu X., Wagner K.U., Larson D. et al. Conditional mutation of Brcal in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation // Nat. Genet. 1999. — V. 22. — P. 37−43.
  227. Yamamoto Т., Davis C.G., Brown M.S. et al. The human LDL receptor: cysteine-rich protein with multiple Alu sequences in its mRNA // Cell. 1984. — Vol. 39, N 1. — P. 27 — 38.
  228. Yang C.-Y., Chan L., Gotto A.M., Jr. The complete structures of human apolipoprotein B-100 and its messenger RNA // In: Plasma Lipoproteins. A.M. Gotto, Jr., editor. 1987. Elsevier Science Publishers B.V. (Biomedical Division), Amsterdam, P. 77−93.
  229. Yu W., Nohara A., Higashikata T. et al. Molecular genetic analysis of familial hypercholesterolemia: spectrum and regional difference of LDL receptor gene mutations in Japanese population // Atherosclerosis. -2002. Vol. 165. — P. 335 — 342.
  230. Zeps N., Bentel J.M., Papadmitriou J.M. et al. Estrogen receptor-negative epithelial cells in mouse mammary gland development and growth // Differentiation. 1998. — Vol. 62. — P. 221 — 226.
Заполнить форму текущей работой